2023-05-16 21:41:14 -07:00

539 lines
12 KiB
C

/*
* Copyright (c) 2003-2019 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Kernel stack management routines.
*/
#include <mach/mach_host.h>
#include <mach/mach_types.h>
#include <mach/processor_set.h>
#include <kern/kern_types.h>
#include <kern/lock_group.h>
#include <kern/mach_param.h>
#include <kern/percpu.h>
#include <kern/processor.h>
#include <kern/thread.h>
#include <kern/zalloc.h>
#include <kern/kalloc.h>
#include <kern/ledger.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <mach_debug.h>
#include <san/kasan.h>
/*
* We allocate stacks from generic kernel VM.
*
* The stack_free_list can only be accessed at splsched,
* because stack_alloc_try/thread_invoke operate at splsched.
*/
decl_simple_lock_data(static, stack_lock_data);
#define stack_lock() simple_lock(&stack_lock_data, LCK_GRP_NULL)
#define stack_unlock() simple_unlock(&stack_lock_data)
#define STACK_CACHE_SIZE 2
static vm_offset_t stack_free_list;
static unsigned int stack_free_count, stack_free_hiwat; /* free list count */
static unsigned int stack_hiwat;
unsigned int stack_total; /* current total count */
unsigned long long stack_allocs; /* total count of allocations */
static unsigned int stack_free_target;
static int stack_free_delta;
static unsigned int stack_new_count; /* total new stack allocations */
static vm_offset_t stack_addr_mask;
unsigned int kernel_stack_pages;
vm_offset_t kernel_stack_size;
vm_offset_t kernel_stack_mask;
vm_offset_t kernel_stack_depth_max;
struct stack_cache {
vm_offset_t free;
unsigned int count;
};
static struct stack_cache PERCPU_DATA(stack_cache);
/*
* The next field is at the base of the stack,
* so the low end is left unsullied.
*/
#define stack_next(stack) \
(*((vm_offset_t *)((stack) + kernel_stack_size) - 1))
static inline int
log2(vm_offset_t size)
{
int result;
for (result = 0; size > 0; result++) {
size >>= 1;
}
return result;
}
static inline vm_offset_t
roundup_pow2(vm_offset_t size)
{
return 1UL << (log2(size - 1) + 1);
}
static vm_offset_t stack_alloc_internal(void);
static void stack_free_stack(vm_offset_t);
void
stack_init(void)
{
simple_lock_init(&stack_lock_data, 0);
kernel_stack_pages = KERNEL_STACK_SIZE / PAGE_SIZE;
kernel_stack_size = KERNEL_STACK_SIZE;
kernel_stack_mask = -KERNEL_STACK_SIZE;
kernel_stack_depth_max = 0;
if (PE_parse_boot_argn("kernel_stack_pages",
&kernel_stack_pages,
sizeof(kernel_stack_pages))) {
kernel_stack_size = kernel_stack_pages * PAGE_SIZE;
printf("stack_init: kernel_stack_pages=%d kernel_stack_size=%p\n",
kernel_stack_pages, (void *) kernel_stack_size);
}
if (kernel_stack_size < round_page(kernel_stack_size)) {
panic("stack_init: stack size %p not a multiple of page size %d\n",
(void *) kernel_stack_size, PAGE_SIZE);
}
stack_addr_mask = roundup_pow2(kernel_stack_size) - 1;
kernel_stack_mask = ~stack_addr_mask;
}
/*
* stack_alloc:
*
* Allocate a stack for a thread, may
* block.
*/
static vm_offset_t
stack_alloc_internal(void)
{
vm_offset_t stack = 0;
spl_t s;
int flags = 0;
kern_return_t kr = KERN_SUCCESS;
s = splsched();
stack_lock();
stack_allocs++;
stack = stack_free_list;
if (stack != 0) {
stack_free_list = stack_next(stack);
stack_free_count--;
} else {
if (++stack_total > stack_hiwat) {
stack_hiwat = stack_total;
}
stack_new_count++;
}
stack_free_delta--;
stack_unlock();
splx(s);
if (stack == 0) {
/*
* Request guard pages on either side of the stack. Ask
* kernel_memory_allocate() for two extra pages to account
* for these.
