mirror of
https://github.com/darlinghq/darling-xnu.git
synced 2024-11-23 04:29:53 +00:00
3944 lines
110 KiB
C
3944 lines
110 KiB
C
/*
|
|
* Copyright (c) 2000-2020 Apple Computer, Inc. All rights reserved.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
|
*
|
|
* This file contains Original Code and/or Modifications of Original Code
|
|
* as defined in and that are subject to the Apple Public Source License
|
|
* Version 2.0 (the 'License'). You may not use this file except in
|
|
* compliance with the License. The rights granted to you under the License
|
|
* may not be used to create, or enable the creation or redistribution of,
|
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
|
* circumvent, violate, or enable the circumvention or violation of, any
|
|
* terms of an Apple operating system software license agreement.
|
|
*
|
|
* Please obtain a copy of the License at
|
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
|
*
|
|
* The Original Code and all software distributed under the License are
|
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
|
* Please see the License for the specific language governing rights and
|
|
* limitations under the License.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
|
*/
|
|
|
|
#include <kern/policy_internal.h>
|
|
#include <mach/task_policy.h>
|
|
|
|
#include <mach/mach_types.h>
|
|
#include <mach/task_server.h>
|
|
|
|
#include <kern/host.h> /* host_priv_self() */
|
|
#include <mach/host_priv.h> /* host_get_special_port() */
|
|
#include <mach/host_special_ports.h> /* RESOURCE_NOTIFY_PORT */
|
|
#include <kern/sched.h>
|
|
#include <kern/task.h>
|
|
#include <mach/thread_policy.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/resource.h>
|
|
#include <machine/limits.h>
|
|
#include <kern/ledger.h>
|
|
#include <kern/thread_call.h>
|
|
#include <kern/sfi.h>
|
|
#include <kern/coalition.h>
|
|
#if CONFIG_TELEMETRY
|
|
#include <kern/telemetry.h>
|
|
#endif
|
|
#if !defined(XNU_TARGET_OS_OSX)
|
|
#include <kern/kalloc.h>
|
|
#include <sys/errno.h>
|
|
#endif /* !defined(XNU_TARGET_OS_OSX) */
|
|
|
|
#if IMPORTANCE_INHERITANCE
|
|
#include <ipc/ipc_importance.h>
|
|
#if IMPORTANCE_TRACE
|
|
#include <mach/machine/sdt.h>
|
|
#endif /* IMPORTANCE_TRACE */
|
|
#endif /* IMPORTANCE_INHERITACE */
|
|
|
|
#include <sys/kdebug.h>
|
|
|
|
/*
|
|
* Task Policy
|
|
*
|
|
* This subsystem manages task and thread IO priority and backgrounding,
|
|
* as well as importance inheritance, process suppression, task QoS, and apptype.
|
|
* These properties have a suprising number of complex interactions, so they are
|
|
* centralized here in one state machine to simplify the implementation of those interactions.
|
|
*
|
|
* Architecture:
|
|
* Threads and tasks have two policy fields: requested, effective.
|
|
* Requested represents the wishes of each interface that influences task policy.
|
|
* Effective represents the distillation of that policy into a set of behaviors.
|
|
*
|
|
* Each thread making a modification in the policy system passes a 'pending' struct,
|
|
* which tracks updates that will be applied after dropping the policy engine lock.
|
|
*
|
|
* Each interface that has an input into the task policy state machine controls a field in requested.
|
|
* If the interface has a getter, it returns what is in the field in requested, but that is
|
|
* not necessarily what is actually in effect.
|
|
*
|
|
* All kernel subsystems that behave differently based on task policy call into
|
|
* the proc_get_effective_(task|thread)_policy functions, which return the decision of the task policy state machine
|
|
* for that subsystem by querying only the 'effective' field.
|
|
*
|
|
* Policy change operations:
|
|
* Here are the steps to change a policy on a task or thread:
|
|
* 1) Lock task
|
|
* 2) Change requested field for the relevant policy
|
|
* 3) Run a task policy update, which recalculates effective based on requested,
|
|
* then takes a diff between the old and new versions of requested and calls the relevant
|
|
* other subsystems to apply these changes, and updates the pending field.
|
|
* 4) Unlock task
|
|
* 5) Run task policy update complete, which looks at the pending field to update
|
|
* subsystems which cannot be touched while holding the task lock.
|
|
*
|
|
* To add a new requested policy, add the field in the requested struct, the flavor in task.h,
|
|
* the setter and getter in proc_(set|get)_task_policy*,
|
|
* then set up the effects of that behavior in task_policy_update*. If the policy manifests
|
|
* itself as a distinct effective policy, add it to the effective struct and add it to the
|
|
* proc_get_effective_task_policy accessor.
|
|
*
|
|
* Most policies are set via proc_set_task_policy, but policies that don't fit that interface
|
|
* roll their own lock/set/update/unlock/complete code inside this file.
|
|
*
|
|
*
|
|
* Suppression policy
|
|
*
|
|
* These are a set of behaviors that can be requested for a task. They currently have specific
|
|
* implied actions when they're enabled, but they may be made customizable in the future.
|
|
*
|
|
* When the affected task is boosted, we temporarily disable the suppression behaviors
|
|
* so that the affected process has a chance to run so it can call the API to permanently
|
|
* disable the suppression behaviors.
|
|
*
|
|
* Locking
|
|
*
|
|
* Changing task policy on a task takes the task lock.
|
|
* Changing task policy on a thread takes the thread mutex.
|
|
* Task policy changes that affect threads will take each thread's mutex to update it if necessary.
|
|
*
|
|
* Querying the effective policy does not take a lock, because callers
|
|
* may run in interrupt context or other place where locks are not OK.
|
|
*
|
|
* This means that any notification of state change needs to be externally synchronized.
|
|
* We do this by idempotent callouts after the state has changed to ask
|
|
* other subsystems to update their view of the world.
|
|
*
|
|
* TODO: Move all cpu/wakes/io monitor code into a separate file
|
|
* TODO: Move all importance code over to importance subsystem
|
|
* TODO: Move all taskwatch code into a separate file
|
|
* TODO: Move all VM importance code into a separate file
|
|
*/
|
|
|
|
/* Task policy related helper functions */
|
|
static void proc_set_task_policy_locked(task_t task, int category, int flavor, int value, int value2);
|
|
|
|
static void task_policy_update_locked(task_t task, task_pend_token_t pend_token);
|
|
static void task_policy_update_internal_locked(task_t task, bool in_create, task_pend_token_t pend_token);
|
|
|
|
/* For attributes that have two scalars as input/output */
|
|
static void proc_set_task_policy2(task_t task, int category, int flavor, int value1, int value2);
|
|
static void proc_get_task_policy2(task_t task, int category, int flavor, int *value1, int *value2);
|
|
|
|
static boolean_t task_policy_update_coalition_focal_tasks(task_t task, int prev_role, int next_role, task_pend_token_t pend_token);
|
|
|
|
static uint64_t task_requested_bitfield(task_t task);
|
|
static uint64_t task_effective_bitfield(task_t task);
|
|
|
|
/* Convenience functions for munging a policy bitfield into a tracepoint */
|
|
static uintptr_t trequested_0(task_t task);
|
|
static uintptr_t trequested_1(task_t task);
|
|
static uintptr_t teffective_0(task_t task);
|
|
static uintptr_t teffective_1(task_t task);
|
|
|
|
/* CPU limits helper functions */
|
|
static int task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int entitled);
|
|
static int task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope);
|
|
static int task_enable_cpumon_locked(task_t task);
|
|
static int task_disable_cpumon(task_t task);
|
|
static int task_clear_cpuusage_locked(task_t task, int cpumon_entitled);
|
|
static int task_apply_resource_actions(task_t task, int type);
|
|
static void task_action_cpuusage(thread_call_param_t param0, thread_call_param_t param1);
|
|
|
|
#ifdef MACH_BSD
|
|
typedef struct proc * proc_t;
|
|
int proc_pid(struct proc *proc);
|
|
extern int proc_selfpid(void);
|
|
extern char * proc_name_address(void *p);
|
|
extern char * proc_best_name(proc_t proc);
|
|
|
|
extern int proc_pidpathinfo_internal(proc_t p, uint64_t arg,
|
|
char *buffer, uint32_t buffersize,
|
|
int32_t *retval);
|
|
#endif /* MACH_BSD */
|
|
|
|
|
|
#if CONFIG_TASKWATCH
|
|
/* Taskwatch related helper functions */
|
|
static void set_thread_appbg(thread_t thread, int setbg, int importance);
|
|
static void add_taskwatch_locked(task_t task, task_watch_t * twp);
|
|
static void remove_taskwatch_locked(task_t task, task_watch_t * twp);
|
|
static void task_watch_lock(void);
|
|
static void task_watch_unlock(void);
|
|
static void apply_appstate_watchers(task_t task);
|
|
|
|
typedef struct task_watcher {
|
|
queue_chain_t tw_links; /* queueing of threads */
|
|
task_t tw_task; /* task that is being watched */
|
|
thread_t tw_thread; /* thread that is watching the watch_task */
|
|
int tw_state; /* the current app state of the thread */
|
|
int tw_importance; /* importance prior to backgrounding */
|
|
} task_watch_t;
|
|
|
|
typedef struct thread_watchlist {
|
|
thread_t thread; /* thread being worked on for taskwatch action */
|
|
int importance; /* importance to be restored if thread is being made active */
|
|
} thread_watchlist_t;
|
|
|
|
#endif /* CONFIG_TASKWATCH */
|
|
|
|
extern int memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap);
|
|
|
|
/* Importance Inheritance related helper functions */
|
|
|
|
#if IMPORTANCE_INHERITANCE
|
|
|
|
static void task_importance_mark_live_donor(task_t task, boolean_t donating);
|
|
static void task_importance_mark_receiver(task_t task, boolean_t receiving);
|
|
static void task_importance_mark_denap_receiver(task_t task, boolean_t denap);
|
|
|
|
static boolean_t task_is_marked_live_importance_donor(task_t task);
|
|
static boolean_t task_is_importance_receiver(task_t task);
|
|
static boolean_t task_is_importance_denap_receiver(task_t task);
|
|
|
|
static int task_importance_hold_internal_assertion(task_t target_task, uint32_t count);
|
|
|
|
static void task_add_importance_watchport(task_t task, mach_port_t port, int *boostp);
|
|
static void task_importance_update_live_donor(task_t target_task);
|
|
|
|
static void task_set_boost_locked(task_t task, boolean_t boost_active);
|
|
|
|
#endif /* IMPORTANCE_INHERITANCE */
|
|
|
|
#if IMPORTANCE_TRACE
|
|
#define __imptrace_only
|
|
#else /* IMPORTANCE_TRACE */
|
|
#define __imptrace_only __unused
|
|
#endif /* !IMPORTANCE_TRACE */
|
|
|
|
#if IMPORTANCE_INHERITANCE
|
|
#define __imp_only
|
|
#else
|
|
#define __imp_only __unused
|
|
#endif
|
|
|
|
/*
|
|
* Default parameters for certain policies
|
|
*/
|
|
|
|
int proc_standard_daemon_tier = THROTTLE_LEVEL_TIER1;
|
|
int proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER1;
|
|
int proc_tal_disk_tier = THROTTLE_LEVEL_TIER1;
|
|
|
|
int proc_graphics_timer_qos = (LATENCY_QOS_TIER_0 & 0xFF);
|
|
|
|
const int proc_default_bg_iotier = THROTTLE_LEVEL_TIER2;
|
|
|
|
/* Latency/throughput QoS fields remain zeroed, i.e. TIER_UNSPECIFIED at creation */
|
|
const struct task_requested_policy default_task_requested_policy = {
|
|
.trp_bg_iotier = proc_default_bg_iotier
|
|
};
|
|
const struct task_effective_policy default_task_effective_policy = {};
|
|
|
|
/*
|
|
* Default parameters for CPU usage monitor.
|
|
*
|
|
* Default setting is 50% over 3 minutes.
|
|
*/
|
|
#define DEFAULT_CPUMON_PERCENTAGE 50
|
|
#define DEFAULT_CPUMON_INTERVAL (3 * 60)
|
|
|
|
uint8_t proc_max_cpumon_percentage;
|
|
uint64_t proc_max_cpumon_interval;
|
|
|
|
|
|
kern_return_t
|
|
qos_latency_policy_validate(task_latency_qos_t ltier)
|
|
{
|
|
if ((ltier != LATENCY_QOS_TIER_UNSPECIFIED) &&
|
|
((ltier > LATENCY_QOS_TIER_5) || (ltier < LATENCY_QOS_TIER_0))) {
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
return KERN_SUCCESS;
|
|
}
|
|
|
|
kern_return_t
|
|
qos_throughput_policy_validate(task_throughput_qos_t ttier)
|
|
{
|
|
if ((ttier != THROUGHPUT_QOS_TIER_UNSPECIFIED) &&
|
|
((ttier > THROUGHPUT_QOS_TIER_5) || (ttier < THROUGHPUT_QOS_TIER_0))) {
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
return KERN_SUCCESS;
|
|
}
|
|
|
|
static kern_return_t
|
|
task_qos_policy_validate(task_qos_policy_t qosinfo, mach_msg_type_number_t count)
|
|
{
|
|
if (count < TASK_QOS_POLICY_COUNT) {
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
task_latency_qos_t ltier = qosinfo->task_latency_qos_tier;
|
|
task_throughput_qos_t ttier = qosinfo->task_throughput_qos_tier;
|
|
|
|
kern_return_t kr = qos_latency_policy_validate(ltier);
|
|
|
|
if (kr != KERN_SUCCESS) {
|
|
return kr;
|
|
}
|
|
|
|
kr = qos_throughput_policy_validate(ttier);
|
|
|
|
return kr;
|
|
}
|
|
|
|
uint32_t
|
|
qos_extract(uint32_t qv)
|
|
{
|
|
return qv & 0xFF;
|
|
}
|
|
|
|
uint32_t
|
|
qos_latency_policy_package(uint32_t qv)
|
|
{
|
|
return (qv == LATENCY_QOS_TIER_UNSPECIFIED) ? LATENCY_QOS_TIER_UNSPECIFIED : ((0xFF << 16) | qv);
|
|
}
|
|
|
|
uint32_t
|
|
qos_throughput_policy_package(uint32_t qv)
|
|
{
|
|
return (qv == THROUGHPUT_QOS_TIER_UNSPECIFIED) ? THROUGHPUT_QOS_TIER_UNSPECIFIED : ((0xFE << 16) | qv);
|
|
}
|
|
|
|
#define TASK_POLICY_SUPPRESSION_DISABLE 0x1
|
|
#define TASK_POLICY_SUPPRESSION_IOTIER2 0x2
|
|
#define TASK_POLICY_SUPPRESSION_NONDONOR 0x4
|
|
/* TEMPORARY boot-arg controlling task_policy suppression (App Nap) */
|
|
static boolean_t task_policy_suppression_flags = TASK_POLICY_SUPPRESSION_IOTIER2 |
|
|
TASK_POLICY_SUPPRESSION_NONDONOR;
|
|
|
|
kern_return_t
|
|
task_policy_set(
|
|
task_t task,
|
|
task_policy_flavor_t flavor,
|
|
task_policy_t policy_info,
|
|
mach_msg_type_number_t count)
|
|
{
|
|
kern_return_t result = KERN_SUCCESS;
|
|
|
|
if (task == TASK_NULL || task == kernel_task) {
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
switch (flavor) {
|
|
case TASK_CATEGORY_POLICY: {
|
|
task_category_policy_t info = (task_category_policy_t)policy_info;
|
|
|
|
if (count < TASK_CATEGORY_POLICY_COUNT) {
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
#if !defined(XNU_TARGET_OS_OSX)
|
|
/* On embedded, you can't modify your own role. */
|
|
if (current_task() == task) {
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
#endif
|
|
|
|
switch (info->role) {
|
|
case TASK_FOREGROUND_APPLICATION:
|
|
case TASK_BACKGROUND_APPLICATION:
|
|
case TASK_DEFAULT_APPLICATION:
|
|
proc_set_task_policy(task,
|
|
TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
|
|
info->role);
|
|
break;
|
|
|
|
case TASK_CONTROL_APPLICATION:
|
|
if (task != current_task() || task->sec_token.val[0] != 0) {
|
|
result = KERN_INVALID_ARGUMENT;
|
|
} else {
|
|
proc_set_task_policy(task,
|
|
TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
|
|
info->role);
|
|
}
|
|
break;
|
|
|
|
case TASK_GRAPHICS_SERVER:
|
|
/* TODO: Restrict this role to FCFS <rdar://problem/12552788> */
|
|
if (task != current_task() || task->sec_token.val[0] != 0) {
|
|
result = KERN_INVALID_ARGUMENT;
|
|
} else {
|
|
proc_set_task_policy(task,
|
|
TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
|
|
info->role);
|
|
}
|
|
break;
|
|
default:
|
|
result = KERN_INVALID_ARGUMENT;
|
|
break;
|
|
} /* switch (info->role) */
|
|
|
|
break;
|
|
}
|
|
|
|
/* Desired energy-efficiency/performance "quality-of-service" */
|
|
case TASK_BASE_QOS_POLICY:
|
|
case TASK_OVERRIDE_QOS_POLICY:
|
|
{
|
|
