darling-xnu/osfmk/kern/task_policy.c
2023-05-16 21:41:14 -07:00

3944 lines
110 KiB
C

/*
* Copyright (c) 2000-2020 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <kern/policy_internal.h>
#include <mach/task_policy.h>
#include <mach/mach_types.h>
#include <mach/task_server.h>
#include <kern/host.h> /* host_priv_self() */
#include <mach/host_priv.h> /* host_get_special_port() */
#include <mach/host_special_ports.h> /* RESOURCE_NOTIFY_PORT */
#include <kern/sched.h>
#include <kern/task.h>
#include <mach/thread_policy.h>
#include <sys/errno.h>
#include <sys/resource.h>
#include <machine/limits.h>
#include <kern/ledger.h>
#include <kern/thread_call.h>
#include <kern/sfi.h>
#include <kern/coalition.h>
#if CONFIG_TELEMETRY
#include <kern/telemetry.h>
#endif
#if !defined(XNU_TARGET_OS_OSX)
#include <kern/kalloc.h>
#include <sys/errno.h>
#endif /* !defined(XNU_TARGET_OS_OSX) */
#if IMPORTANCE_INHERITANCE
#include <ipc/ipc_importance.h>
#if IMPORTANCE_TRACE
#include <mach/machine/sdt.h>
#endif /* IMPORTANCE_TRACE */
#endif /* IMPORTANCE_INHERITACE */
#include <sys/kdebug.h>
/*
* Task Policy
*
* This subsystem manages task and thread IO priority and backgrounding,
* as well as importance inheritance, process suppression, task QoS, and apptype.
* These properties have a suprising number of complex interactions, so they are
* centralized here in one state machine to simplify the implementation of those interactions.
*
* Architecture:
* Threads and tasks have two policy fields: requested, effective.
* Requested represents the wishes of each interface that influences task policy.
* Effective represents the distillation of that policy into a set of behaviors.
*
* Each thread making a modification in the policy system passes a 'pending' struct,
* which tracks updates that will be applied after dropping the policy engine lock.
*
* Each interface that has an input into the task policy state machine controls a field in requested.
* If the interface has a getter, it returns what is in the field in requested, but that is
* not necessarily what is actually in effect.
*
* All kernel subsystems that behave differently based on task policy call into
* the proc_get_effective_(task|thread)_policy functions, which return the decision of the task policy state machine
* for that subsystem by querying only the 'effective' field.
*
* Policy change operations:
* Here are the steps to change a policy on a task or thread:
* 1) Lock task
* 2) Change requested field for the relevant policy
* 3) Run a task policy update, which recalculates effective based on requested,
* then takes a diff between the old and new versions of requested and calls the relevant
* other subsystems to apply these changes, and updates the pending field.
* 4) Unlock task
* 5) Run task policy update complete, which looks at the pending field to update
* subsystems which cannot be touched while holding the task lock.
*
* To add a new requested policy, add the field in the requested struct, the flavor in task.h,
* the setter and getter in proc_(set|get)_task_policy*,
* then set up the effects of that behavior in task_policy_update*. If the policy manifests
* itself as a distinct effective policy, add it to the effective struct and add it to the
* proc_get_effective_task_policy accessor.
*
* Most policies are set via proc_set_task_policy, but policies that don't fit that interface
* roll their own lock/set/update/unlock/complete code inside this file.
*
*
* Suppression policy
*
* These are a set of behaviors that can be requested for a task. They currently have specific
* implied actions when they're enabled, but they may be made customizable in the future.
*
* When the affected task is boosted, we temporarily disable the suppression behaviors
* so that the affected process has a chance to run so it can call the API to permanently
* disable the suppression behaviors.
*
* Locking
*
* Changing task policy on a task takes the task lock.
* Changing task policy on a thread takes the thread mutex.
* Task policy changes that affect threads will take each thread's mutex to update it if necessary.
*
* Querying the effective policy does not take a lock, because callers
* may run in interrupt context or other place where locks are not OK.
*
* This means that any notification of state change needs to be externally synchronized.
* We do this by idempotent callouts after the state has changed to ask
* other subsystems to update their view of the world.