*/
flags = KMA_GUARD_FIRST | KMA_GUARD_LAST | KMA_KSTACK | KMA_KOBJECT | KMA_ZERO;
kr = kernel_memory_allocate(kernel_map, &stack,
kernel_stack_size + (2 * PAGE_SIZE),
stack_addr_mask,
flags,
VM_KERN_MEMORY_STACK);
if (kr != KERN_SUCCESS) {
panic("stack_alloc: kernel_memory_allocate(size:0x%llx, mask: 0x%llx, flags: 0x%x) failed with %d\n", (uint64_t)(kernel_stack_size + (2 * PAGE_SIZE)), (uint64_t)stack_addr_mask, flags, kr);
}
/*
* The stack address that comes back is the address of the lower
* guard page. Skip past it to get the actual stack base address.
*/
stack += PAGE_SIZE;
}
return stack;
}
void
stack_alloc(
thread_t thread)
{
assert(thread->kernel_stack == 0);
machine_stack_attach(thread, stack_alloc_internal());
}
void
stack_handoff(thread_t from, thread_t to)
{
assert(from == current_thread());
machine_stack_handoff(from, to);
}
/*
* stack_free:
*
* Detach and free the stack for a thread.
*/
void
stack_free(
thread_t thread)
{
vm_offset_t stack = machine_stack_detach(thread);
assert(stack);
if (stack != thread->reserved_stack) {
stack_free_stack(stack);
}
}
void
stack_free_reserved(
thread_t thread)
{
if (thread->reserved_stack != thread->kernel_stack) {
stack_free_stack(thread->reserved_stack);
}
}
static void
stack_free_stack(
vm_offset_t stack)
{
struct stack_cache *cache;
spl_t s;
#if KASAN_DEBUG
/* Sanity check - stack should be unpoisoned by now */
assert(kasan_check_shadow(stack, kernel_stack_size, 0));
#endif
s = splsched();
cache = PERCPU_GET(stack_cache);
if (cache->count < STACK_CACHE_SIZE) {
stack_next(stack) = cache->free;
cache->free = stack;
cache->count++;
} else {
stack_lock();
stack_next(stack) = stack_free_list;
stack_free_list = stack;
if (++stack_free_count > stack_free_hiwat) {
stack_free_hiwat = stack_free_count;
}
stack_free_delta++;
stack_unlock();
}
splx(s);
}
/*
* stack_alloc_try:
*
* Non-blocking attempt to allocate a
* stack for a thread.
*
* Returns TRUE on success.
*
* Called at splsched.
*/
boolean_t
stack_alloc_try(
thread_t thread)
{
struct stack_cache *cache;
vm_offset_t stack;
cache = PERCPU_GET(stack_cache);
stack = cache->free;
if (stack != 0) {
cache->free = stack_next(stack);
cache->count--;
} else {
if (stack_free_list != 0) {
stack_lock();
stack = stack_free_list;
if (stack != 0) {
stack_free_list = stack_next(stack);
stack_free_count--;
stack_free_delta--;
}
stack_unlock();
}
}
if (stack != 0 || (stack = thread->reserved_stack) != 0) {
machine_stack_attach(thread, stack);
return TRUE;
}
return FALSE;
}
static unsigned int stack_collect_tick, last_stack_tick;
/*
* stack_collect:
*
* Free excess kernel stacks, may
* block.
*/
void
stack_collect(void)
{
if (stack_collect_tick != last_stack_tick) {
unsigned int target;
vm_offset_t stack;
spl_t s;
s = splsched();
stack_lock();
target = stack_free_target + (STACK_CACHE_SIZE * processor_count);
target += (stack_free_delta >= 0)? stack_free_delta: -stack_free_delta;
while (stack_free_count > target) {
stack = stack_free_list;
stack_free_list = stack_next(stack);
stack_free_count--; stack_total--;
stack_unlock();
splx(s);
/*
* Get the stack base address, then decrement by one page
* to account for the lower guard page. Add two extra pages
* to the size to account for the guard pages on both ends
* that were originally requested when the stack was allocated
* back in stack_alloc().