task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
|
|
kern_return_t kr = task_qos_policy_validate(qosinfo, count);
|
|
|
|
if (kr != KERN_SUCCESS) {
|
|
return kr;
|
|
}
|
|
|
|
|
|
uint32_t lqos = qos_extract(qosinfo->task_latency_qos_tier);
|
|
uint32_t tqos = qos_extract(qosinfo->task_throughput_qos_tier);
|
|
|
|
proc_set_task_policy2(task, TASK_POLICY_ATTRIBUTE,
|
|
flavor == TASK_BASE_QOS_POLICY ? TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS : TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS,
|
|
lqos, tqos);
|
|
}
|
|
break;
|
|
|
|
case TASK_BASE_LATENCY_QOS_POLICY:
|
|
{
|
|
task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
|
|
kern_return_t kr = task_qos_policy_validate(qosinfo, count);
|
|
|
|
if (kr != KERN_SUCCESS) {
|
|
return kr;
|
|
}
|
|
|
|
uint32_t lqos = qos_extract(qosinfo->task_latency_qos_tier);
|
|
|
|
proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_BASE_LATENCY_QOS_POLICY, lqos);
|
|
}
|
|
break;
|
|
|
|
case TASK_BASE_THROUGHPUT_QOS_POLICY:
|
|
{
|
|
task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
|
|
kern_return_t kr = task_qos_policy_validate(qosinfo, count);
|
|
|
|
if (kr != KERN_SUCCESS) {
|
|
return kr;
|
|
}
|
|
|
|
uint32_t tqos = qos_extract(qosinfo->task_throughput_qos_tier);
|
|
|
|
proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_BASE_THROUGHPUT_QOS_POLICY, tqos);
|
|
}
|
|
break;
|
|
|
|
case TASK_SUPPRESSION_POLICY:
|
|
{
|
|
#if !defined(XNU_TARGET_OS_OSX)
|
|
/*
|
|
* Suppression policy is not enabled for embedded
|
|
* because apps aren't marked as denap receivers
|
|
*/
|
|
result = KERN_INVALID_ARGUMENT;
|
|
break;
|
|
#else /* !defined(XNU_TARGET_OS_OSX) */
|
|
|
|
task_suppression_policy_t info = (task_suppression_policy_t)policy_info;
|
|
|
|
if (count < TASK_SUPPRESSION_POLICY_COUNT) {
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
struct task_qos_policy qosinfo;
|
|
|
|
qosinfo.task_latency_qos_tier = info->timer_throttle;
|
|
qosinfo.task_throughput_qos_tier = info->throughput_qos;
|
|
|
|
kern_return_t kr = task_qos_policy_validate(&qosinfo, TASK_QOS_POLICY_COUNT);
|
|
|
|
if (kr != KERN_SUCCESS) {
|
|
return kr;
|
|
}
|
|
|
|
/* TEMPORARY disablement of task suppression */
|
|
if (info->active &&
|
|
(task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_DISABLE)) {
|
|
return KERN_SUCCESS;
|
|
}
|
|
|
|
struct task_pend_token pend_token = {};
|
|
|
|
task_lock(task);
|
|
|
|
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
|
|
(IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_START,
|
|
proc_selfpid(), task_pid(task), trequested_0(task),
|
|
trequested_1(task), 0);
|
|
|
|
task->requested_policy.trp_sup_active = (info->active) ? 1 : 0;
|
|
task->requested_policy.trp_sup_lowpri_cpu = (info->lowpri_cpu) ? 1 : 0;
|
|
task->requested_policy.trp_sup_timer = qos_extract(info->timer_throttle);
|
|
task->requested_policy.trp_sup_disk = (info->disk_throttle) ? 1 : 0;
|
|
task->requested_policy.trp_sup_throughput = qos_extract(info->throughput_qos);
|
|
task->requested_policy.trp_sup_cpu = (info->suppressed_cpu) ? 1 : 0;
|
|
task->requested_policy.trp_sup_bg_sockets = (info->background_sockets) ? 1 : 0;
|
|
|
|
task_policy_update_locked(task, &pend_token);
|
|
|
|
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
|
|
(IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_END,
|
|
proc_selfpid(), task_pid(task), trequested_0(task),
|
|
trequested_1(task), 0);
|
|
|
|
task_unlock(task);
|
|
|
|
task_policy_update_complete_unlocked(task, &pend_token);
|
|
|
|
break;
|
|
|
|
#endif /* !defined(XNU_TARGET_OS_OSX) */
|
|
}
|
|
|
|
default:
|
|
result = KERN_INVALID_ARGUMENT;
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Sets BSD 'nice' value on the task */
|
|
kern_return_t
|
|
task_importance(
|
|
task_t task,
|
|
integer_t importance)
|
|
{
|
|
if (task == TASK_NULL || task == kernel_task) {
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
task_lock(task);
|
|
|
|
if (!task->active) {
|
|
task_unlock(task);
|
|
|
|
return KERN_TERMINATED;
|
|
}
|
|
|
|
if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) >= TASK_CONTROL_APPLICATION) {
|
|
task_unlock(task);
|
|
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
task->importance = importance;
|
|
|
|
struct task_pend_token pend_token = {};
|
|
|
|
task_policy_update_locked(task, &pend_token);
|
|
|
|
task_unlock(task);
|
|
|
|
task_policy_update_complete_unlocked(task, &pend_token);
|
|
|
|
return KERN_SUCCESS;
|
|
}
|
|
|
|
kern_return_t
|
|
task_policy_get(
|
|
task_t task,
|
|
task_policy_flavor_t flavor,
|
|
task_policy_t policy_info,
|
|
mach_msg_type_number_t *count,
|
|
boolean_t *get_default)
|
|
{
|
|
if (task == TASK_NULL || task == kernel_task) {
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
switch (flavor) {
|
|
case TASK_CATEGORY_POLICY:
|
|
{
|
|
task_category_policy_t info = (task_category_policy_t)policy_info;
|
|
|
|
if (*count < TASK_CATEGORY_POLICY_COUNT) {
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
if (*get_default) {
|
|
info->role = TASK_UNSPECIFIED;
|
|
} else {
|
|
info->role = proc_get_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TASK_BASE_QOS_POLICY: /* FALLTHRU */
|
|
case TASK_OVERRIDE_QOS_POLICY:
|
|
{
|
|
task_qos_policy_t info = (task_qos_policy_t)policy_info;
|
|
|
|
if (*count < TASK_QOS_POLICY_COUNT) {
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
if (*get_default) {
|
|
info->task_latency_qos_tier = LATENCY_QOS_TIER_UNSPECIFIED;
|
|
info->task_throughput_qos_tier = THROUGHPUT_QOS_TIER_UNSPECIFIED;
|
|
} else if (flavor == TASK_BASE_QOS_POLICY) {
|
|
int value1, value2;
|
|
|
|
proc_get_task_policy2(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS, &value1, &value2);
|
|
|
|
info->task_latency_qos_tier = qos_latency_policy_package(value1);
|
|
info->task_throughput_qos_tier = qos_throughput_policy_package(value2);
|
|
} else if (flavor == TASK_OVERRIDE_QOS_POLICY) {
|
|
int value1, value2;
|
|
|
|
proc_get_task_policy2(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS, &value1, &value2);
|
|
|
|
info->task_latency_qos_tier = qos_latency_policy_package(value1);
|
|
info->task_throughput_qos_tier = qos_throughput_policy_package(value2);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case TASK_POLICY_STATE:
|
|
{
|
|
task_policy_state_t info = (task_policy_state_t)policy_info;
|
|
|
|
if (*count < TASK_POLICY_STATE_COUNT) {
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
/* Only root can get this info */
|
|
if (current_task()->sec_token.val[0] != 0) {
|
|
return KERN_PROTECTION_FAILURE;
|
|
}
|
|
|
|
if (*get_default) {
|
|
info->requested = 0;
|
|
info->effective = 0;
|
|
info->pending = 0;
|
|
info->imp_assertcnt = 0;
|
|
info->imp_externcnt = 0;
|
|
info->flags = 0;
|
|
info->imp_transitions = 0;
|
|
} else {
|
|
task_lock(task);
|
|
|
|
info->requested = task_requested_bitfield(task);
|
|
info->effective = task_effective_bitfield(task);
|
|
info->pending = 0;
|
|
|
|
info->tps_requested_policy = *(uint64_t*)(&task->requested_policy);
|
|
info->tps_effective_policy = *(uint64_t*)(&task->effective_policy);
|
|
|
|
info->flags = 0;
|
|
if (task->task_imp_base != NULL) {
|
|
info->imp_assertcnt = task->task_imp_base->iit_assertcnt;
|
|
info->imp_externcnt = IIT_EXTERN(task->task_imp_base);
|
|
info->flags |= (task_is_marked_importance_receiver(task) ? TASK_IMP_RECEIVER : 0);
|
|
info->flags |= (task_is_marked_importance_denap_receiver(task) ? TASK_DENAP_RECEIVER : 0);
|
|
info->flags |= (task_is_marked_importance_donor(task) ? TASK_IMP_DONOR : 0);
|
|
info->flags |= (task_is_marked_live_importance_donor(task) ? TASK_IMP_LIVE_DONOR : 0);
|
|
info->flags |= (get_task_pidsuspended(task) ? TASK_IS_PIDSUSPENDED : 0);
|
|
info->imp_transitions = task->task_imp_base->iit_transitions;
|
|
} else {
|
|
info->imp_assertcnt = 0;
|
|
info->imp_externcnt = 0;
|
|
info->imp_transitions = 0;
|
|
}
|
|
task_unlock(task);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case TASK_SUPPRESSION_POLICY:
|
|
{
|
|
task_suppression_policy_t info = (task_suppression_policy_t)policy_info;
|
|
|
|
if (*count < TASK_SUPPRESSION_POLICY_COUNT) {
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
task_lock(task);
|
|
|
|
if (*get_default) {
|
|
info->active = 0;
|
|
info->lowpri_cpu = 0;
|
|
info->timer_throttle = LATENCY_QOS_TIER_UNSPECIFIED;
|
|
info->disk_throttle = 0;
|
|
info->cpu_limit = 0;
|
|
info->suspend = 0;
|
|
info->throughput_qos = 0;
|
|
info->suppressed_cpu = 0;
|
|
} else {
|
|
info->active = task->requested_policy.trp_sup_active;
|
|
info->lowpri_cpu = task->requested_policy.trp_sup_lowpri_cpu;
|
|
info->timer_throttle = qos_latency_policy_package(task->requested_policy.trp_sup_timer);
|
|
info->disk_throttle = task->requested_policy.trp_sup_disk;
|
|
info->cpu_limit = 0;
|
|
info->suspend = 0;
|
|
info->throughput_qos = qos_throughput_policy_package(task->requested_policy.trp_sup_throughput);
|
|
info->suppressed_cpu = task->requested_policy.trp_sup_cpu;
|
|
info->background_sockets = task->requested_policy.trp_sup_bg_sockets;
|
|
}
|
|
|
|
task_unlock(task);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
return KERN_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Called at task creation
|
|
* We calculate the correct effective but don't apply it to anything yet.
|
|
* The threads, etc will inherit from the task as they get created.
|
|
*/
|
|
void
|
|
task_policy_create(task_t task, task_t parent_task)
|
|
{
|
|
task->requested_policy.trp_apptype = parent_task->requested_policy.trp_apptype;
|
|
|
|
task->requested_policy.trp_int_darwinbg = parent_task->requested_policy.trp_int_darwinbg;
|
|
task->requested_policy.trp_ext_darwinbg = parent_task->requested_policy.trp_ext_darwinbg;
|
|
task->requested_policy.trp_int_iotier = parent_task->requested_policy.trp_int_iotier;
|
|
task->requested_policy.trp_ext_iotier = parent_task->requested_policy.trp_ext_iotier;
|
|
task->requested_policy.trp_int_iopassive = parent_task->requested_policy.trp_int_iopassive;
|
|
task->requested_policy.trp_ext_iopassive = parent_task->requested_policy.trp_ext_iopassive;
|
|
task->requested_policy.trp_bg_iotier = parent_task->requested_policy.trp_bg_iotier;
|
|
task->requested_policy.trp_terminated = parent_task->requested_policy.trp_terminated;
|
|
task->requested_policy.trp_qos_clamp = parent_task->requested_policy.trp_qos_clamp;
|
|
|
|
if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE && !task_is_exec_copy(task)) {
|
|
/* Do not update the apptype for exec copy task */
|
|
if (parent_task->requested_policy.trp_boosted) {
|
|
task->requested_policy.trp_apptype = TASK_APPTYPE_DAEMON_INTERACTIVE;
|
|
task_importance_mark_donor(task, TRUE);
|
|
} else {
|
|
task->requested_policy.trp_apptype = TASK_APPTYPE_DAEMON_BACKGROUND;
|
|
task_importance_mark_receiver(task, FALSE);
|
|
}
|
|
}
|
|
|
|
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
|
|
(IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_START,
|
|
task_pid(task), teffective_0(task),
|
|
teffective_1(task), task->priority, 0);
|
|
|
|
task_policy_update_internal_locked(task, true, NULL);
|
|
|
|
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
|
|
(IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_END,
|
|
task_pid(task), teffective_0(task),
|
|
teffective_1(task), task->priority, 0);
|
|
|
|
task_importance_update_live_donor(task);
|
|
}
|
|
|
|
|
|
static void
|
|
task_policy_update_locked(task_t task, task_pend_token_t pend_token)
|
|
{
|
|
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
|
|
(IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_TASK) | DBG_FUNC_START),
|
|
task_pid(task), teffective_0(task),
|
|
teffective_1(task), task->priority, 0);
|
|
|
|
task_policy_update_internal_locked(task, false, pend_token);
|
|
|
|
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
|
|
(IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_TASK)) | DBG_FUNC_END,
|
|
task_pid(task), teffective_0(task),
|
|
teffective_1(task), task->priority, 0);
|
|
}
|
|
|
|
/*
|
|
* One state update function TO RULE THEM ALL
|
|
*
|
|
* This function updates the task or thread effective policy fields
|
|
* and pushes the results to the relevant subsystems.
|
|
*
|
|
* Must call update_complete after unlocking the task,
|
|
* as some subsystems cannot be updated while holding the task lock.
|
|
*
|
|
* Called with task locked, not thread
|
|
*/
|
|
|
|
static void
|
|
task_policy_update_internal_locked(task_t task, bool in_create, task_pend_token_t pend_token)
|
|
{
|
|
/*
|
|
* Step 1:
|
|
* Gather requested policy
|
|
*/
|
|
|
|
struct task_requested_policy requested = task->requested_policy;
|
|
|
|
/*
|
|
* Step 2:
|
|
* Calculate new effective policies from requested policy and task state
|
|
* Rules:
|
|
* Don't change requested, it won't take effect
|
|
*/
|
|
|
|
struct task_effective_policy next = {};
|
|
|
|
/* Update task role */
|
|
next.tep_role = requested.trp_role;
|
|
|
|
/* Set task qos clamp and ceiling */
|
|
next.tep_qos_clamp = requested.trp_qos_clamp;
|
|
|
|
if (requested.trp_apptype == TASK_APPTYPE_APP_DEFAULT) {
|
|
switch (next.tep_role) {
|
|
case TASK_FOREGROUND_APPLICATION:
|
|
/* Foreground apps get urgent scheduler priority */
|
|
next.tep_qos_ui_is_urgent = 1;
|
|
next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
|
|
break;
|
|
|
|
case TASK_BACKGROUND_APPLICATION:
|
|
/* This is really 'non-focal but on-screen' */
|
|
next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
|
|
break;
|
|
|
|
case TASK_DEFAULT_APPLICATION:
|
|
/* This is 'may render UI but we don't know if it's focal/nonfocal' */
|
|
next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
|
|
break;
|
|
|
|
case TASK_NONUI_APPLICATION:
|
|
/* i.e. 'off-screen' */
|
|
next.tep_qos_ceiling = THREAD_QOS_LEGACY;
|
|
break;
|
|
|
|
case TASK_CONTROL_APPLICATION:
|
|
case TASK_GRAPHICS_SERVER:
|
|
next.tep_qos_ui_is_urgent = 1;
|
|
next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
|
|
break;
|
|
|
|
case TASK_THROTTLE_APPLICATION:
|
|
/* i.e. 'TAL launch' */
|
|
next.tep_qos_ceiling = THREAD_QOS_UTILITY;
|
|
break;
|
|
|
|
case TASK_DARWINBG_APPLICATION:
|
|
/* i.e. 'DARWIN_BG throttled background application' */
|
|
next.tep_qos_ceiling = THREAD_QOS_BACKGROUND;
|
|
break;
|
|
|
|
case TASK_UNSPECIFIED:
|
|
default:
|
|
/* Apps that don't have an application role get
|
|
* USER_INTERACTIVE and USER_INITIATED squashed to LEGACY */
|
|
next.tep_qos_ceiling = THREAD_QOS_LEGACY;
|
|
break;
|
|
}
|
|
} else {
|
|
/* Daemons and dext get USER_INTERACTIVE squashed to USER_INITIATED */
|
|
next.tep_qos_ceiling = THREAD_QOS_USER_INITIATED;
|
|
}
|
|
|
|
/* Calculate DARWIN_BG */
|
|
bool wants_darwinbg = false;
|
|
bool wants_all_sockets_bg = false; /* Do I want my existing sockets to be bg */
|
|
bool wants_watchersbg = false; /* Do I want my pidbound threads to be bg */
|
|
bool adaptive_bg_only = false; /* This task is BG only because it's adaptive unboosted */
|
|
|
|
/* Adaptive daemons are DARWIN_BG unless boosted, and don't get network throttled. */
|
|
if (requested.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE &&
|
|
requested.trp_boosted == 0) {
|
|
wants_darwinbg = true;
|
|
adaptive_bg_only = true;
|
|
}
|
|
|
|
/*
|
|
* If DARWIN_BG has been requested at either level, it's engaged.
|
|
* Only true DARWIN_BG changes cause watchers to transition.
|
|
*
|
|
* Backgrounding due to apptype does.
|
|
*/
|
|
if (requested.trp_int_darwinbg || requested.trp_ext_darwinbg ||
|
|
next.tep_role == TASK_DARWINBG_APPLICATION) {
|
|
wants_watchersbg = wants_all_sockets_bg = wants_darwinbg = true;
|
|
adaptive_bg_only = false;
|
|
}
|
|
|
|
/* Application launching in special Transparent App Lifecycle throttle mode */
|
|
if (requested.trp_apptype == TASK_APPTYPE_APP_DEFAULT &&
|
|
requested.trp_role == TASK_THROTTLE_APPLICATION) {
|
|
next.tep_tal_engaged = 1;
|
|
}
|
|
|
|
/* Background daemons are always DARWIN_BG, no exceptions, and don't get network throttled. */
|
|
if (requested.trp_apptype == TASK_APPTYPE_DAEMON_BACKGROUND) {
|
|
wants_darwinbg = true;
|
|
adaptive_bg_only = false;
|
|
}
|
|
|
|
if (next.tep_qos_clamp == THREAD_QOS_BACKGROUND ||
|
|
next.tep_qos_clamp == THREAD_QOS_MAINTENANCE) {
|
|
wants_darwinbg = true;
|
|
adaptive_bg_only = false;
|
|
}
|
|
|
|
/* Calculate side effects of DARWIN_BG */
|
|
|
|
if (wants_darwinbg) {
|
|
next.tep_darwinbg = 1;
|
|
/* darwinbg tasks always create bg sockets, but we don't always loop over all sockets */
|
|
next.tep_new_sockets_bg = 1;
|
|
next.tep_lowpri_cpu = 1;
|
|
}
|
|
|
|
if (wants_all_sockets_bg) {
|
|
next.tep_all_sockets_bg = 1;
|
|
}
|
|
|
|
if (wants_watchersbg) {
|
|
next.tep_watchers_bg = 1;
|
|
}
|
|
|
|
next.tep_adaptive_bg = adaptive_bg_only;
|
|
|
|
/* Calculate low CPU priority */
|
|
|
|
boolean_t wants_lowpri_cpu = false;
|
|
|
|
if (wants_darwinbg) {
|
|
wants_lowpri_cpu = true;
|
|
}
|
|
|
|
if (next.tep_tal_engaged) {
|
|
wants_lowpri_cpu = true;
|
|
}
|
|
|
|
if (requested.trp_sup_lowpri_cpu && requested.trp_boosted == 0) {
|
|
wants_lowpri_cpu = true;
|
|
}
|
|
|
|
if (wants_lowpri_cpu) {
|
|
next.tep_lowpri_cpu = 1;
|
|
}
|
|
|
|
/* Calculate IO policy */
|
|
|
|
/* Update BG IO policy (so we can see if it has changed) */
|
|
next.tep_bg_iotier = requested.trp_bg_iotier;
|
|
|
|
int iopol = THROTTLE_LEVEL_TIER0;
|
|
|
|
if (wants_darwinbg) {
|
|
iopol = MAX(iopol, requested.trp_bg_iotier);
|
|
}
|
|
|
|
if (requested.trp_apptype == TASK_APPTYPE_DAEMON_STANDARD) {
|
|
iopol = MAX(iopol, proc_standard_daemon_tier);
|
|
}
|
|
|
|
if (requested.trp_sup_disk && requested.trp_boosted == 0) {
|
|
iopol = MAX(iopol, proc_suppressed_disk_tier);
|
|
}
|
|
|
|
if (next.tep_tal_engaged) {
|
|
iopol = MAX(iopol, proc_tal_disk_tier);
|
|
}
|
|
|
|
if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
|
|
iopol = MAX(iopol, thread_qos_policy_params.qos_iotier[next.tep_qos_clamp]);
|
|
}
|
|
|
|
iopol = MAX(iopol, requested.trp_int_iotier);
|
|
iopol = MAX(iopol, requested.trp_ext_iotier);
|
|
|
|
next.tep_io_tier = iopol;
|
|
|
|
/* Calculate Passive IO policy */
|
|
|
|
if (requested.trp_ext_iopassive || requested.trp_int_iopassive) {
|
|
next.tep_io_passive = 1;
|
|
}
|
|
|
|
/* Calculate suppression-active flag */
|
|
boolean_t appnap_transition = false;
|
|
|
|
if (requested.trp_sup_active && requested.trp_boosted == 0) {
|
|
next.tep_sup_active = 1;
|
|
}
|
|
|
|
if (task->effective_policy.tep_sup_active != next.tep_sup_active) {
|
|
appnap_transition = true;
|
|
}
|
|
|
|
/* Calculate timer QOS */
|
|
int latency_qos = requested.trp_base_latency_qos;
|
|
|
|
if (requested.trp_sup_timer && requested.trp_boosted == 0) {
|
|
latency_qos = requested.trp_sup_timer;
|
|
}
|
|
|
|
if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
|
|
latency_qos = MAX(latency_qos, (int)thread_qos_policy_params.qos_latency_qos[next.tep_qos_clamp]);
|
|
}
|
|
|
|
if (requested.trp_over_latency_qos != 0) {
|
|
latency_qos = requested.trp_over_latency_qos;
|
|
}
|
|
|
|
/* Treat the windowserver special */
|
|
if (requested.trp_role == TASK_GRAPHICS_SERVER) {
|
|
latency_qos = proc_graphics_timer_qos;
|
|
}
|
|
|
|
next.tep_latency_qos = latency_qos;
|
|
|
|
/* Calculate throughput QOS */
|
|
int through_qos = requested.trp_base_through_qos;
|
|
|
|
if (requested.trp_sup_throughput && requested.trp_boosted == 0) {
|
|
through_qos = requested.trp_sup_throughput;
|
|
}
|
|
|
|
if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
|
|
through_qos = MAX(through_qos, (int)thread_qos_policy_params.qos_through_qos[next.tep_qos_clamp]);
|
|
}
|
|
|
|
if (requested.trp_over_through_qos != 0) {
|
|
through_qos = requested.trp_over_through_qos;
|
|
}
|
|
|
|
next.tep_through_qos = through_qos;
|
|
|
|
/* Calculate suppressed CPU priority */
|
|
if (requested.trp_sup_cpu && requested.trp_boosted == 0) {
|
|
next.tep_suppressed_cpu = 1;
|
|
}
|
|
|
|
/*
|
|
* Calculate background sockets
|
|
* Don't take into account boosting to limit transition frequency.
|
|
*/
|
|
if (requested.trp_sup_bg_sockets) {
|
|
next.tep_all_sockets_bg = 1;
|
|
next.tep_new_sockets_bg = 1;
|
|
}
|
|
|
|
/* Apply SFI Managed class bit */
|
|
next.tep_sfi_managed = requested.trp_sfi_managed;
|
|
|
|
/* Calculate 'live donor' status for live importance */
|
|
switch (requested.trp_apptype) {
|
|
case TASK_APPTYPE_APP_TAL:
|
|
case TASK_APPTYPE_APP_DEFAULT:
|
|
if (requested.trp_ext_darwinbg == 1 ||
|
|
(next.tep_sup_active == 1 &&
|
|
(task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_NONDONOR)) ||
|
|
next.tep_role == TASK_DARWINBG_APPLICATION) {
|
|
next.tep_live_donor = 0;
|
|
} else {
|
|
next.tep_live_donor = 1;
|
|
}
|
|
break;
|
|
|
|
case TASK_APPTYPE_DAEMON_INTERACTIVE:
|
|
case TASK_APPTYPE_DAEMON_STANDARD:
|
|
case TASK_APPTYPE_DAEMON_ADAPTIVE:
|
|
case TASK_APPTYPE_DAEMON_BACKGROUND:
|
|
case TASK_APPTYPE_DRIVER:
|
|
default:
|
|
next.tep_live_donor = 0;
|
|
break;
|
|
}
|
|
|
|
if (requested.trp_terminated) {
|
|
/*
|
|
* Shoot down the throttles that slow down exit or response to SIGTERM
|
|
* We don't need to shoot down:
|
|
* passive (don't want to cause others to throttle)
|
|
* all_sockets_bg (don't need to iterate FDs on every exit)
|
|
* new_sockets_bg (doesn't matter for exiting process)
|
|
* pidsuspend (jetsam-ed BG process shouldn't run again)
|
|
* watchers_bg (watcher threads don't need to be unthrottled)
|
|
* latency_qos (affects userspace timers only)
|
|
*/
|
|
|
|
next.tep_terminated = 1;
|
|
next.tep_darwinbg = 0;
|
|
next.tep_lowpri_cpu = 0;
|
|
next.tep_io_tier = THROTTLE_LEVEL_TIER0;
|
|
next.tep_tal_engaged = 0;
|
|
next.tep_role = TASK_UNSPECIFIED;
|
|
next.tep_suppressed_cpu = 0;
|
|
}
|
|
|
|
/*
|
|
* Step 3:
|
|
* Swap out old policy for new policy
|
|
*/
|
|
|
|
struct task_effective_policy prev = task->effective_policy;
|
|
|
|
/* This is the point where the new values become visible to other threads */
|
|
task->effective_policy = next;
|
|
|
|
/* Don't do anything further to a half-formed task */
|
|
if (in_create) {
|
|
return;
|
|
}
|
|
|
|
if (task == kernel_task) {
|
|
panic("Attempting to set task policy on kernel_task");
|
|
}
|
|
|
|
/*
|
|
* Step 4:
|
|
* Pend updates that can't be done while holding the task lock
|
|
*/
|
|
|
|
if (prev.tep_all_sockets_bg != next.tep_all_sockets_bg) {
|
|
pend_token->tpt_update_sockets = 1;
|
|
}
|
|
|
|
/* Only re-scan the timer list if the qos level is getting less strong */
|
|
if (prev.tep_latency_qos > next.tep_latency_qos) {
|
|
pend_token->tpt_update_timers = 1;
|
|
}
|
|
|
|
#if CONFIG_TASKWATCH
|
|
if (prev.tep_watchers_bg != next.tep_watchers_bg) {
|
|
pend_token->tpt_update_watchers = 1;
|
|
}
|
|
#endif /* CONFIG_TASKWATCH */
|
|
|
|
if (prev.tep_live_donor != next.tep_live_donor) {
|
|
pend_token->tpt_update_live_donor = 1;
|
|
}
|
|
|
|
/*
|
|
* Step 5:
|
|
* Update other subsystems as necessary if something has changed
|
|
*/
|
|
|
|
bool update_threads = false, update_sfi = false;
|
|
|
|
/*
|
|
* Check for the attributes that thread_policy_update_internal_locked() consults,
|
|
* and trigger thread policy re-evaluation.
|
|
*/
|
|
if (prev.tep_io_tier != next.tep_io_tier ||
|
|
prev.tep_bg_iotier != next.tep_bg_iotier ||
|
|
prev.tep_io_passive != next.tep_io_passive ||
|
|
prev.tep_darwinbg != next.tep_darwinbg ||
|
|
prev.tep_qos_clamp != next.tep_qos_clamp ||
|
|
prev.tep_qos_ceiling != next.tep_qos_ceiling ||
|
|
prev.tep_qos_ui_is_urgent != next.tep_qos_ui_is_urgent ||
|
|
prev.tep_latency_qos != next.tep_latency_qos ||
|
|
prev.tep_through_qos != next.tep_through_qos ||
|
|
prev.tep_lowpri_cpu != next.tep_lowpri_cpu ||
|
|
prev.tep_new_sockets_bg != next.tep_new_sockets_bg ||
|
|
prev.tep_terminated != next.tep_terminated ||
|
|
prev.tep_adaptive_bg != next.tep_adaptive_bg) {
|
|
update_threads = true;
|
|
}
|
|
|
|
/*
|
|
* Check for the attributes that sfi_thread_classify() consults,
|
|
* and trigger SFI re-evaluation.
|
|
*/
|
|
if (prev.tep_latency_qos != next.tep_latency_qos ||
|
|
prev.tep_role != next.tep_role ||
|
|
prev.tep_sfi_managed != next.tep_sfi_managed) {
|
|
update_sfi = true;
|
|
}
|
|
|
|
/* Reflect task role transitions into the coalition role counters */
|
|
if (prev.tep_role != next.tep_role) {
|
|
if (task_policy_update_coalition_focal_tasks(task, prev.tep_role, next.tep_role, pend_token)) {
|
|
update_sfi = true;
|
|
}
|
|
}
|
|
|
|
bool update_priority = false;
|
|
|
|
int16_t priority = BASEPRI_DEFAULT;
|
|
int16_t max_priority = MAXPRI_USER;
|
|
|
|
if (next.tep_lowpri_cpu) {
|
|
priority = MAXPRI_THROTTLE;
|
|
max_priority = MAXPRI_THROTTLE;
|
|
} else if (next.tep_suppressed_cpu) {
|
|
priority = MAXPRI_SUPPRESSED;
|
|
max_priority = MAXPRI_SUPPRESSED;
|
|
} else {
|
|
switch (next.tep_role) {
|
|
case TASK_CONTROL_APPLICATION:
|
|
priority = BASEPRI_CONTROL;
|
|
break;
|
|
case TASK_GRAPHICS_SERVER:
|
|
priority = BASEPRI_GRAPHICS;
|
|
max_priority = MAXPRI_RESERVED;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* factor in 'nice' value */
|
|
priority += task->importance;
|
|
|
|
if (task->effective_policy.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
|
|
int16_t qos_clamp_priority = thread_qos_policy_params.qos_pri[task->effective_policy.tep_qos_clamp];
|
|
|
|
priority = MIN(priority, qos_clamp_priority);
|
|
max_priority = MIN(max_priority, qos_clamp_priority);
|
|
}
|
|
|
|
if (priority > max_priority) {
|
|
priority = max_priority;
|
|
} else if (priority < MINPRI) {
|
|
priority = MINPRI;
|
|
}
|
|
}
|
|
|
|
assert(priority <= max_priority);
|
|
|
|
/* avoid extra work if priority isn't changing */
|
|
if (priority != task->priority ||
|
|
max_priority != task->max_priority) {
|
|
/* update the scheduling priority for the task */
|
|
task->max_priority = max_priority;
|
|
task->priority = priority;
|
|
update_priority = true;
|
|
}
|
|
|
|
/* Loop over the threads in the task:
|
|
* only once
|
|
* only if necessary
|
|
* with one thread mutex hold per thread
|
|
*/
|
|
if (update_threads || update_priority || update_sfi) {
|
|
thread_t thread;
|
|
|
|
queue_iterate(&task->threads, thread, thread_t, task_threads) {
|
|
struct task_pend_token thread_pend_token = {};
|
|
|
|
if (update_sfi) {
|
|
thread_pend_token.tpt_update_thread_sfi = 1;
|
|
}
|
|
|
|
if (update_priority || update_threads) {
|
|
thread_policy_update_tasklocked(thread,
|
|
task->priority, task->max_priority,
|
|
&thread_pend_token);
|
|
}
|
|
|
|
assert(!thread_pend_token.tpt_update_sockets);
|
|
|
|
// Slightly risky, as we still hold the task lock...
|
|
thread_policy_update_complete_unlocked(thread, &thread_pend_token);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Use the app-nap transitions to influence the
|
|
* transition of the process within the jetsam band
|
|
* [and optionally its live-donor status]
|
|
* On macOS only.
|
|
*/
|
|
if (appnap_transition) {
|
|
if (task->effective_policy.tep_sup_active == 1) {
|
|
memorystatus_update_priority_for_appnap(((proc_t) task->bsd_info), TRUE);
|
|
} else {
|
|
memorystatus_update_priority_for_appnap(((proc_t) task->bsd_info), FALSE);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Yet another layering violation. We reach out and bang on the coalition directly.
|
|
*/
|
|
static boolean_t
|
|
task_policy_update_coalition_focal_tasks(task_t task,
|
|
int prev_role,
|
|
int next_role,
|
|
task_pend_token_t pend_token)
|
|
{
|
|
boolean_t sfi_transition = FALSE;
|
|
uint32_t new_count = 0;
|
|
|
|
/* task moving into/out-of the foreground */
|
|
if (prev_role != TASK_FOREGROUND_APPLICATION && next_role == TASK_FOREGROUND_APPLICATION) {
|
|
if (task_coalition_adjust_focal_count(task, 1, &new_count) && (new_count == 1)) {
|
|
sfi_transition = TRUE;
|
|
pend_token->tpt_update_tg_ui_flag = TRUE;
|
|
}
|
|
} else if (prev_role == TASK_FOREGROUND_APPLICATION && next_role != TASK_FOREGROUND_APPLICATION) {
|
|
if (task_coalition_adjust_focal_count(task, -1, &new_count) && (new_count == 0)) {
|
|
sfi_transition = TRUE;
|
|
pend_token->tpt_update_tg_ui_flag = TRUE;
|
|
}
|
|
}
|
|
|
|
/* task moving into/out-of background */
|
|
if (prev_role != TASK_BACKGROUND_APPLICATION && next_role == TASK_BACKGROUND_APPLICATION) {
|
|
if (task_coalition_adjust_nonfocal_count(task, 1, &new_count) && (new_count == 1)) {
|
|
sfi_transition = TRUE;
|
|
}
|
|
} else if (prev_role == TASK_BACKGROUND_APPLICATION && next_role != TASK_BACKGROUND_APPLICATION) {
|
|
if (task_coalition_adjust_nonfocal_count(task, -1, &new_count) && (new_count == 0)) {
|
|
sfi_transition = TRUE;
|
|
}
|
|
}
|
|
|
|
if (sfi_transition) {
|
|
pend_token->tpt_update_coal_sfi = 1;
|
|
}
|
|
return sfi_transition;
|
|
}
|
|
|
|
#if CONFIG_SCHED_SFI
|
|
|
|
/* coalition object is locked */
|
|
static void
|
|
task_sfi_reevaluate_cb(coalition_t coal, void *ctx, task_t task)
|
|
{
|
|
thread_t thread;
|
|
|
|
/* unused for now */
|
|
(void)coal;
|
|
|
|
/* skip the task we're re-evaluating on behalf of: it's already updated */
|
|
if (task == (task_t)ctx) {
|
|
return;
|
|
}
|
|
|
|
task_lock(task);
|
|
|
|
queue_iterate(&task->threads, thread, thread_t, task_threads) {
|
|
sfi_reevaluate(thread);
|
|
}
|
|
|
|
task_unlock(task);
|
|
}
|
|
#endif /* CONFIG_SCHED_SFI */
|
|
|
|
/*
|
|
* Called with task unlocked to do things that can't be done while holding the task lock
|
|
*/
|
|
void
|
|
task_policy_update_complete_unlocked(task_t task, task_pend_token_t pend_token)
|
|
{
|
|
#ifdef MACH_BSD
|
|
if (pend_token->tpt_update_sockets) {
|
|
proc_apply_task_networkbg(task->bsd_info, THREAD_NULL);
|
|
}
|
|
#endif /* MACH_BSD */
|
|
|
|
/* The timer throttle has been removed or reduced, we need to look for expired timers and fire them */
|
|
if (pend_token->tpt_update_timers) {
|
|
ml_timer_evaluate();
|
|
}
|
|
|
|
#if CONFIG_TASKWATCH
|
|
if (pend_token->tpt_update_watchers) {
|
|
apply_appstate_watchers(task);
|
|
}
|
|
#endif /* CONFIG_TASKWATCH */
|
|
|
|
if (pend_token->tpt_update_live_donor) {
|
|
task_importance_update_live_donor(task);
|
|
}
|
|
|
|
#if CONFIG_SCHED_SFI
|
|
/* use the resource coalition for SFI re-evaluation */
|
|
if (pend_token->tpt_update_coal_sfi) {
|
|
coalition_for_each_task(task->coalition[COALITION_TYPE_RESOURCE],
|
|
(void *)task, task_sfi_reevaluate_cb);
|
|
}
|
|
#endif /* CONFIG_SCHED_SFI */
|
|
|
|
#if CONFIG_THREAD_GROUPS
|
|
if (pend_token->tpt_update_tg_ui_flag) {
|
|
task_coalition_thread_group_focal_update(task);
|
|
}
|
|
#endif /* CONFIG_THREAD_GROUPS */
|
|
}
|
|
|
|
/*
|
|
* Initiate a task policy state transition
|
|
*
|
|
* Everything that modifies requested except functions that need to hold the task lock
|
|
* should use this function
|
|
*
|
|
* Argument validation should be performed before reaching this point.
|
|
*
|
|
* TODO: Do we need to check task->active?
|
|
*/
|
|
void
|
|
proc_set_task_policy(task_t task,
|
|
int category,
|
|
int flavor,
|
|
int value)
|
|
{
|
|
struct task_pend_token pend_token = {};
|
|
|
|
task_lock(task);
|
|
|
|
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
|
|
(IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_START,
|
|
task_pid(task), trequested_0(task),
|
|
trequested_1(task), value, 0);
|
|
|
|
proc_set_task_policy_locked(task, category, flavor, value, 0);
|
|
|
|
task_policy_update_locked(task, &pend_token);
|
|
|
|
|
|
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
|
|
(IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_END,
|
|
task_pid(task), trequested_0(task),
|
|
trequested_1(task), tpending(&pend_token), 0);
|
|
|
|
task_unlock(task);
|
|
|
|
task_policy_update_complete_unlocked(task, &pend_token);
|
|
}
|
|
|
|
/*
|
|
* Variant of proc_set_task_policy() that sets two scalars in the requested policy structure.
|
|
* Same locking rules apply.