*/
stack = (vm_offset_t)vm_map_trunc_page(
stack,
VM_MAP_PAGE_MASK(kernel_map));
stack -= PAGE_SIZE;
if (vm_map_remove(
kernel_map,
stack,
stack + kernel_stack_size + (2 * PAGE_SIZE),
VM_MAP_REMOVE_KUNWIRE)
!= KERN_SUCCESS) {
panic("stack_collect: vm_map_remove");
}
stack = 0;
s = splsched();
stack_lock();
target = stack_free_target + (STACK_CACHE_SIZE * processor_count);
target += (stack_free_delta >= 0)? stack_free_delta: -stack_free_delta;
}
last_stack_tick = stack_collect_tick;
stack_unlock();
splx(s);
}
}
/*
* compute_stack_target:
*
* Computes a new target free list count
* based on recent alloc / free activity.
*
* Limits stack collection to once per
* computation period.
*/
void
compute_stack_target(
__unused void *arg)
{
spl_t s;
s = splsched();
stack_lock();
if (stack_free_target > 5) {
stack_free_target = (4 * stack_free_target) / 5;
} else if (stack_free_target > 0) {
stack_free_target--;
}
stack_free_target += (stack_free_delta >= 0)? stack_free_delta: -stack_free_delta;
stack_free_delta = 0;
stack_collect_tick++;
stack_unlock();
splx(s);
}
/* OBSOLETE */
void stack_privilege(
thread_t thread);
void
stack_privilege(
__unused thread_t thread)
{
/* OBSOLETE */
}
/*
* Return info on stack usage for threads in a specific processor set
*/
kern_return_t
processor_set_stack_usage(
processor_set_t pset,
unsigned int *totalp,
vm_size_t *spacep,
vm_size_t *residentp,
vm_size_t *maxusagep,
vm_offset_t *maxstackp)
{
#if !MACH_DEBUG
return KERN_NOT_SUPPORTED;
#else
unsigned int total;
vm_size_t maxusage;
vm_offset_t maxstack;
thread_t *thread_list;
thread_t thread;
unsigned int actual; /* this many things */
unsigned int i;
vm_size_t size, size_needed;
void *addr;
if (pset == PROCESSOR_SET_NULL || pset != &pset0) {
return KERN_INVALID_ARGUMENT;
}
size = 0;
addr = NULL;
for (;;) {
lck_mtx_lock(&tasks_threads_lock);
actual = threads_count;
/* do we have the memory we need? */
size_needed = actual * sizeof(thread_t);
if (size_needed <= size) {
break;
}
lck_mtx_unlock(&tasks_threads_lock);
if (size != 0) {
kheap_free(KHEAP_TEMP, addr, size);
}
assert(size_needed > 0);
size = size_needed;
addr = kheap_alloc(KHEAP_TEMP, size, Z_WAITOK);
if (addr == 0) {
return KERN_RESOURCE_SHORTAGE;
}
}
/* OK, have memory and list is locked */
thread_list = (thread_t *) addr;
for (i = 0, thread = (thread_t)(void *) queue_first(&threads);
!queue_end(&threads, (queue_entry_t) thread);
thread = (thread_t)(void *) queue_next(&thread->threads)) {
thread_reference_internal(thread);
thread_list[i++] = thread;
}
assert(i <= actual);
lck_mtx_unlock(&tasks_threads_lock);
/* calculate maxusage and free thread references */
total = 0;
maxusage = 0;
maxstack = 0;
while (i > 0) {
thread_t threadref = thread_list[--i];
if (threadref->kernel_stack != 0) {
total++;
}
thread_deallocate(threadref);
}
if (size != 0) {
kheap_free(KHEAP_TEMP, addr, size);
}
*totalp = total;
*residentp = *spacep = total * round_page(kernel_stack_size);
*maxusagep = maxusage;
*maxstackp = maxstack;
return KERN_SUCCESS;
#endif /* MACH_DEBUG */
}
vm_offset_t
min_valid_stack_address(void)
{
return (vm_offset_t)vm_map_min(kernel_map);
}
vm_offset_t
max_valid_stack_address(void)
{
return (vm_offset_t)vm_map_max(kernel_map);
}