|
|
*/
|
|
void
|
|
proc_set_task_policy2(task_t task,
|
|
int category,
|
|
int flavor,
|
|
int value,
|
|
int value2)
|
|
{
|
|
struct task_pend_token pend_token = {};
|
|
|
|
task_lock(task);
|
|
|
|
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
|
|
(IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_START,
|
|
task_pid(task), trequested_0(task),
|
|
trequested_1(task), value, 0);
|
|
|
|
proc_set_task_policy_locked(task, category, flavor, value, value2);
|
|
|
|
task_policy_update_locked(task, &pend_token);
|
|
|
|
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
|
|
(IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_END,
|
|
task_pid(task), trequested_0(task),
|
|
trequested_1(task), tpending(&pend_token), 0);
|
|
|
|
task_unlock(task);
|
|
|
|
task_policy_update_complete_unlocked(task, &pend_token);
|
|
}
|
|
|
|
/*
|
|
* Set the requested state for a specific flavor to a specific value.
|
|
*
|
|
* TODO:
|
|
* Verify that arguments to non iopol things are 1 or 0
|
|
*/
|
|
static void
|
|
proc_set_task_policy_locked(task_t task,
|
|
int category,
|
|
int flavor,
|
|
int value,
|
|
int value2)
|
|
{
|
|
int tier, passive;
|
|
|
|
struct task_requested_policy requested = task->requested_policy;
|
|
|
|
switch (flavor) {
|
|
/* Category: EXTERNAL and INTERNAL */
|
|
|
|
case TASK_POLICY_DARWIN_BG:
|
|
if (category == TASK_POLICY_EXTERNAL) {
|
|
requested.trp_ext_darwinbg = value;
|
|
} else {
|
|
requested.trp_int_darwinbg = value;
|
|
}
|
|
break;
|
|
|
|
case TASK_POLICY_IOPOL:
|
|
proc_iopol_to_tier(value, &tier, &passive);
|
|
if (category == TASK_POLICY_EXTERNAL) {
|
|
requested.trp_ext_iotier = tier;
|
|
requested.trp_ext_iopassive = passive;
|
|
} else {
|
|
requested.trp_int_iotier = tier;
|
|
requested.trp_int_iopassive = passive;
|
|
}
|
|
break;
|
|
|
|
case TASK_POLICY_IO:
|
|
if (category == TASK_POLICY_EXTERNAL) {
|
|
requested.trp_ext_iotier = value;
|
|
} else {
|
|
requested.trp_int_iotier = value;
|
|
}
|
|
break;
|
|
|
|
case TASK_POLICY_PASSIVE_IO:
|
|
if (category == TASK_POLICY_EXTERNAL) {
|
|
requested.trp_ext_iopassive = value;
|
|
} else {
|
|
requested.trp_int_iopassive = value;
|
|
}
|
|
break;
|
|
|
|
/* Category: INTERNAL */
|
|
|
|
case TASK_POLICY_DARWIN_BG_IOPOL:
|
|
assert(category == TASK_POLICY_INTERNAL);
|
|
proc_iopol_to_tier(value, &tier, &passive);
|
|
requested.trp_bg_iotier = tier;
|
|
break;
|
|
|
|
/* Category: ATTRIBUTE */
|
|
|
|
case TASK_POLICY_BOOST:
|
|
assert(category == TASK_POLICY_ATTRIBUTE);
|
|
requested.trp_boosted = value;
|
|
break;
|
|
|
|
case TASK_POLICY_ROLE:
|
|
assert(category == TASK_POLICY_ATTRIBUTE);
|
|
requested.trp_role = value;
|
|
break;
|
|
|
|
case TASK_POLICY_TERMINATED:
|
|
assert(category == TASK_POLICY_ATTRIBUTE);
|
|
requested.trp_terminated = value;
|
|
break;
|
|
|
|
case TASK_BASE_LATENCY_QOS_POLICY:
|
|
assert(category == TASK_POLICY_ATTRIBUTE);
|
|
requested.trp_base_latency_qos = value;
|
|
break;
|
|
|
|
case TASK_BASE_THROUGHPUT_QOS_POLICY:
|
|
assert(category == TASK_POLICY_ATTRIBUTE);
|
|
requested.trp_base_through_qos = value;
|
|
break;
|
|
|
|
case TASK_POLICY_SFI_MANAGED:
|
|
assert(category == TASK_POLICY_ATTRIBUTE);
|
|
requested.trp_sfi_managed = value;
|
|
break;
|
|
|
|
case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS:
|
|
assert(category == TASK_POLICY_ATTRIBUTE);
|
|
requested.trp_base_latency_qos = value;
|
|
requested.trp_base_through_qos = value2;
|
|
break;
|
|
|
|
case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS:
|
|
assert(category == TASK_POLICY_ATTRIBUTE);
|
|
requested.trp_over_latency_qos = value;
|
|
requested.trp_over_through_qos = value2;
|
|
break;
|
|
|
|
default:
|
|
panic("unknown task policy: %d %d %d %d", category, flavor, value, value2);
|
|
break;
|
|
}
|
|
|
|
task->requested_policy = requested;
|
|
}
|
|
|
|
/*
|
|
* Gets what you set. Effective values may be different.
|
|
*/
|
|
int
|
|
proc_get_task_policy(task_t task,
|
|
int category,
|
|
int flavor)
|
|
{
|
|
int value = 0;
|
|
|
|
task_lock(task);
|
|
|
|
struct task_requested_policy requested = task->requested_policy;
|
|
|
|
switch (flavor) {
|
|
case TASK_POLICY_DARWIN_BG:
|
|
if (category == TASK_POLICY_EXTERNAL) {
|
|
value = requested.trp_ext_darwinbg;
|
|
} else {
|
|
value = requested.trp_int_darwinbg;
|
|
}
|
|
break;
|
|
case TASK_POLICY_IOPOL:
|
|
if (category == TASK_POLICY_EXTERNAL) {
|
|
value = proc_tier_to_iopol(requested.trp_ext_iotier,
|
|
requested.trp_ext_iopassive);
|
|
} else {
|
|
value = proc_tier_to_iopol(requested.trp_int_iotier,
|
|
requested.trp_int_iopassive);
|
|
}
|
|
break;
|
|
case TASK_POLICY_IO:
|
|
if (category == TASK_POLICY_EXTERNAL) {
|
|
value = requested.trp_ext_iotier;
|
|
} else {
|
|
value = requested.trp_int_iotier;
|
|
}
|
|
break;
|
|
case TASK_POLICY_PASSIVE_IO:
|
|
if (category == TASK_POLICY_EXTERNAL) {
|
|
value = requested.trp_ext_iopassive;
|
|
} else {
|
|
value = requested.trp_int_iopassive;
|
|
}
|
|
break;
|
|
case TASK_POLICY_DARWIN_BG_IOPOL:
|
|
assert(category == TASK_POLICY_INTERNAL);
|
|
value = proc_tier_to_iopol(requested.trp_bg_iotier, 0);
|
|
break;
|
|
case TASK_POLICY_ROLE:
|
|
assert(category == TASK_POLICY_ATTRIBUTE);
|
|
value = requested.trp_role;
|
|
break;
|
|
case TASK_POLICY_SFI_MANAGED:
|
|
assert(category == TASK_POLICY_ATTRIBUTE);
|
|
value = requested.trp_sfi_managed;
|
|
break;
|
|
default:
|
|
panic("unknown policy_flavor %d", flavor);
|
|
break;
|
|
}
|
|
|
|
task_unlock(task);
|
|
|
|
return value;
|
|
}
|
|
|
|
/*
|
|
* Variant of proc_get_task_policy() that returns two scalar outputs.
|
|
*/
|
|
void
|
|
proc_get_task_policy2(task_t task,
|
|
__assert_only int category,
|
|
int flavor,
|
|
int *value1,
|
|
int *value2)
|
|
{
|
|
task_lock(task);
|
|
|
|
struct task_requested_policy requested = task->requested_policy;
|
|
|
|
switch (flavor) {
|
|
case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS:
|
|
assert(category == TASK_POLICY_ATTRIBUTE);
|
|
*value1 = requested.trp_base_latency_qos;
|
|
*value2 = requested.trp_base_through_qos;
|
|
break;
|
|
|
|
case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS:
|
|
assert(category == TASK_POLICY_ATTRIBUTE);
|
|
*value1 = requested.trp_over_latency_qos;
|
|
*value2 = requested.trp_over_through_qos;
|
|
break;
|
|
|
|
default:
|
|
panic("unknown policy_flavor %d", flavor);
|
|
break;
|
|
}
|
|
|
|
task_unlock(task);
|
|
}
|
|
|
|
/*
|
|
* Function for querying effective state for relevant subsystems
|
|
* Gets what is actually in effect, for subsystems which pull policy instead of receive updates.
|
|
*
|
|
* ONLY the relevant subsystem should query this.
|
|
* NEVER take a value from the 'effective' function and stuff it into a setter.
|
|
*
|
|
* NOTE: This accessor does not take the task lock.
|
|
* Notifications of state updates need to be externally synchronized with state queries.
|
|
* This routine *MUST* remain interrupt safe, as it is potentially invoked
|
|
* within the context of a timer interrupt. It is also called in KDP context for stackshot.
|
|
*/
|
|
int
|
|
proc_get_effective_task_policy(task_t task,
|
|
int flavor)
|
|
{
|
|
int value = 0;
|
|
|
|
switch (flavor) {
|
|
case TASK_POLICY_DARWIN_BG:
|
|
/*
|
|
* This backs the KPI call proc_pidbackgrounded to find
|
|
* out if a pid is backgrounded.
|
|
* It is used to communicate state to the VM system, as well as
|
|
* prioritizing requests to the graphics system.
|
|
* Returns 1 for background mode, 0 for normal mode
|
|
*/
|
|
value = task->effective_policy.tep_darwinbg;
|
|
break;
|
|
case TASK_POLICY_ALL_SOCKETS_BG:
|
|
/*
|
|
* do_background_socket() calls this to determine what it should do to the proc's sockets
|
|
* Returns 1 for background mode, 0 for normal mode
|
|
*
|
|
* This consults both thread and task so un-DBGing a thread while the task is BG
|
|
* doesn't get you out of the network throttle.
|
|
*/
|
|
value = task->effective_policy.tep_all_sockets_bg;
|
|
break;
|
|
case TASK_POLICY_SUP_ACTIVE:
|
|
/*
|
|
* Is the task in AppNap? This is used to determine the urgency
|
|
* that's passed to the performance management subsystem for threads
|
|
* that are running at a priority <= MAXPRI_THROTTLE.
|
|
*/
|
|
value = task->effective_policy.tep_sup_active;
|
|
break;
|
|
case TASK_POLICY_LATENCY_QOS:
|
|
/*
|
|
* timer arming calls into here to find out the timer coalescing level
|
|
* Returns a QoS tier (0-6)
|
|
*/
|
|
value = task->effective_policy.tep_latency_qos;
|
|
break;
|
|
case TASK_POLICY_THROUGH_QOS:
|
|
/*
|
|
* This value is passed into the urgency callout from the scheduler
|
|
* to the performance management subsystem.
|
|
* Returns a QoS tier (0-6)
|
|
*/
|
|
value = task->effective_policy.tep_through_qos;
|
|
break;
|
|
case TASK_POLICY_ROLE:
|
|
/*
|
|
* This controls various things that ask whether a process is foreground,
|
|
* like SFI, VM, access to GPU, etc
|
|
*/
|
|
value = task->effective_policy.tep_role;
|
|
break;
|
|
case TASK_POLICY_WATCHERS_BG:
|
|
/*
|
|
* This controls whether or not a thread watching this process should be BG.
|
|
*/
|
|
value = task->effective_policy.tep_watchers_bg;
|
|
break;
|
|
case TASK_POLICY_SFI_MANAGED:
|
|
/*
|
|
* This controls whether or not a process is targeted for specific control by thermald.
|
|
*/
|
|
value = task->effective_policy.tep_sfi_managed;
|
|
break;
|
|
default:
|
|
panic("unknown policy_flavor %d", flavor);
|
|
break;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/*
|
|
* Convert from IOPOL_* values to throttle tiers.
|
|
*
|
|
* TODO: Can this be made more compact, like an array lookup
|
|
* Note that it is possible to support e.g. IOPOL_PASSIVE_STANDARD in the future
|
|
*/
|
|
|
|
void
|
|
proc_iopol_to_tier(int iopolicy, int *tier, int *passive)
|
|
{
|
|
*passive = 0;
|
|
*tier = 0;
|
|
switch (iopolicy) {
|
|
case IOPOL_IMPORTANT:
|
|
*tier = THROTTLE_LEVEL_TIER0;
|
|
break;
|
|
case IOPOL_PASSIVE:
|
|
*tier = THROTTLE_LEVEL_TIER0;
|
|
*passive = 1;
|
|
break;
|
|
case IOPOL_STANDARD:
|
|
*tier = THROTTLE_LEVEL_TIER1;
|
|
break;
|
|
case IOPOL_UTILITY:
|
|
*tier = THROTTLE_LEVEL_TIER2;
|
|
break;
|
|
case IOPOL_THROTTLE:
|
|
*tier = THROTTLE_LEVEL_TIER3;
|
|
break;
|
|
default:
|
|
panic("unknown I/O policy %d", iopolicy);
|
|
break;
|
|
}
|
|
}
|
|
|
|
int
|
|
proc_tier_to_iopol(int tier, int passive)
|
|
{
|
|
if (passive == 1) {
|
|
switch (tier) {
|
|
case THROTTLE_LEVEL_TIER0:
|
|
return IOPOL_PASSIVE;
|
|
default:
|
|
panic("unknown passive tier %d", tier);
|
|
return IOPOL_DEFAULT;
|
|
}
|
|
} else {
|
|
switch (tier) {
|
|
case THROTTLE_LEVEL_NONE:
|
|
case THROTTLE_LEVEL_TIER0:
|
|
return IOPOL_DEFAULT;
|
|
case THROTTLE_LEVEL_TIER1:
|
|
return IOPOL_STANDARD;
|
|
case THROTTLE_LEVEL_TIER2:
|
|
return IOPOL_UTILITY;
|
|
case THROTTLE_LEVEL_TIER3:
|
|
return IOPOL_THROTTLE;
|
|
default:
|
|
panic("unknown tier %d", tier);
|
|
return IOPOL_DEFAULT;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
proc_darwin_role_to_task_role(int darwin_role, task_role_t* task_role)
|
|
{
|
|
integer_t role = TASK_UNSPECIFIED;
|
|
|
|
switch (darwin_role) {
|
|
case PRIO_DARWIN_ROLE_DEFAULT:
|
|
role = TASK_UNSPECIFIED;
|
|
break;
|
|
case PRIO_DARWIN_ROLE_UI_FOCAL:
|
|
role = TASK_FOREGROUND_APPLICATION;
|
|
break;
|
|
case PRIO_DARWIN_ROLE_UI:
|
|
role = TASK_DEFAULT_APPLICATION;
|
|
break;
|
|
case PRIO_DARWIN_ROLE_NON_UI:
|
|
role = TASK_NONUI_APPLICATION;
|
|
break;
|
|
case PRIO_DARWIN_ROLE_UI_NON_FOCAL:
|
|
role = TASK_BACKGROUND_APPLICATION;
|
|
break;
|
|
case PRIO_DARWIN_ROLE_TAL_LAUNCH:
|
|
role = TASK_THROTTLE_APPLICATION;
|
|
break;
|
|
case PRIO_DARWIN_ROLE_DARWIN_BG:
|
|
role = TASK_DARWINBG_APPLICATION;
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
*task_role = role;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
proc_task_role_to_darwin_role(task_role_t task_role)
|
|
{
|
|
switch (task_role) {
|
|
case TASK_FOREGROUND_APPLICATION:
|
|
return PRIO_DARWIN_ROLE_UI_FOCAL;
|
|
case TASK_BACKGROUND_APPLICATION:
|
|
return PRIO_DARWIN_ROLE_UI_NON_FOCAL;
|
|
case TASK_NONUI_APPLICATION:
|
|
return PRIO_DARWIN_ROLE_NON_UI;
|
|
case TASK_DEFAULT_APPLICATION:
|
|
return PRIO_DARWIN_ROLE_UI;
|
|
case TASK_THROTTLE_APPLICATION:
|
|
return PRIO_DARWIN_ROLE_TAL_LAUNCH;
|
|
case TASK_DARWINBG_APPLICATION:
|
|
return PRIO_DARWIN_ROLE_DARWIN_BG;
|
|
case TASK_UNSPECIFIED:
|
|
default:
|
|
return PRIO_DARWIN_ROLE_DEFAULT;
|
|
}
|
|
}
|
|
|
|
|
|
/* TODO: remove this variable when interactive daemon audit period is over */
|
|
static TUNABLE(bool, ipc_importance_interactive_receiver,
|
|
"imp_interactive_receiver", false);
|
|
|
|
/*
|
|
* Called at process exec to initialize the apptype, qos clamp, and qos seed of a process
|
|
*
|
|
* TODO: Make this function more table-driven instead of ad-hoc
|
|
*/
|
|
void
|
|
proc_set_task_spawnpolicy(task_t task, thread_t thread, int apptype, int qos_clamp, task_role_t role,
|
|
ipc_port_t * portwatch_ports, uint32_t portwatch_count)
|
|
{
|
|
struct task_pend_token pend_token = {};
|
|
|
|
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
|
|
(IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_START,
|
|
task_pid(task), trequested_0(task), trequested_1(task),
|
|
apptype, 0);
|
|
|
|
switch (apptype) {
|
|
case TASK_APPTYPE_APP_DEFAULT:
|
|
/* Apps become donors via the 'live-donor' flag instead of the static donor flag */
|
|
task_importance_mark_donor(task, FALSE);
|
|
task_importance_mark_live_donor(task, TRUE);
|
|
task_importance_mark_receiver(task, FALSE);
|
|
#if !defined(XNU_TARGET_OS_OSX)
|
|
task_importance_mark_denap_receiver(task, FALSE);
|
|
#else
|
|
/* Apps are de-nap recievers on macOS for suppression behaviors */
|
|
task_importance_mark_denap_receiver(task, TRUE);
|
|
#endif /* !defined(XNU_TARGET_OS_OSX) */
|
|
break;
|
|
|
|
case TASK_APPTYPE_DAEMON_INTERACTIVE:
|
|
task_importance_mark_donor(task, TRUE);
|
|
task_importance_mark_live_donor(task, FALSE);
|
|
|
|
/*
|
|
* A boot arg controls whether interactive daemons are importance receivers.
|
|
* Normally, they are not. But for testing their behavior as an adaptive
|
|
* daemon, the boot-arg can be set.
|
|
*
|
|
* TODO: remove this when the interactive daemon audit period is over.
|
|
*/
|
|
task_importance_mark_receiver(task, /* FALSE */ ipc_importance_interactive_receiver);
|
|
task_importance_mark_denap_receiver(task, FALSE);
|
|
break;
|
|
|
|
case TASK_APPTYPE_DAEMON_STANDARD:
|
|
task_importance_mark_donor(task, TRUE);
|
|
task_importance_mark_live_donor(task, FALSE);
|
|
task_importance_mark_receiver(task, FALSE);
|
|
task_importance_mark_denap_receiver(task, FALSE);
|
|
break;
|
|
|
|
case TASK_APPTYPE_DAEMON_ADAPTIVE:
|
|
task_importance_mark_donor(task, FALSE);
|
|
task_importance_mark_live_donor(task, FALSE);
|
|
task_importance_mark_receiver(task, TRUE);
|
|
task_importance_mark_denap_receiver(task, FALSE);
|
|
break;
|
|
|
|
case TASK_APPTYPE_DAEMON_BACKGROUND:
|
|
task_importance_mark_donor(task, FALSE);
|
|
task_importance_mark_live_donor(task, FALSE);
|
|
task_importance_mark_receiver(task, FALSE);
|
|
task_importance_mark_denap_receiver(task, FALSE);
|
|
break;
|
|
|
|
case TASK_APPTYPE_DRIVER:
|
|
task_importance_mark_donor(task, FALSE);
|
|
task_importance_mark_live_donor(task, FALSE);
|
|
task_importance_mark_receiver(task, FALSE);
|
|
task_importance_mark_denap_receiver(task, FALSE);
|
|
break;
|
|
|
|
case TASK_APPTYPE_NONE:
|
|
break;
|
|
}
|
|
|
|
if (portwatch_ports != NULL && apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
|
|
int portwatch_boosts = 0;
|
|
|
|
for (uint32_t i = 0; i < portwatch_count; i++) {
|
|
ipc_port_t port = NULL;
|
|
|
|
if (IP_VALID(port = portwatch_ports[i])) {
|
|
int boost = 0;
|
|
task_add_importance_watchport(task, port, &boost);
|
|
portwatch_boosts += boost;
|
|
}
|
|
}
|
|
|
|
if (portwatch_boosts > 0) {
|
|
task_importance_hold_internal_assertion(task, portwatch_boosts);
|
|
}
|
|
}
|
|
|
|
/* Redirect the turnstile push of watchports to task */
|
|
if (portwatch_count && portwatch_ports != NULL) {
|
|
task_add_turnstile_watchports(task, thread, portwatch_ports, portwatch_count);
|
|
}
|
|
|
|
task_lock(task);
|
|
|
|
if (apptype != TASK_APPTYPE_NONE) {
|
|
task->requested_policy.trp_apptype = apptype;
|
|
}
|
|
|
|
#if !defined(XNU_TARGET_OS_OSX)
|
|
/* Remove this after launchd starts setting it properly */
|
|
if (apptype == TASK_APPTYPE_APP_DEFAULT && role == TASK_UNSPECIFIED) {
|
|
task->requested_policy.trp_role = TASK_FOREGROUND_APPLICATION;
|
|
} else
|
|
#endif
|
|
if (role != TASK_UNSPECIFIED) {
|
|
task->requested_policy.trp_role = (uint32_t)role;
|
|
}
|
|
|
|
if (qos_clamp != THREAD_QOS_UNSPECIFIED) {
|
|
task->requested_policy.trp_qos_clamp = qos_clamp;
|
|
}
|
|
|
|
task_policy_update_locked(task, &pend_token);
|
|
|
|
task_unlock(task);
|
|
|
|
/* Ensure the donor bit is updated to be in sync with the new live donor status */
|
|
pend_token.tpt_update_live_donor = 1;
|
|
|
|
task_policy_update_complete_unlocked(task, &pend_token);
|
|
|
|
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
|
|
(IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_END,
|
|
task_pid(task), trequested_0(task), trequested_1(task),
|
|
task_is_importance_receiver(task), 0);
|
|
}
|
|
|
|
/*
|
|
* Inherit task role across exec
|
|
*/
|
|
void
|
|
proc_inherit_task_role(task_t new_task,
|
|
task_t old_task)
|
|
{
|
|
int role;
|
|
|
|
/* inherit the role from old task to new task */
|
|
role = proc_get_task_policy(old_task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE);
|
|
proc_set_task_policy(new_task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE, role);
|
|
}
|
|
|
|
extern void * XNU_PTRAUTH_SIGNED_PTR("initproc") initproc;
|
|
|
|
/*
|
|
* Compute the default main thread qos for a task
|
|
*/
|
|
thread_qos_t
|
|
task_compute_main_thread_qos(task_t task)
|
|
{
|
|
thread_qos_t primordial_qos = THREAD_QOS_UNSPECIFIED;
|
|
|
|
thread_qos_t qos_clamp = task->requested_policy.trp_qos_clamp;
|
|
|
|
switch (task->requested_policy.trp_apptype) {
|
|
case TASK_APPTYPE_APP_TAL:
|
|
case TASK_APPTYPE_APP_DEFAULT:
|
|
primordial_qos = THREAD_QOS_USER_INTERACTIVE;
|
|
break;
|
|
|
|
case TASK_APPTYPE_DAEMON_INTERACTIVE:
|
|
case TASK_APPTYPE_DAEMON_STANDARD:
|
|
case TASK_APPTYPE_DAEMON_ADAPTIVE:
|
|
case TASK_APPTYPE_DRIVER:
|
|
primordial_qos = THREAD_QOS_LEGACY;
|
|
break;
|
|
|
|
case TASK_APPTYPE_DAEMON_BACKGROUND:
|
|
primordial_qos = THREAD_QOS_BACKGROUND;
|
|
break;
|
|
}
|
|
|
|
if (task->bsd_info == initproc) {
|
|
/* PID 1 gets a special case */
|
|
primordial_qos = MAX(primordial_qos, THREAD_QOS_USER_INITIATED);
|
|
}
|
|
|
|
if (qos_clamp != THREAD_QOS_UNSPECIFIED) {
|
|
if (primordial_qos != THREAD_QOS_UNSPECIFIED) {
|
|
primordial_qos = MIN(qos_clamp, primordial_qos);
|
|
} else {
|
|
primordial_qos = qos_clamp;
|
|
}
|
|
}
|
|
|
|
return primordial_qos;
|
|
}
|
|
|
|
|
|
/* for process_policy to check before attempting to set */
|
|
boolean_t
|
|
proc_task_is_tal(task_t task)
|
|
{
|
|
return (task->requested_policy.trp_apptype == TASK_APPTYPE_APP_TAL) ? TRUE : FALSE;
|
|
}
|
|
|
|
int
|
|
task_get_apptype(task_t task)
|
|
{
|
|
return task->requested_policy.trp_apptype;
|
|
}
|
|
|
|
boolean_t
|
|
task_is_daemon(task_t task)
|
|
{
|
|
switch (task->requested_policy.trp_apptype) {
|
|
case TASK_APPTYPE_DAEMON_INTERACTIVE:
|
|
case TASK_APPTYPE_DAEMON_STANDARD:
|
|
case TASK_APPTYPE_DAEMON_ADAPTIVE:
|
|
case TASK_APPTYPE_DAEMON_BACKGROUND:
|
|
return TRUE;
|
|
default:
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
bool
|
|
task_is_driver(task_t task)
|
|
{
|
|
if (!task) {
|
|
return FALSE;
|
|
}
|
|
return task->requested_policy.trp_apptype == TASK_APPTYPE_DRIVER;
|
|
}
|
|
|
|
boolean_t
|
|
task_is_app(task_t task)
|
|
{
|
|
switch (task->requested_policy.trp_apptype) {
|
|
case TASK_APPTYPE_APP_DEFAULT:
|
|
case TASK_APPTYPE_APP_TAL:
|
|
return TRUE;
|
|
default:
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/* for telemetry */
|
|
integer_t
|
|
task_grab_latency_qos(task_t task)
|
|
{
|
|
return qos_latency_policy_package(proc_get_effective_task_policy(task, TASK_POLICY_LATENCY_QOS));
|
|
}
|
|
|
|
/* update the darwin background action state in the flags field for libproc */
|
|
int
|
|
proc_get_darwinbgstate(task_t task, uint32_t * flagsp)
|
|
{
|
|
if (task->requested_policy.trp_ext_darwinbg) {
|
|
*flagsp |= PROC_FLAG_EXT_DARWINBG;
|
|
}
|
|
|
|
if (task->requested_policy.trp_int_darwinbg) {
|
|
*flagsp |= PROC_FLAG_DARWINBG;
|
|
}
|
|
|
|
#if !defined(XNU_TARGET_OS_OSX)
|
|
if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_BACKGROUND) {
|
|
*flagsp |= PROC_FLAG_IOS_APPLEDAEMON;
|
|
}
|
|
|
|
if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
|
|
*flagsp |= PROC_FLAG_IOS_IMPPROMOTION;
|
|
}
|
|
#endif /* !defined(XNU_TARGET_OS_OSX) */
|
|
|
|
if (task->requested_policy.trp_apptype == TASK_APPTYPE_APP_DEFAULT ||
|
|
task->requested_policy.trp_apptype == TASK_APPTYPE_APP_TAL) {
|
|
*flagsp |= PROC_FLAG_APPLICATION;
|
|
}
|
|
|
|
if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
|
|
*flagsp |= PROC_FLAG_ADAPTIVE;
|
|
}
|
|
|
|
if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE &&
|
|
task->requested_policy.trp_boosted == 1) {
|
|
*flagsp |= PROC_FLAG_ADAPTIVE_IMPORTANT;
|
|
}
|
|
|
|
if (task_is_importance_donor(task)) {
|
|
*flagsp |= PROC_FLAG_IMPORTANCE_DONOR;
|
|
}
|
|
|
|
if (task->effective_policy.tep_sup_active) {
|
|
*flagsp |= PROC_FLAG_SUPPRESSED;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Tracepoint data... Reading the tracepoint data can be somewhat complicated.
|
|
* The current scheme packs as much data into a single tracepoint as it can.
|
|
*
|
|
* Each task/thread requested/effective structure is 64 bits in size. Any
|
|
* given tracepoint will emit either requested or effective data, but not both.
|
|
*
|
|
* A tracepoint may emit any of task, thread, or task & thread data.
|
|
*
|
|
* The type of data emitted varies with pointer size. Where possible, both
|
|
* task and thread data are emitted. In LP32 systems, the first and second
|
|
* halves of either the task or thread data is emitted.
|
|
*
|
|
* The code uses uintptr_t array indexes instead of high/low to avoid
|
|
* confusion WRT big vs little endian.
|
|
*
|
|
* The truth table for the tracepoint data functions is below, and has the
|
|
* following invariants:
|
|
*
|
|
* 1) task and thread are uintptr_t*
|
|
* 2) task may never be NULL
|
|
*
|
|
*
|
|
* LP32 LP64
|
|
* trequested_0(task, NULL) task[0] task[0]
|
|
* trequested_1(task, NULL) task[1] NULL
|
|
* trequested_0(task, thread) thread[0] task[0]
|
|
* trequested_1(task, thread) thread[1] thread[0]
|
|
*
|
|
* Basically, you get a full task or thread on LP32, and both on LP64.
|
|
*
|
|
* The uintptr_t munging here is squicky enough to deserve a comment.
|
|
*
|
|
* The variables we are accessing are laid out in memory like this:
|
|
*
|
|
* [ LP64 uintptr_t 0 ]
|
|
* [ LP32 uintptr_t 0 ] [ LP32 uintptr_t 1 ]
|
|
*
|
|
* 1 2 3 4 5 6 7 8
|
|
*
|
|
*/
|
|
|
|
static uintptr_t
|
|
trequested_0(task_t task)
|
|
{
|
|
static_assert(sizeof(struct task_requested_policy) == sizeof(uint64_t), "size invariant violated");
|
|
|
|
uintptr_t* raw = (uintptr_t*)&task->requested_policy;
|
|
|
|
return raw[0];
|
|
}
|
|
|
|
static uintptr_t
|
|
trequested_1(task_t task)
|
|
{
|
|
#if defined __LP64__
|
|
(void)task;
|
|
return 0;
|
|
#else
|
|
uintptr_t* raw = (uintptr_t*)(&task->requested_policy);
|
|
return raw[1];
|
|
#endif
|
|
}
|
|
|
|
static uintptr_t
|
|
teffective_0(task_t task)
|
|
{
|
|
uintptr_t* raw = (uintptr_t*)&task->effective_policy;
|
|
|
|
return raw[0];
|
|
}
|
|
|
|
static uintptr_t
|
|
teffective_1(task_t task)
|
|
{
|
|
#if defined __LP64__
|
|
(void)task;
|
|
return 0;
|
|
#else
|
|
uintptr_t* raw = (uintptr_t*)(&task->effective_policy);
|
|
return raw[1];
|
|
#endif
|
|
}
|
|
|
|
/* dump pending for tracepoint */
|
|
uint32_t
|
|
tpending(task_pend_token_t pend_token)
|
|
{
|
|
return *(uint32_t*)(void*)(pend_token);
|
|
}
|
|
|
|
uint64_t
|
|
task_requested_bitfield(task_t task)
|
|
{
|
|
uint64_t bits = 0;
|
|
struct task_requested_policy requested = task->requested_policy;
|
|
|
|
bits |= (requested.trp_int_darwinbg ? POLICY_REQ_INT_DARWIN_BG : 0);
|
|
bits |= (requested.trp_ext_darwinbg ? POLICY_REQ_EXT_DARWIN_BG : 0);
|
|
bits |= (requested.trp_int_iotier ? (((uint64_t)requested.trp_int_iotier) << POLICY_REQ_INT_IO_TIER_SHIFT) : 0);
|
|
bits |= (requested.trp_ext_iotier ? (((uint64_t)requested.trp_ext_iotier) << POLICY_REQ_EXT_IO_TIER_SHIFT) : 0);
|
|
bits |= (requested.trp_int_iopassive ? POLICY_REQ_INT_PASSIVE_IO : 0);
|
|
bits |= (requested.trp_ext_iopassive ? POLICY_REQ_EXT_PASSIVE_IO : 0);
|
|
bits |= (requested.trp_bg_iotier ? (((uint64_t)requested.trp_bg_iotier) << POLICY_REQ_BG_IOTIER_SHIFT) : 0);
|
|
bits |= (requested.trp_terminated ? POLICY_REQ_TERMINATED : 0);
|
|
|
|
bits |= (requested.trp_boosted ? POLICY_REQ_BOOSTED : 0);
|
|
bits |= (requested.trp_tal_enabled ? POLICY_REQ_TAL_ENABLED : 0);
|
|
bits |= (requested.trp_apptype ? (((uint64_t)requested.trp_apptype) << POLICY_REQ_APPTYPE_SHIFT) : 0);
|
|
bits |= (requested.trp_role ? (((uint64_t)requested.trp_role) << POLICY_REQ_ROLE_SHIFT) : 0);
|
|
|
|
bits |= (requested.trp_sup_active ? POLICY_REQ_SUP_ACTIVE : 0);
|
|
bits |= (requested.trp_sup_lowpri_cpu ? POLICY_REQ_SUP_LOWPRI_CPU : 0);
|
|
bits |= (requested.trp_sup_cpu ? POLICY_REQ_SUP_CPU : 0);
|
|
bits |= (requested.trp_sup_timer ? (((uint64_t)requested.trp_sup_timer) << POLICY_REQ_SUP_TIMER_THROTTLE_SHIFT) : 0);
|
|
bits |= (requested.trp_sup_throughput ? (((uint64_t)requested.trp_sup_throughput) << POLICY_REQ_SUP_THROUGHPUT_SHIFT) : 0);
|
|
bits |= (requested.trp_sup_disk ? POLICY_REQ_SUP_DISK_THROTTLE : 0);
|
|
bits |= (requested.trp_sup_bg_sockets ? POLICY_REQ_SUP_BG_SOCKETS : 0);
|
|
|
|
bits |= (requested.trp_base_latency_qos ? (((uint64_t)requested.trp_base_latency_qos) << POLICY_REQ_BASE_LATENCY_QOS_SHIFT) : 0);
|
|
bits |= (requested.trp_over_latency_qos ? (((uint64_t)requested.trp_over_latency_qos) << POLICY_REQ_OVER_LATENCY_QOS_SHIFT) : 0);
|
|
bits |= (requested.trp_base_through_qos ? (((uint64_t)requested.trp_base_through_qos) << POLICY_REQ_BASE_THROUGH_QOS_SHIFT) : 0);
|
|
bits |= (requested.trp_over_through_qos ? (((uint64_t)requested.trp_over_through_qos) << POLICY_REQ_OVER_THROUGH_QOS_SHIFT) : 0);
|
|
bits |= (requested.trp_sfi_managed ? POLICY_REQ_SFI_MANAGED : 0);
|
|
bits |= (requested.trp_qos_clamp ? (((uint64_t)requested.trp_qos_clamp) << POLICY_REQ_QOS_CLAMP_SHIFT) : 0);
|
|
|
|
return bits;
|
|
}
|
|
|
|
uint64_t
|
|
task_effective_bitfield(task_t task)
|
|
{
|
|
uint64_t bits = 0;
|
|
struct task_effective_policy effective = task->effective_policy;
|
|
|
|
bits |= (effective.tep_io_tier ? (((uint64_t)effective.tep_io_tier) << POLICY_EFF_IO_TIER_SHIFT) : 0);
|
|
bits |= (effective.tep_io_passive ? POLICY_EFF_IO_PASSIVE : 0);
|
|
bits |= (effective.tep_darwinbg ? POLICY_EFF_DARWIN_BG : 0);
|
|
bits |= (effective.tep_lowpri_cpu ? POLICY_EFF_LOWPRI_CPU : 0);
|
|
bits |= (effective.tep_terminated ? POLICY_EFF_TERMINATED : 0);
|
|
bits |= (effective.tep_all_sockets_bg ? POLICY_EFF_ALL_SOCKETS_BG : 0);
|
|
bits |= (effective.tep_new_sockets_bg ? POLICY_EFF_NEW_SOCKETS_BG : 0);
|
|
bits |= (effective.tep_bg_iotier ? (((uint64_t)effective.tep_bg_iotier) << POLICY_EFF_BG_IOTIER_SHIFT) : 0);
|
|
bits |= (effective.tep_qos_ui_is_urgent ? POLICY_EFF_QOS_UI_IS_URGENT : 0);
|
|
|
|
bits |= (effective.tep_tal_engaged ? POLICY_EFF_TAL_ENGAGED : 0);
|
|
bits |= (effective.tep_watchers_bg ? POLICY_EFF_WATCHERS_BG : 0);
|
|
bits |= (effective.tep_sup_active ? POLICY_EFF_SUP_ACTIVE : 0);
|
|
bits |= (effective.tep_suppressed_cpu ? POLICY_EFF_SUP_CPU : 0);
|
|
bits |= (effective.tep_role ? (((uint64_t)effective.tep_role) << POLICY_EFF_ROLE_SHIFT) : 0);
|
|
bits |= (effective.tep_latency_qos ? (((uint64_t)effective.tep_latency_qos) << POLICY_EFF_LATENCY_QOS_SHIFT) : 0);
|
|
bits |= (effective.tep_through_qos ? (((uint64_t)effective.tep_through_qos) << POLICY_EFF_THROUGH_QOS_SHIFT) : 0);
|
|
bits |= (effective.tep_sfi_managed ? POLICY_EFF_SFI_MANAGED : 0);
|
|
bits |= (effective.tep_qos_ceiling ? (((uint64_t)effective.tep_qos_ceiling) << POLICY_EFF_QOS_CEILING_SHIFT) : 0);
|
|
|
|
return bits;
|
|
}
|
|
|
|
|
|
/*
|
|
* Resource usage and CPU related routines
|
|
*/
|
|
|
|
int
|
|
proc_get_task_ruse_cpu(task_t task, uint32_t *policyp, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep)
|
|
{
|
|
int error = 0;
|
|
int scope;
|
|
|
|
task_lock(task);
|
|
|
|
|
|
error = task_get_cpuusage(task, percentagep, intervalp, deadlinep, &scope);
|
|
task_unlock(task);
|
|
|
|
/*
|
|
* Reverse-map from CPU resource limit scopes back to policies (see comment below).
|
|
*/
|
|
if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
|
|
*policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC;
|
|
} else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) {
|
|
*policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE;
|
|
} else if (scope == TASK_RUSECPU_FLAGS_DEADLINE) {
|
|
*policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Configure the default CPU usage monitor parameters.
|
|
*
|
|
* For tasks which have this mechanism activated: if any thread in the
|
|
* process consumes more CPU than this, an EXC_RESOURCE exception will be generated.
|
|
*/
|
|
void
|
|
proc_init_cpumon_params(void)
|
|
{
|
|
/*
|
|
* The max CPU percentage can be configured via the boot-args and
|
|
* a key in the device tree. The boot-args are honored first, then the
|
|
* device tree.
|
|
*/
|
|
if (!PE_parse_boot_argn("max_cpumon_percentage", &proc_max_cpumon_percentage,
|
|
sizeof(proc_max_cpumon_percentage))) {
|
|
uint64_t max_percentage = 0ULL;
|
|
|
|
if (!PE_get_default("kern.max_cpumon_percentage", &max_percentage,
|
|
sizeof(max_percentage))) {
|
|
max_percentage = DEFAULT_CPUMON_PERCENTAGE;
|
|
}
|
|
|
|
assert(max_percentage <= UINT8_MAX);
|
|
proc_max_cpumon_percentage = (uint8_t) max_percentage;
|
|
}
|
|
|
|
if (proc_max_cpumon_percentage > 100) {
|
|
proc_max_cpumon_percentage = 100;
|
|
}
|
|
|
|
/*
|
|
* The interval should be specified in seconds.
|
|
*
|
|
* Like the max CPU percentage, the max CPU interval can be configured
|
|
* via boot-args and the device tree.
|
|
*/
|
|
if (!PE_parse_boot_argn("max_cpumon_interval", &proc_max_cpumon_interval,
|
|
sizeof(proc_max_cpumon_interval))) {
|
|
if (!PE_get_default("kern.max_cpumon_interval", &proc_max_cpumon_interval,
|
|
sizeof(proc_max_cpumon_interval))) {
|
|
proc_max_cpumon_interval = DEFAULT_CPUMON_INTERVAL;
|
|
}
|
|
}
|
|
|
|
proc_max_cpumon_interval *= NSEC_PER_SEC;
|
|
|
|
/* TEMPORARY boot arg to control App suppression */
|
|
PE_parse_boot_argn("task_policy_suppression_flags",
|
|
&task_policy_suppression_flags,
|
|
sizeof(task_policy_suppression_flags));
|
|
|
|
/* adjust suppression disk policy if called for in boot arg */
|
|
if (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_IOTIER2) {
|
|
proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Currently supported configurations for CPU limits.
|
|
*
|
|
* Policy | Deadline-based CPU limit | Percentage-based CPU limit
|
|
* -------------------------------------+--------------------------+------------------------------
|
|
* PROC_POLICY_RSRCACT_THROTTLE | ENOTSUP | Task-wide scope only
|
|
* PROC_POLICY_RSRCACT_SUSPEND | Task-wide scope only | ENOTSUP
|
|
* PROC_POLICY_RSRCACT_TERMINATE | Task-wide scope only | ENOTSUP
|
|
* PROC_POLICY_RSRCACT_NOTIFY_KQ | Task-wide scope only | ENOTSUP
|
|
* PROC_POLICY_RSRCACT_NOTIFY_EXC | ENOTSUP | Per-thread scope only
|
|
*
|
|
* A deadline-based CPU limit is actually a simple wallclock timer - the requested action is performed
|
|
* after the specified amount of wallclock time has elapsed.
|
|
*
|
|
* A percentage-based CPU limit performs the requested action after the specified amount of actual CPU time
|
|
* has been consumed -- regardless of how much wallclock time has elapsed -- by either the task as an
|
|
* aggregate entity (so-called "Task-wide" or "Proc-wide" scope, whereby the CPU time consumed by all threads
|
|
* in the task are added together), or by any one thread in the task (so-called "per-thread" scope).
|
|
*
|
|
* We support either deadline != 0 OR percentage != 0, but not both. The original intention in having them
|
|
* share an API was to use actual CPU time as the basis of the deadline-based limit (as in: perform an action
|
|
* after I have used some amount of CPU time; this is different than the recurring percentage/interval model)
|
|
* but the potential consumer of the API at the time was insisting on wallclock time instead.
|
|
*
|
|
* Currently, requesting notification via an exception is the only way to get per-thread scope for a
|
|
* CPU limit. All other types of notifications force task-wide scope for the limit.
|
|
*/
|
|
int
|
|
proc_set_task_ruse_cpu(task_t task, uint16_t policy, uint8_t percentage, uint64_t interval, uint64_t deadline,
|
|
int cpumon_entitled)
|
|
{
|
|
int error = 0;
|
|
int scope;
|
|
|
|
/*
|
|
* Enforce the matrix of supported configurations for policy, percentage, and deadline.
|
|
*/
|
|
switch (policy) {
|
|
// If no policy is explicitly given, the default is to throttle.
|
|
case TASK_POLICY_RESOURCE_ATTRIBUTE_NONE:
|
|
case TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE:
|
|
if (deadline != 0) {
|
|
return ENOTSUP;
|
|
}
|
|
scope = TASK_RUSECPU_FLAGS_PROC_LIMIT;
|
|
break;
|
|
case TASK_POLICY_RESOURCE_ATTRIBUTE_SUSPEND:
|
|
case TASK_POLICY_RESOURCE_ATTRIBUTE_TERMINATE:
|
|
case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_KQ:
|
|
if (percentage != 0) {
|
|
return ENOTSUP;
|
|
}
|
|
scope = TASK_RUSECPU_FLAGS_DEADLINE;
|
|
break;
|
|
case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC:
|
|
if (deadline != 0) {
|
|
return ENOTSUP;
|
|
}
|
|
scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
|
|
#ifdef CONFIG_NOMONITORS
|
|
return error;
|
|
#endif /* CONFIG_NOMONITORS */
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
task_lock(task);
|
|
if (task != current_task()) {
|
|
task->policy_ru_cpu_ext = policy;
|
|
} else {
|
|
task->policy_ru_cpu = policy;
|
|
}
|
|
error = task_set_cpuusage(task, percentage, interval, deadline, scope, cpumon_entitled);
|
|
task_unlock(task);
|
|
return error;
|
|
}
|
|
|
|
/* TODO: get rid of these */
|
|
#define TASK_POLICY_CPU_RESOURCE_USAGE 0
|
|
#define TASK_POLICY_WIREDMEM_RESOURCE_USAGE 1
|
|
#define TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE 2
|
|
#define TASK_POLICY_DISK_RESOURCE_USAGE 3
|
|
#define TASK_POLICY_NETWORK_RESOURCE_USAGE 4
|
|
#define TASK_POLICY_POWER_RESOURCE_USAGE 5
|
|
|
|
#define TASK_POLICY_RESOURCE_USAGE_COUNT 6
|
|
|
|
int
|
|
proc_clear_task_ruse_cpu(task_t task, int cpumon_entitled)
|
|
{
|
|
int error = 0;
|
|
int action;
|
|
void * bsdinfo = NULL;
|
|
|
|
task_lock(task);
|
|
if (task != current_task()) {
|
|
task->policy_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT;
|
|
} else {
|
|
task->policy_ru_cpu = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT;
|
|
}
|
|
|
|
error = task_clear_cpuusage_locked(task, cpumon_entitled);
|
|
if (error != 0) {
|
|
goto out;
|
|
}
|
|
|
|
action = task->applied_ru_cpu;
|
|
if (task->applied_ru_cpu_ext != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
|
|
/* reset action */
|
|
task->applied_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
|
|
}
|
|
if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
|
|
bsdinfo = task->bsd_info;
|
|
task_unlock(task);
|
|
proc_restore_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action);
|
|
goto out1;
|
|
}
|
|
|
|
out:
|
|
task_unlock(task);
|
|
out1:
|
|
return error;
|
|
}
|
|
|
|
/* used to apply resource limit related actions */
|
|
static int
|
|
task_apply_resource_actions(task_t task, int type)
|
|
{
|
|
int action = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
|
|
void * bsdinfo = NULL;
|
|
|
|
switch (type) {
|
|
case TASK_POLICY_CPU_RESOURCE_USAGE:
|
|
break;
|
|
case TASK_POLICY_WIREDMEM_RESOURCE_USAGE:
|
|
case TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE:
|
|
case TASK_POLICY_DISK_RESOURCE_USAGE:
|
|
case TASK_POLICY_NETWORK_RESOURCE_USAGE:
|
|
case TASK_POLICY_POWER_RESOURCE_USAGE:
|
|
return 0;
|
|
|
|
default:
|
|
return 1;
|
|
}
|
|
;
|
|
|
|
/* only cpu actions for now */
|
|
task_lock(task);
|
|
|
|
if (task->applied_ru_cpu_ext == TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
|
|
/* apply action */
|
|
task->applied_ru_cpu_ext = task->policy_ru_cpu_ext;
|
|
action = task->applied_ru_cpu_ext;
|
|
} else {
|
|
action = task->applied_ru_cpu_ext;
|
|
}
|
|
|
|
if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
|
|
bsdinfo = task->bsd_info;
|
|
task_unlock(task);
|
|
proc_apply_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action);
|
|
} else {
|
|
task_unlock(task);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* XXX This API is somewhat broken; we support multiple simultaneous CPU limits, but the get/set API
|
|
* only allows for one at a time. This means that if there is a per-thread limit active, the other
|
|
* "scopes" will not be accessible via this API. We could change it to pass in the scope of interest
|
|
* to the caller, and prefer that, but there's no need for that at the moment.
|
|
*/
|
|
static int
|
|
task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope)
|
|
{
|
|
*percentagep = 0;
|
|
*intervalp = 0;
|
|
*deadlinep = 0;
|
|
|
|
if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) != 0) {
|
|
*scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
|
|
*percentagep = task->rusage_cpu_perthr_percentage;
|
|
*intervalp = task->rusage_cpu_perthr_interval;
|
|
} else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) != 0) {
|
|
*scope = TASK_RUSECPU_FLAGS_PROC_LIMIT;
|
|
*percentagep = task->rusage_cpu_percentage;
|
|
*intervalp = task->rusage_cpu_interval;
|
|
} else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) != 0) {
|
|
*scope = TASK_RUSECPU_FLAGS_DEADLINE;
|
|
*deadlinep = task->rusage_cpu_deadline;
|
|
} else {
|
|
*scope = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Suspend the CPU usage monitor for the task. Return value indicates
|
|
* if the mechanism was actually enabled.
|
|
*/
|
|
int
|
|
task_suspend_cpumon(task_t task)
|
|
{
|
|
thread_t thread;
|
|
|
|
task_lock_assert_owned(task);
|
|
|
|
if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) == 0) {
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
#if CONFIG_TELEMETRY
|
|
/*
|
|
* Disable task-wide telemetry if it was ever enabled by the CPU usage
|
|
* monitor's warning zone.
|
|
*/
|
|
telemetry_task_ctl_locked(task, TF_CPUMON_WARNING, 0);
|
|
#endif
|
|
|
|
/*
|
|
* Suspend monitoring for the task, and propagate that change to each thread.
|
|
*/
|
|
task->rusage_cpu_flags &= ~(TASK_RUSECPU_FLAGS_PERTHR_LIMIT | TASK_RUSECPU_FLAGS_FATAL_CPUMON);
|
|
queue_iterate(&task->threads, thread, thread_t, task_threads) {
|
|
act_set_astledger(thread);
|
|
}
|
|
|
|
return KERN_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Remove all traces of the CPU monitor.
|
|
*/
|
|
int
|
|
task_disable_cpumon(task_t task)
|
|
{
|
|
int kret;
|
|
|
|
task_lock_assert_owned(task);
|
|
|
|
kret = task_suspend_cpumon(task);
|
|
if (kret) {
|
|
return kret;
|
|
}
|
|
|
|
/* Once we clear these values, the monitor can't be resumed */
|
|
task->rusage_cpu_perthr_percentage = 0;
|
|
task->rusage_cpu_perthr_interval = 0;
|
|
|
|
return KERN_SUCCESS;
|
|
}
|
|
|
|
|
|
static int
|
|
task_enable_cpumon_locked(task_t task)
|
|
{
|
|
thread_t thread;
|
|
task_lock_assert_owned(task);
|
|
|
|
if (task->rusage_cpu_perthr_percentage == 0 ||
|
|
task->rusage_cpu_perthr_interval == 0) {
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
|
|
queue_iterate(&task->threads, thread, thread_t, task_threads) {
|
|
act_set_astledger(thread);
|
|
}
|
|
|
|
return KERN_SUCCESS;
|
|
}
|
|
|
|
int
|
|
task_resume_cpumon(task_t task)
|
|
{
|
|
kern_return_t kret;
|
|
|
|
if (!task) {
|
|
return EINVAL;
|
|
}
|
|
|
|
task_lock(task);
|
|
kret = task_enable_cpumon_locked(task);
|
|
task_unlock(task);
|
|
|
|
return kret;
|
|
}
|
|
|
|
|
|
/* duplicate values from bsd/sys/process_policy.h */
|
|
#define PROC_POLICY_CPUMON_DISABLE 0xFF
|
|
#define PROC_POLICY_CPUMON_DEFAULTS 0xFE
|
|
|
|
static int
|
|
task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int cpumon_entitled)
|
|
{
|
|
uint64_t abstime = 0;
|
|
uint64_t limittime = 0;
|
|
|
|
lck_mtx_assert(&task->lock, LCK_MTX_ASSERT_OWNED);
|
|
|
|
/* By default, refill once per second */
|
|
if (interval == 0) {
|
|
interval = NSEC_PER_SEC;
|
|
}
|
|
|
|
if (percentage != 0) {
|
|
if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
|
|
boolean_t warn = FALSE;
|
|
|
|
/*
|
|
* A per-thread CPU limit on a task generates an exception
|
|
* (LEDGER_ACTION_EXCEPTION) if any one thread in the task
|
|
* exceeds the limit.
|
|
*/
|
|
|
|
if (percentage == PROC_POLICY_CPUMON_DISABLE) {
|
|
if (cpumon_entitled) {
|
|
/* 25095698 - task_disable_cpumon() should be reliable */
|
|
task_disable_cpumon(task);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This task wishes to disable the CPU usage monitor, but it's
|
|
* missing the required entitlement:
|
|
* com.apple.private.kernel.override-cpumon
|
|
*
|
|
* Instead, treat this as a request to reset its params
|
|
* back to the defaults.
|
|
*/
|
|
warn = TRUE;
|
|
percentage = PROC_POLICY_CPUMON_DEFAULTS;
|
|
}
|
|
|
|
if (percentage == PROC_POLICY_CPUMON_DEFAULTS) {
|
|
percentage = proc_max_cpumon_percentage;
|
|
interval = proc_max_cpumon_interval;
|
|
}
|
|
|
|
if (percentage > 100) {
|
|
percentage = 100;
|
|
}
|
|
|
|
/*
|
|
* Passing in an interval of -1 means either:
|
|
* - Leave the interval as-is, if there's already a per-thread
|
|
* limit configured
|
|
* - Use the system default.
|
|
*/
|
|
if (interval == -1ULL) {
|
|
if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
|
|
interval = task->rusage_cpu_perthr_interval;
|
|
} else {
|
|
interval = proc_max_cpumon_interval;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Enforce global caps on CPU usage monitor here if the process is not
|
|
* entitled to escape the global caps.
|
|
*/
|
|
if ((percentage > proc_max_cpumon_percentage) && (cpumon_entitled == 0)) {
|
|
warn = TRUE;
|
|
percentage = proc_max_cpumon_percentage;
|
|
}
|
|
|
|
if ((interval > proc_max_cpumon_interval) && (cpumon_entitled == 0)) {
|
|
warn = TRUE;
|
|
interval = proc_max_cpumon_interval;
|
|
}
|
|
|
|
if (warn) {
|
|
int pid = 0;
|
|
const char *procname = "unknown";
|
|
|
|
#ifdef MACH_BSD
|
|
pid = proc_selfpid();
|
|
if (current_task()->bsd_info != NULL) {
|
|
procname = proc_name_address(current_task()->bsd_info);
|
|
}
|
|
#endif
|
|
|
|
printf("process %s[%d] denied attempt to escape CPU monitor"
|
|
" (missing required entitlement).\n", procname, pid);
|
|
}
|
|
|
|
/* configure the limit values */
|
|
task->rusage_cpu_perthr_percentage = percentage;
|
|
task->rusage_cpu_perthr_interval = interval;
|
|
|
|
/* and enable the CPU monitor */
|
|
(void)task_enable_cpumon_locked(task);
|
|
} else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) {
|
|
/*
|
|
* Currently, a proc-wide CPU limit always blocks if the limit is
|
|
* exceeded (LEDGER_ACTION_BLOCK).
|
|
*/
|
|
task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PROC_LIMIT;
|
|
task->rusage_cpu_percentage = percentage;
|
|
task->rusage_cpu_interval = interval;
|
|
|
|
limittime = (interval * percentage) / 100;
|
|
nanoseconds_to_absolutetime(limittime, &abstime);
|
|
|
|
ledger_set_limit(task->ledger, task_ledgers.cpu_time, abstime, 0);
|
|
ledger_set_period(task->ledger, task_ledgers.cpu_time, interval);
|
|
ledger_set_action(task->ledger, task_ledgers.cpu_time, LEDGER_ACTION_BLOCK);
|
|
}
|
|
}
|
|
|
|
if (deadline != 0) {
|
|
assert(scope == TASK_RUSECPU_FLAGS_DEADLINE);
|
|
|
|
/* if already in use, cancel and wait for it to cleanout */
|
|
if (task->rusage_cpu_callt != NULL) {
|
|
task_unlock(task);
|
|
thread_call_cancel_wait(task->rusage_cpu_callt);
|
|
task_lock(task);
|
|
}
|
|
if (task->rusage_cpu_callt == NULL) {
|
|
task->rusage_cpu_callt = thread_call_allocate_with_priority(task_action_cpuusage, (thread_call_param_t)task, THREAD_CALL_PRIORITY_KERNEL);
|
|
}
|
|
/* setup callout */
|
|
if (task->rusage_cpu_callt != 0) {
|
|
uint64_t save_abstime = 0;
|
|
|
|
task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_DEADLINE;
|
|
task->rusage_cpu_deadline = deadline;
|
|
|
|
nanoseconds_to_absolutetime(deadline, &abstime);
|
|
save_abstime = abstime;
|
|
clock_absolutetime_interval_to_deadline(save_abstime, &abstime);
|
|
thread_call_enter_delayed(task->rusage_cpu_callt, abstime);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
task_clear_cpuusage(task_t task, int cpumon_entitled)
|
|
{
|
|
int retval = 0;
|
|
|
|
task_lock(task);
|
|
retval = task_clear_cpuusage_locked(task, cpumon_entitled);
|
|
task_unlock(task);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int
|
|
task_clear_cpuusage_locked(task_t task, int cpumon_entitled)
|
|
{
|
|
thread_call_t savecallt;
|
|
|
|
/* cancel percentage handling if set */
|
|
if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) {
|
|
task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_PROC_LIMIT;
|
|
ledger_set_limit(task->ledger, task_ledgers.cpu_time, LEDGER_LIMIT_INFINITY, 0);
|
|
task->rusage_cpu_percentage = 0;
|
|
task->rusage_cpu_interval = 0;
|
|
}
|
|
|
|
/*
|
|
* Disable the CPU usage monitor.
|
|
*/
|
|
if (cpumon_entitled) {
|
|
task_disable_cpumon(task);
|
|
}
|
|
|
|
/* cancel deadline handling if set */
|
|
if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) {
|
|
task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_DEADLINE;
|
|
if (task->rusage_cpu_callt != 0) {
|
|
savecallt = task->rusage_cpu_callt;
|
|
task->rusage_cpu_callt = NULL;
|
|
task->rusage_cpu_deadline = 0;
|
|
task_unlock(task);
|
|
thread_call_cancel_wait(savecallt);
|
|
thread_call_free(savecallt);
|
|
task_lock(task);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* called by ledger unit to enforce action due to resource usage criteria being met */
|
|
static void
|
|
task_action_cpuusage(thread_call_param_t param0, __unused thread_call_param_t param1)
|
|
{
|
|
task_t task = (task_t)param0;
|
|
(void)task_apply_resource_actions(task, TASK_POLICY_CPU_RESOURCE_USAGE);
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* Routines for taskwatch and pidbind
|
|
*/
|
|
|
|
#if CONFIG_TASKWATCH
|
|
|
|
LCK_MTX_DECLARE_ATTR(task_watch_mtx, &task_lck_grp, &task_lck_attr);
|
|
|
|
static void
|
|
task_watch_lock(void)
|
|
{
|
|
lck_mtx_lock(&task_watch_mtx);
|
|
}
|
|
|
|
static void
|
|
task_watch_unlock(void)
|
|
{
|
|
lck_mtx_unlock(&task_watch_mtx);
|
|
}
|
|
|
|
static void
|
|
add_taskwatch_locked(task_t task, task_watch_t * twp)
|
|
{
|
|
queue_enter(&task->task_watchers, twp, task_watch_t *, tw_links);
|
|
task->num_taskwatchers++;
|
|
}
|
|
|
|
static void
|
|
remove_taskwatch_locked(task_t task, task_watch_t * twp)
|
|
{
|
|
queue_remove(&task->task_watchers, twp, task_watch_t *, tw_links);
|
|
task->num_taskwatchers--;
|
|
}
|
|
|
|
|
|
int
|
|
proc_lf_pidbind(task_t curtask, uint64_t tid, task_t target_task, int bind)
|
|
{
|
|
thread_t target_thread = NULL;
|
|
int ret = 0, setbg = 0;
|
|
task_watch_t *twp = NULL;
|
|
task_t task = TASK_NULL;
|
|
|
|
target_thread = task_findtid(curtask, tid);
|
|
if (target_thread == NULL) {
|
|
return ESRCH;
|
|
}
|
|
/* holds thread reference */
|
|
|
|
if (bind != 0) {
|
|
/* task is still active ? */
|
|
task_lock(target_task);
|
|
if (target_task->active == 0) {
|
|
task_unlock(target_task);
|
|
ret = ESRCH;
|
|
goto out;
|
|
}
|
|
task_unlock(target_task);
|
|
|
|
twp = (task_watch_t *)kalloc(sizeof(task_watch_t));
|
|
if (twp == NULL) {
|
|
task_watch_unlock();
|
|
ret = ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
bzero(twp, sizeof(task_watch_t));
|
|
|
|
task_watch_lock();
|
|
|
|
if (target_thread->taskwatch != NULL) {
|
|
/* already bound to another task */
|
|
task_watch_unlock();
|
|
|
|
kfree(twp, sizeof(task_watch_t));
|
|
ret = EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
task_reference(target_task);
|
|
|
|
setbg = proc_get_effective_task_policy(target_task, TASK_POLICY_WATCHERS_BG);
|
|
|
|
twp->tw_task = target_task; /* holds the task reference */
|
|
twp->tw_thread = target_thread; /* holds the thread reference */
|
|
twp->tw_state = setbg;
|
|
twp->tw_importance = target_thread->importance;
|
|
|
|
add_taskwatch_locked(target_task, twp);
|
|
|
|
target_thread->taskwatch = twp;
|
|
|
|
task_watch_unlock();
|
|
|
|
if (setbg) {
|
|
set_thread_appbg(target_thread, setbg, INT_MIN);
|
|
}
|
|
|
|
/* retain the thread reference as it is in twp */
|
|
target_thread = NULL;
|
|
} else {
|
|
/* unbind */
|
|
task_watch_lock();
|
|
if ((twp = target_thread->taskwatch) != NULL) {
|
|
task = twp->tw_task;
|
|
target_thread->taskwatch = NULL;
|
|
remove_taskwatch_locked(task, twp);
|
|
|
|
task_watch_unlock();
|
|
|
|
task_deallocate(task); /* drop task ref in twp */
|
|
set_thread_appbg(target_thread, 0, twp->tw_importance);
|
|
thread_deallocate(target_thread); /* drop thread ref in twp */
|
|
kfree(twp, sizeof(task_watch_t));
|
|
} else {
|
|
task_watch_unlock();
|
|
ret = 0; /* return success if it not alredy bound */
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
thread_deallocate(target_thread); /* drop thread ref acquired in this routine */
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
set_thread_appbg(thread_t thread, int setbg, __unused int importance)
|
|
{
|
|
int enable = (setbg ? TASK_POLICY_ENABLE : TASK_POLICY_DISABLE);
|
|
|
|
proc_set_thread_policy(thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_PIDBIND_BG, enable);
|
|
}
|
|
|
|
static void
|
|
apply_appstate_watchers(task_t task)
|
|
{
|
|
int numwatchers = 0, i, j, setbg;
|
|
thread_watchlist_t * threadlist;
|
|
task_watch_t * twp;
|
|
|
|
retry:
|
|
/* if no watchers on the list return */
|
|
if ((numwatchers = task->num_taskwatchers) == 0) {
|
|
return;
|
|
}
|
|
|
|
threadlist = kheap_alloc(KHEAP_TEMP,
|
|
numwatchers * sizeof(thread_watchlist_t), Z_WAITOK | Z_ZERO);
|
|
if (threadlist == NULL) {
|
|
return;
|
|
}
|
|
|
|
task_watch_lock();
|
|
/*serialize application of app state changes */
|
|
|
|
if (task->watchapplying != 0) {
|
|
lck_mtx_sleep(&task_watch_mtx, LCK_SLEEP_DEFAULT, &task->watchapplying, THREAD_UNINT);
|
|
task_watch_unlock();
|
|
kheap_free(KHEAP_TEMP, threadlist, numwatchers * sizeof(thread_watchlist_t));
|
|
goto retry;
|
|
}
|
|
|
|
if (numwatchers != task->num_taskwatchers) {
|
|
task_watch_unlock();
|
|
kheap_free(KHEAP_TEMP, threadlist, numwatchers * sizeof(thread_watchlist_t));
|
|
goto retry;
|
|
}
|
|
|
|
setbg = proc_get_effective_task_policy(task, TASK_POLICY_WATCHERS_BG);
|
|
|
|
task->watchapplying = 1;
|
|
i = 0;
|
|
queue_iterate(&task->task_watchers, twp, task_watch_t *, tw_links) {
|
|
threadlist[i].thread = twp->tw_thread;
|
|
thread_reference(threadlist[i].thread);
|
|
if (setbg != 0) {
|
|
twp->tw_importance = twp->tw_thread->importance;
|
|
threadlist[i].importance = INT_MIN;
|
|
} else {
|
|
threadlist[i].importance = twp->tw_importance;
|
|
}
|
|
i++;
|
|
if (i > numwatchers) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
task_watch_unlock();
|
|
|
|
for (j = 0; j < i; j++) {
|
|
set_thread_appbg(threadlist[j].thread, setbg, threadlist[j].importance);
|
|
thread_deallocate(threadlist[j].thread);
|
|
}
|
|
kheap_free(KHEAP_TEMP, threadlist, numwatchers * sizeof(thread_watchlist_t));
|
|
|
|
|
|
task_watch_lock();
|
|
task->watchapplying = 0;
|
|
thread_wakeup_one(&task->watchapplying);
|
|
task_watch_unlock();
|
|
}
|
|
|
|
void
|
|
thead_remove_taskwatch(thread_t thread)
|
|
{
|
|
task_watch_t * twp;
|
|
int importance = 0;
|
|
|
|
task_watch_lock();
|
|
if ((twp = thread->taskwatch) != NULL) {
|
|
thread->taskwatch = NULL;
|
|
remove_taskwatch_locked(twp->tw_task, twp);
|
|
}
|
|
task_watch_unlock();
|
|
if (twp != NULL) {
|
|
thread_deallocate(twp->tw_thread);
|
|
task_deallocate(twp->tw_task);
|
|
importance = twp->tw_importance;
|
|
kfree(twp, sizeof(task_watch_t));
|
|
/* remove the thread and networkbg */
|
|
set_thread_appbg(thread, 0, importance);
|
|
}
|
|
}
|
|
|
|
void
|
|
task_removewatchers(task_t task)
|
|
{
|
|
queue_head_t queue;
|
|
task_watch_t *twp;
|
|
|
|
task_watch_lock();
|
|
queue_new_head(&task->task_watchers, &queue, task_watch_t *, tw_links);
|
|
queue_init(&task->task_watchers);
|
|
|
|
queue_iterate(&queue, twp, task_watch_t *, tw_links) {
|
|
/*
|
|
* Since the linkage is removed and thead state cleanup is already set up,
|
|
* remove the refernce from the thread.
|
|
*/
|
|
twp->tw_thread->taskwatch = NULL; /* removed linkage, clear thread holding ref */
|
|
}
|
|
|
|
task->num_taskwatchers = 0;
|
|
task_watch_unlock();
|
|
|
|
while (!queue_empty(&queue)) {
|
|
queue_remove_first(&queue, twp, task_watch_t *, tw_links);
|
|
/* remove thread and network bg */
|
|
set_thread_appbg(twp->tw_thread, 0, twp->tw_importance);
|
|
thread_deallocate(twp->tw_thread);
|
|
task_deallocate(twp->tw_task);
|
|
kfree(twp, sizeof(task_watch_t));
|
|
}
|
|
}
|
|
#endif /* CONFIG_TASKWATCH */
|
|
|
|
/*
|
|
* Routines for importance donation/inheritance/boosting
|
|
*/
|
|
|
|
static void
|
|
task_importance_update_live_donor(task_t target_task)
|
|
{
|
|
#if IMPORTANCE_INHERITANCE
|
|
|
|
ipc_importance_task_t task_imp;
|
|
|
|
task_imp = ipc_importance_for_task(target_task, FALSE);
|
|
if (IIT_NULL != task_imp) {
|
|
ipc_importance_task_update_live_donor(task_imp);
|
|
ipc_importance_task_release(task_imp);
|
|
}
|
|
#endif /* IMPORTANCE_INHERITANCE */
|
|
}
|
|
|
|
void
|
|
task_importance_mark_donor(task_t task, boolean_t donating)
|
|
{
|
|
#if IMPORTANCE_INHERITANCE
|
|
ipc_importance_task_t task_imp;
|
|
|
|
task_imp = ipc_importance_for_task(task, FALSE);
|
|
if (IIT_NULL != task_imp) {
|
|
ipc_importance_task_mark_donor(task_imp, donating);
|
|
ipc_importance_task_release(task_imp);
|
|
}
|
|
#endif /* IMPORTANCE_INHERITANCE */
|
|
}
|
|
|
|
void
|
|
task_importance_mark_live_donor(task_t task, boolean_t live_donating)
|
|
{
|
|
#if IMPORTANCE_INHERITANCE
|
|
ipc_importance_task_t task_imp;
|
|
|
|
task_imp = ipc_importance_for_task(task, FALSE);
|
|
if (IIT_NULL != task_imp) {
|
|
ipc_importance_task_mark_live_donor(task_imp, live_donating);
|
|
ipc_importance_task_release(task_imp);
|
|
}
|
|
#endif /* IMPORTANCE_INHERITANCE */
|
|
}
|
|
|
|
void
|
|
task_importance_mark_receiver(task_t task, boolean_t receiving)
|
|
{
|
|
#if IMPORTANCE_INHERITANCE
|
|
ipc_importance_task_t task_imp;
|
|
|
|
task_imp = ipc_importance_for_task(task, FALSE);
|
|
if (IIT_NULL != task_imp) {
|
|
ipc_importance_task_mark_receiver(task_imp, receiving);
|
|
ipc_importance_task_release(task_imp);
|
|
}
|
|
#endif /* IMPORTANCE_INHERITANCE */
|
|
}
|
|
|
|
void
|
|
task_importance_mark_denap_receiver(task_t task, boolean_t denap)
|
|
{
|
|
#if IMPORTANCE_INHERITANCE
|
|
ipc_importance_task_t task_imp;
|
|
|
|
task_imp = ipc_importance_for_task(task, FALSE);
|
|
if (IIT_NULL != task_imp) {
|
|
ipc_importance_task_mark_denap_receiver(task_imp, denap);
|
|
ipc_importance_task_release(task_imp);
|
|
}
|
|
#endif /* IMPORTANCE_INHERITANCE */
|
|
}
|
|
|
|
void
|
|
task_importance_reset(__imp_only task_t task)
|
|
{
|
|
#if IMPORTANCE_INHERITANCE
|
|
ipc_importance_task_t task_imp;
|
|
|
|
/* TODO: Lower importance downstream before disconnect */
|
|
task_imp = task->task_imp_base;
|
|
ipc_importance_reset(task_imp, FALSE);
|
|
task_importance_update_live_donor(task);
|
|
#endif /* IMPORTANCE_INHERITANCE */
|
|
}
|
|
|
|
void
|
|
task_importance_init_from_parent(__imp_only task_t new_task, __imp_only task_t parent_task)
|
|
{
|
|
#if IMPORTANCE_INHERITANCE
|
|
ipc_importance_task_t new_task_imp = IIT_NULL;
|
|
|
|
new_task->task_imp_base = NULL;
|
|
if (!parent_task) {
|
|
return;
|
|
}
|
|
|
|
if (task_is_marked_importance_donor(parent_task)) {
|
|
new_task_imp = ipc_importance_for_task(new_task, FALSE);
|
|
assert(IIT_NULL != new_task_imp);
|
|
ipc_importance_task_mark_donor(new_task_imp, TRUE);
|
|
}
|
|
if (task_is_marked_live_importance_donor(parent_task)) {
|
|
if (IIT_NULL == new_task_imp) {
|
|
new_task_imp = ipc_importance_for_task(new_task, FALSE);
|
|
}
|
|
assert(IIT_NULL != new_task_imp);
|
|
ipc_importance_task_mark_live_donor(new_task_imp, TRUE);
|
|
}
|
|
/* Do not inherit 'receiver' on fork, vfexec or true spawn */
|
|
if (task_is_exec_copy(new_task) &&
|
|
task_is_marked_importance_receiver(parent_task)) {
|
|
if (IIT_NULL == new_task_imp) {
|
|
new_task_imp = ipc_importance_for_task(new_task, FALSE);
|
|
}
|
|
assert(IIT_NULL != new_task_imp);
|
|
ipc_importance_task_mark_receiver(new_task_imp, TRUE);
|
|
}
|
|
if (task_is_marked_importance_denap_receiver(parent_task)) {
|
|
if (IIT_NULL == new_task_imp) {
|
|
new_task_imp = ipc_importance_for_task(new_task, FALSE);
|
|
}
|
|
assert(IIT_NULL != new_task_imp);
|
|
ipc_importance_task_mark_denap_receiver(new_task_imp, TRUE);
|
|
}
|
|
if (IIT_NULL != new_task_imp) {
|
|
assert(new_task->task_imp_base == new_task_imp);
|
|
ipc_importance_task_release(new_task_imp);
|
|
}
|
|
#endif /* IMPORTANCE_INHERITANCE */
|
|
}
|
|
|
|
#if IMPORTANCE_INHERITANCE
|
|
/*
|
|
* Sets the task boost bit to the provided value. Does NOT run the update function.
|
|
*
|
|
* Task lock must be held.
|
|
*/
|
|
static void
|
|
task_set_boost_locked(task_t task, boolean_t boost_active)
|
|
{
|
|
#if IMPORTANCE_TRACE
|
|
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_START),
|
|
proc_selfpid(), task_pid(task), trequested_0(task), trequested_1(task), 0);
|
|
#endif /* IMPORTANCE_TRACE */
|
|
|
|
task->requested_policy.trp_boosted = boost_active;
|
|
|
|
#if IMPORTANCE_TRACE
|
|
if (boost_active == TRUE) {
|
|
DTRACE_BOOST2(boost, task_t, task, int, task_pid(task));
|
|
} else {
|
|
DTRACE_BOOST2(unboost, task_t, task, int, task_pid(task));
|
|
}
|
|
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_END),
|
|
proc_selfpid(), task_pid(task),
|
|
trequested_0(task), trequested_1(task), 0);
|
|
#endif /* IMPORTANCE_TRACE */
|
|
}
|
|
|
|
/*
|
|
* Sets the task boost bit to the provided value and applies the update.
|
|
*
|
|
* Task lock must be held. Must call update complete after unlocking the task.
|
|
*/
|
|
void
|
|
task_update_boost_locked(task_t task, boolean_t boost_active, task_pend_token_t pend_token)
|
|
{
|
|
task_set_boost_locked(task, boost_active);
|
|
|
|
task_policy_update_locked(task, pend_token);
|
|
}
|
|
|
|
/*
|
|
* Check if this task should donate importance.
|
|
*
|
|
* May be called without taking the task lock. In that case, donor status can change
|
|
* so you must check only once for each donation event.
|
|
*/
|
|
boolean_t
|
|
task_is_importance_donor(task_t task)
|
|
{
|
|
if (task->task_imp_base == IIT_NULL) {
|
|
return FALSE;
|
|
}
|
|
return ipc_importance_task_is_donor(task->task_imp_base);
|
|
}
|
|
|
|
/*
|
|
* Query the status of the task's donor mark.
|
|
*/
|
|
boolean_t
|
|
task_is_marked_importance_donor(task_t task)
|
|
{
|
|
if (task->task_imp_base == IIT_NULL) {
|
|
return FALSE;
|
|
}
|
|
return ipc_importance_task_is_marked_donor(task->task_imp_base);
|
|
}
|
|
|
|
/*
|
|
* Query the status of the task's live donor and donor mark.
|
|
*/
|
|
boolean_t
|
|
task_is_marked_live_importance_donor(task_t task)
|
|
{
|
|
if (task->task_imp_base == IIT_NULL) {
|
|
return FALSE;
|
|
}
|
|
return ipc_importance_task_is_marked_live_donor(task->task_imp_base);
|
|
}
|
|
|
|
|
|
/*
|
|
* This routine may be called without holding task lock
|
|
* since the value of imp_receiver can never be unset.
|
|
*/
|
|
boolean_t
|
|
task_is_importance_receiver(task_t task)
|
|
{
|
|
if (task->task_imp_base == IIT_NULL) {
|
|
return FALSE;
|
|
}
|
|
return ipc_importance_task_is_marked_receiver(task->task_imp_base);
|
|
}
|
|
|
|
/*
|
|
* Query the task's receiver mark.
|
|
*/
|
|
boolean_t
|
|
task_is_marked_importance_receiver(task_t task)
|
|
{
|
|
if (task->task_imp_base == IIT_NULL) {
|
|
return FALSE;
|
|
}
|
|
return ipc_importance_task_is_marked_receiver(task->task_imp_base);
|
|
}
|
|
|
|
/*
|
|
* This routine may be called without holding task lock
|
|
* since the value of de-nap receiver can never be unset.
|
|
*/
|
|
boolean_t
|
|
task_is_importance_denap_receiver(task_t task)
|
|
{
|
|
if (task->task_imp_base == IIT_NULL) {
|
|
return FALSE;
|
|
}
|
|
return ipc_importance_task_is_denap_receiver(task->task_imp_base);
|
|
}
|
|
|
|
/*
|
|
* Query the task's de-nap receiver mark.
|
|
*/
|
|
boolean_t
|
|
task_is_marked_importance_denap_receiver(task_t task)
|
|
{
|
|
if (task->task_imp_base == IIT_NULL) {
|
|
return FALSE;
|
|
}
|
|
return ipc_importance_task_is_marked_denap_receiver(task->task_imp_base);
|
|
}
|
|
|
|
/*
|
|
* This routine may be called without holding task lock
|
|
* since the value of imp_receiver can never be unset.
|
|
*/
|
|
boolean_t
|
|
task_is_importance_receiver_type(task_t task)
|
|
{
|
|
if (task->task_imp_base == IIT_NULL) {
|
|
return FALSE;
|
|
}
|
|
return task_is_importance_receiver(task) ||
|
|
task_is_importance_denap_receiver(task);
|
|
}
|
|
|
|
/*
|
|
* External importance assertions are managed by the process in userspace
|
|
* Internal importance assertions are the responsibility of the kernel
|
|
* Assertions are changed from internal to external via task_importance_externalize_assertion
|
|
*/
|
|
|
|
int
|
|
task_importance_hold_internal_assertion(task_t target_task, uint32_t count)
|
|
{
|
|
ipc_importance_task_t task_imp;
|
|
kern_return_t ret;
|
|
|
|
/* may be first time, so allow for possible importance setup */
|
|
task_imp = ipc_importance_for_task(target_task, FALSE);
|
|
if (IIT_NULL == task_imp) {
|
|
return EOVERFLOW;
|
|
}
|
|
ret = ipc_importance_task_hold_internal_assertion(task_imp, count);
|
|
ipc_importance_task_release(task_imp);
|
|
|
|
return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
|
|
}
|
|
|
|
int
|
|
task_importance_hold_file_lock_assertion(task_t target_task, uint32_t count)
|
|
{
|
|
ipc_importance_task_t task_imp;
|
|
kern_return_t ret;
|
|
|
|
/* may be first time, so allow for possible importance setup */
|
|
task_imp = ipc_importance_for_task(target_task, FALSE);
|
|
if (IIT_NULL == task_imp) {
|
|
return EOVERFLOW;
|
|
}
|
|
ret = ipc_importance_task_hold_file_lock_assertion(task_imp, count);
|
|
ipc_importance_task_release(task_imp);
|
|
|
|
return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
|
|
}
|
|
|
|
int
|
|
task_importance_hold_legacy_external_assertion(task_t target_task, uint32_t count)
|
|
{
|
|
ipc_importance_task_t task_imp;
|
|
kern_return_t ret;
|
|
|
|
/* must already have set up an importance */
|
|
task_imp = target_task->task_imp_base;
|
|
if (IIT_NULL == task_imp) {
|
|
return EOVERFLOW;
|
|
}
|
|
ret = ipc_importance_task_hold_legacy_external_assertion(task_imp, count);
|
|
return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
|
|
}
|
|
|
|
int
|
|
task_importance_drop_file_lock_assertion(task_t target_task, uint32_t count)
|
|
{
|
|
ipc_importance_task_t task_imp;
|
|
kern_return_t ret;
|
|
|
|
/* must already have set up an importance */
|
|
task_imp = target_task->task_imp_base;
|
|
if (IIT_NULL == task_imp) {
|
|
return EOVERFLOW;
|
|
}
|
|
ret = ipc_importance_task_drop_file_lock_assertion(target_task->task_imp_base, count);
|
|
return (KERN_SUCCESS != ret) ? EOVERFLOW : 0;
|
|
}
|
|
|
|
int
|
|
task_importance_drop_legacy_external_assertion(task_t target_task, uint32_t count)
|
|
{
|
|
ipc_importance_task_t task_imp;
|
|
kern_return_t ret;
|
|
|
|
/* must already have set up an importance */
|
|
task_imp = target_task->task_imp_base;
|
|
if (IIT_NULL == task_imp) {
|
|
return EOVERFLOW;
|
|
}
|
|
ret = ipc_importance_task_drop_legacy_external_assertion(task_imp, count);
|
|
return (KERN_SUCCESS != ret) ? EOVERFLOW : 0;
|
|
}
|
|
|
|
static void
|
|
task_add_importance_watchport(task_t task, mach_port_t port, int *boostp)
|
|
{
|
|
int boost = 0;
|
|
|
|
__imptrace_only int released_pid = 0;
|
|
__imptrace_only int pid = task_pid(task);
|
|
|
|
ipc_importance_task_t release_imp_task = IIT_NULL;
|
|
|
|
if (IP_VALID(port) != 0) {
|
|
ipc_importance_task_t new_imp_task = ipc_importance_for_task(task, FALSE);
|
|
|
|
ip_lock(port);
|
|
|
|
/*
|
|
* The port must have been marked tempowner already.
|
|
* This also filters out ports whose receive rights
|
|
* are already enqueued in a message, as you can't
|
|
* change the right's destination once it's already
|
|
* on its way.
|
|
*/
|
|
if (port->ip_tempowner != 0) {
|
|
assert(port->ip_impdonation != 0);
|
|
|
|
boost = port->ip_impcount;
|
|
if (IIT_NULL != port->ip_imp_task) {
|
|
/*
|
|
* if this port is already bound to a task,
|
|
* release the task reference and drop any
|
|
* watchport-forwarded boosts
|
|
*/
|
|
release_imp_task = port->ip_imp_task;
|
|
port->ip_imp_task = IIT_NULL;
|
|
}
|
|
|
|
/* mark the port is watching another task (reference held in port->ip_imp_task) */
|
|
if (ipc_importance_task_is_marked_receiver(new_imp_task)) {
|
|
port->ip_imp_task = new_imp_task;
|
|
new_imp_task = IIT_NULL;
|
|
}
|
|
}
|
|
ip_unlock(port);
|
|
|
|
if (IIT_NULL != new_imp_task) {
|
|
ipc_importance_task_release(new_imp_task);
|
|
}
|
|
|
|
if (IIT_NULL != release_imp_task) {
|
|
if (boost > 0) {
|
|
ipc_importance_task_drop_internal_assertion(release_imp_task, boost);
|
|
}
|
|
|
|
// released_pid = task_pid(release_imp_task); /* TODO: Need ref-safe way to get pid */
|
|
ipc_importance_task_release(release_imp_task);
|
|
}
|
|
#if IMPORTANCE_TRACE
|
|
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_WATCHPORT, 0)) | DBG_FUNC_NONE,
|
|
proc_selfpid(), pid, boost, released_pid, 0);
|
|
#endif /* IMPORTANCE_TRACE */
|
|
}
|
|
|
|
*boostp = boost;
|
|
return;
|
|
}
|
|
|
|
#endif /* IMPORTANCE_INHERITANCE */
|
|
|
|
/*
|
|
* Routines for VM to query task importance
|
|
*/
|
|
|
|
|
|
/*
|
|
* Order to be considered while estimating importance
|
|
* for low memory notification and purging purgeable memory.
|
|
*/
|
|
#define TASK_IMPORTANCE_FOREGROUND 4
|
|
#define TASK_IMPORTANCE_NOTDARWINBG 1
|
|
|
|
|
|
/*
|
|
* (Un)Mark the task as a privileged listener for memory notifications.
|
|
* if marked, this task will be among the first to be notified amongst
|
|
* the bulk of all other tasks when the system enters a pressure level
|
|
* of interest to this task.
|
|
*/
|
|
int
|
|
task_low_mem_privileged_listener(task_t task, boolean_t new_value, boolean_t *old_value)
|
|
{
|
|
if (old_value != NULL) {
|
|
*old_value = (boolean_t)task->low_mem_privileged_listener;
|
|
} else {
|
|
task_lock(task);
|
|
task->low_mem_privileged_listener = (uint32_t)new_value;
|
|
task_unlock(task);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Checks if the task is already notified.
|
|
*
|
|
* Condition: task lock should be held while calling this function.
|
|
*/
|
|
boolean_t
|
|
task_has_been_notified(task_t task, int pressurelevel)
|
|
{
|
|
if (task == NULL) {
|
|
return FALSE;
|
|
}
|
|
|
|
if (pressurelevel == kVMPressureWarning) {
|
|
return task->low_mem_notified_warn ? TRUE : FALSE;
|
|
} else if (pressurelevel == kVMPressureCritical) {
|
|
return task->low_mem_notified_critical ? TRUE : FALSE;
|
|
} else {
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Checks if the task is used for purging.
|
|
*
|
|
* Condition: task lock should be held while calling this function.
|
|
*/
|
|
boolean_t
|
|
task_used_for_purging(task_t task, int pressurelevel)
|
|
{
|
|
if (task == NULL) {
|
|
return FALSE;
|
|
}
|
|
|
|
if (pressurelevel == kVMPressureWarning) {
|
|
return task->purged_memory_warn ? TRUE : FALSE;
|
|
} else if (pressurelevel == kVMPressureCritical) {
|
|
return task->purged_memory_critical ? TRUE : FALSE;
|
|
} else {
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Mark the task as notified with memory notification.
|
|
*
|
|
* Condition: task lock should be held while calling this function.
|
|
*/
|
|
void
|
|
task_mark_has_been_notified(task_t task, int pressurelevel)
|
|
{
|
|
if (task == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (pressurelevel == kVMPressureWarning) {
|
|
task->low_mem_notified_warn = 1;
|
|
} else if (pressurelevel == kVMPressureCritical) {
|
|
task->low_mem_notified_critical = 1;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Mark the task as purged.
|
|
*
|
|
* Condition: task lock should be held while calling this function.
|
|
*/
|
|
void
|
|
task_mark_used_for_purging(task_t task, int pressurelevel)
|
|
{
|
|
if (task == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (pressurelevel == kVMPressureWarning) {
|
|
task->purged_memory_warn = 1;
|
|
} else if (pressurelevel == kVMPressureCritical) {
|
|
task->purged_memory_critical = 1;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Mark the task eligible for low memory notification.
|
|
*
|
|
* Condition: task lock should be held while calling this function.
|
|
*/
|
|
void
|
|
task_clear_has_been_notified(task_t task, int pressurelevel)
|
|
{
|
|
if (task == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (pressurelevel == kVMPressureWarning) {
|
|
task->low_mem_notified_warn = 0;
|
|
} else if (pressurelevel == kVMPressureCritical) {
|
|
task->low_mem_notified_critical = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Mark the task eligible for purging its purgeable memory.
|
|
*
|
|
* Condition: task lock should be held while calling this function.
|
|
*/
|
|
void
|
|
task_clear_used_for_purging(task_t task)
|
|
{
|
|
if (task == NULL) {
|
|
return;
|
|
}
|
|
|
|
task->purged_memory_warn = 0;
|
|
task->purged_memory_critical = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Estimate task importance for purging its purgeable memory
|
|
* and low memory notification.
|
|
*
|
|
* Importance is calculated in the following order of criteria:
|
|
* -Task role : Background vs Foreground
|
|
* -Boost status: Not boosted vs Boosted
|
|
* -Darwin BG status.
|
|
*
|
|
* Returns: Estimated task importance. Less important task will have lower
|
|
* estimated importance.
|
|
*/
|
|
int
|
|
task_importance_estimate(task_t task)
|
|
{
|
|
int task_importance = 0;
|
|
|
|
if (task == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION) {
|
|
task_importance += TASK_IMPORTANCE_FOREGROUND;
|
|
}
|
|
|
|
if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG) == 0) {
|
|
task_importance += TASK_IMPORTANCE_NOTDARWINBG;
|
|
}
|
|
|
|
return task_importance;
|
|
}
|
|
|
|
boolean_t
|
|
task_has_assertions(task_t task)
|
|
{
|
|
return task->task_imp_base->iit_assertcnt? TRUE : FALSE;
|
|
}
|
|
|
|
|
|
kern_return_t
|
|
send_resource_violation(typeof(send_cpu_usage_violation) sendfunc,
|
|
task_t violator,
|
|
struct ledger_entry_info *linfo,
|
|
resource_notify_flags_t flags)
|
|
{
|
|
#ifndef MACH_BSD
|
|
return KERN_NOT_SUPPORTED;
|
|
#else
|
|
kern_return_t kr = KERN_SUCCESS;
|
|
proc_t proc = NULL;
|
|
posix_path_t proc_path = "";
|
|
proc_name_t procname = "<unknown>";
|
|
int pid = -1;
|
|
clock_sec_t secs;
|
|
clock_nsec_t nsecs;
|
|
mach_timespec_t timestamp;
|
|
thread_t curthread = current_thread();
|
|
ipc_port_t dstport = MACH_PORT_NULL;
|
|
|
|
if (!violator) {
|
|
kr = KERN_INVALID_ARGUMENT; goto finish;
|
|
}
|
|
|
|
/* extract violator information */
|
|
task_lock(violator);
|
|
if (!(proc = get_bsdtask_info(violator))) {
|
|
task_unlock(violator);
|
|
kr = KERN_INVALID_ARGUMENT; goto finish;
|
|
}
|
|
(void)mig_strncpy(procname, proc_best_name(proc), sizeof(procname));
|
|
pid = task_pid(violator);
|
|
if (flags & kRNFatalLimitFlag) {
|
|
kr = proc_pidpathinfo_internal(proc, 0, proc_path,
|
|
sizeof(proc_path), NULL);
|
|
}
|
|
task_unlock(violator);
|
|
if (kr) {
|
|
goto finish;
|
|
}
|
|
|
|
/* violation time ~ now */
|
|
clock_get_calendar_nanotime(&secs, &nsecs);
|
|
timestamp.tv_sec = (int32_t)secs;
|
|
timestamp.tv_nsec = (int32_t)nsecs;
|
|
/* 25567702 tracks widening mach_timespec_t */
|
|
|
|
/* send message */
|
|
kr = host_get_special_port(host_priv_self(), HOST_LOCAL_NODE,
|
|
HOST_RESOURCE_NOTIFY_PORT, &dstport);
|
|
if (kr) {
|
|
goto finish;
|
|
}
|
|
|
|
thread_set_honor_qlimit(curthread);
|
|
kr = sendfunc(dstport,
|
|
procname, pid, proc_path, timestamp,
|
|
linfo->lei_balance, linfo->lei_last_refill,
|
|
linfo->lei_limit, linfo->lei_refill_period,
|
|
flags);
|
|
thread_clear_honor_qlimit(curthread);
|
|
|
|
ipc_port_release_send(dstport);
|
|
|
|
finish:
|
|
return kr;
|
|
#endif /* MACH_BSD */
|
|
}
|
|
|
|
|
|
/*
|
|
* Resource violations trace four 64-bit integers. For K32, two additional
|
|
* codes are allocated, the first with the low nibble doubled. So if the K64
|
|
* code is 0x042, the K32 codes would be 0x044 and 0x45.
|
|
*/
|
|
#ifdef __LP64__
|
|
void
|
|
trace_resource_violation(uint16_t code,
|
|
struct ledger_entry_info *linfo)
|
|
{
|
|
KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, code),
|
|
linfo->lei_balance, linfo->lei_last_refill,
|
|
linfo->lei_limit, linfo->lei_refill_period);
|
|
}
|
|
#else /* K32 */
|
|
/* TODO: create/find a trace_two_LLs() for K32 systems */
|
|
#define MASK32 0xffffffff
|
|
void
|
|
trace_resource_violation(uint16_t code,
|
|
struct ledger_entry_info *linfo)
|
|
{
|
|
int8_t lownibble = (code & 0x3) * 2;
|
|
int16_t codeA = (code & 0xffc) | lownibble;
|
|
int16_t codeB = codeA + 1;
|
|
|
|
int32_t balance_high = (linfo->lei_balance >> 32) & MASK32;
|
|
int32_t balance_low = linfo->lei_balance & MASK32;
|
|
int32_t last_refill_high = (linfo->lei_last_refill >> 32) & MASK32;
|
|
int32_t last_refill_low = linfo->lei_last_refill & MASK32;
|
|
|
|
int32_t limit_high = (linfo->lei_limit >> 32) & MASK32;
|
|
int32_t limit_low = linfo->lei_limit & MASK32;
|
|
int32_t refill_period_high = (linfo->lei_refill_period >> 32) & MASK32;
|
|
int32_t refill_period_low = linfo->lei_refill_period & MASK32;
|
|
|
|
KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, codeA),
|
|
balance_high, balance_low,
|
|
last_refill_high, last_refill_low);
|
|
KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, codeB),
|
|
limit_high, limit_low,
|
|
refill_period_high, refill_period_low);
|
|
}
|
|
#endif /* K64/K32 */
|