*
* TODO: Move all cpu/wakes/io monitor code into a separate file
* TODO: Move all importance code over to importance subsystem
* TODO: Move all taskwatch code into a separate file
* TODO: Move all VM importance code into a separate file
*/
/* Task policy related helper functions */
static void proc_set_task_policy_locked(task_t task, int category, int flavor, int value, int value2);
static void task_policy_update_locked(task_t task, task_pend_token_t pend_token);
static void task_policy_update_internal_locked(task_t task, bool in_create, task_pend_token_t pend_token);
/* For attributes that have two scalars as input/output */
static void proc_set_task_policy2(task_t task, int category, int flavor, int value1, int value2);
static void proc_get_task_policy2(task_t task, int category, int flavor, int *value1, int *value2);
static boolean_t task_policy_update_coalition_focal_tasks(task_t task, int prev_role, int next_role, task_pend_token_t pend_token);
static uint64_t task_requested_bitfield(task_t task);
static uint64_t task_effective_bitfield(task_t task);
/* Convenience functions for munging a policy bitfield into a tracepoint */
static uintptr_t trequested_0(task_t task);
static uintptr_t trequested_1(task_t task);
static uintptr_t teffective_0(task_t task);
static uintptr_t teffective_1(task_t task);
/* CPU limits helper functions */
static int task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int entitled);
static int task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope);
static int task_enable_cpumon_locked(task_t task);
static int task_disable_cpumon(task_t task);
static int task_clear_cpuusage_locked(task_t task, int cpumon_entitled);
static int task_apply_resource_actions(task_t task, int type);
static void task_action_cpuusage(thread_call_param_t param0, thread_call_param_t param1);
#ifdef MACH_BSD
typedef struct proc * proc_t;
int proc_pid(struct proc *proc);
extern int proc_selfpid(void);
extern char * proc_name_address(void *p);
extern char * proc_best_name(proc_t proc);
extern int proc_pidpathinfo_internal(proc_t p, uint64_t arg,
char *buffer, uint32_t buffersize,
int32_t *retval);
#endif /* MACH_BSD */
#if CONFIG_TASKWATCH
/* Taskwatch related helper functions */
static void set_thread_appbg(thread_t thread, int setbg, int importance);
static void add_taskwatch_locked(task_t task, task_watch_t * twp);
static void remove_taskwatch_locked(task_t task, task_watch_t * twp);
static void task_watch_lock(void);
static void task_watch_unlock(void);
static void apply_appstate_watchers(task_t task);
typedef struct task_watcher {
queue_chain_t tw_links; /* queueing of threads */
task_t tw_task; /* task that is being watched */
thread_t tw_thread; /* thread that is watching the watch_task */
int tw_state; /* the current app state of the thread */
int tw_importance; /* importance prior to backgrounding */
} task_watch_t;
typedef struct thread_watchlist {
thread_t thread; /* thread being worked on for taskwatch action */
int importance; /* importance to be restored if thread is being made active */
} thread_watchlist_t;
#endif /* CONFIG_TASKWATCH */
extern int memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap);
/* Importance Inheritance related helper functions */
#if IMPORTANCE_INHERITANCE
static void task_importance_mark_live_donor(task_t task, boolean_t donating);
static void task_importance_mark_receiver(task_t task, boolean_t receiving);
static void task_importance_mark_denap_receiver(task_t task, boolean_t denap);
static boolean_t task_is_marked_live_importance_donor(task_t task);
static boolean_t task_is_importance_receiver(task_t task);
static boolean_t task_is_importance_denap_receiver(task_t task);
static int task_importance_hold_internal_assertion(task_t target_task, uint32_t count);
static void task_add_importance_watchport(task_t task, mach_port_t port, int *boostp);
static void task_importance_update_live_donor(task_t target_task);
static void task_set_boost_locked(task_t task, boolean_t boost_active);
#endif /* IMPORTANCE_INHERITANCE */
#if IMPORTANCE_TRACE
#define __imptrace_only
#else /* IMPORTANCE_TRACE */
#define __imptrace_only __unused
#endif /* !IMPORTANCE_TRACE */
#if IMPORTANCE_INHERITANCE
#define __imp_only
#else
#define __imp_only __unused
#endif
/*
* Default parameters for certain policies
*/
int proc_standard_daemon_tier = THROTTLE_LEVEL_TIER1;
int proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER1;
int proc_tal_disk_tier = THROTTLE_LEVEL_TIER1;
int proc_graphics_timer_qos = (LATENCY_QOS_TIER_0 & 0xFF);
const int proc_default_bg_iotier = THROTTLE_LEVEL_TIER2;
/* Latency/throughput QoS fields remain zeroed, i.e. TIER_UNSPECIFIED at creation */
const struct task_requested_policy default_task_requested_policy = {
.trp_bg_iotier = proc_default_bg_iotier
};
const struct task_effective_policy default_task_effective_policy = {};
/*
* Default parameters for CPU usage monitor.
*
* Default setting is 50% over 3 minutes.
*/
#define DEFAULT_CPUMON_PERCENTAGE 50
#define DEFAULT_CPUMON_INTERVAL (3 * 60)
uint8_t proc_max_cpumon_percentage;
uint64_t proc_max_cpumon_interval;
kern_return_t
qos_latency_policy_validate(task_latency_qos_t ltier)
{
if ((ltier != LATENCY_QOS_TIER_UNSPECIFIED) &&
((ltier > LATENCY_QOS_TIER_5) || (ltier < LATENCY_QOS_TIER_0))) {
return KERN_INVALID_ARGUMENT;
}
return KERN_SUCCESS;
}
kern_return_t
qos_throughput_policy_validate(task_throughput_qos_t ttier)
{
if ((ttier != THROUGHPUT_QOS_TIER_UNSPECIFIED) &&
((ttier > THROUGHPUT_QOS_TIER_5) || (ttier < THROUGHPUT_QOS_TIER_0))) {
return KERN_INVALID_ARGUMENT;
}
return KERN_SUCCESS;
}
static kern_return_t
task_qos_policy_validate(task_qos_policy_t qosinfo, mach_msg_type_number_t count)
{
if (count < TASK_QOS_POLICY_COUNT) {
return KERN_INVALID_ARGUMENT;
}
task_latency_qos_t ltier = qosinfo->task_latency_qos_tier;
task_throughput_qos_t ttier = qosinfo->task_throughput_qos_tier;
kern_return_t kr = qos_latency_policy_validate(ltier);
if (kr != KERN_SUCCESS) {
return kr;
}
kr = qos_throughput_policy_validate(ttier);
return kr;
}
uint32_t
qos_extract(uint32_t qv)
{
return qv & 0xFF;
}
uint32_t
qos_latency_policy_package(uint32_t qv)
{
return (qv == LATENCY_QOS_TIER_UNSPECIFIED) ? LATENCY_QOS_TIER_UNSPECIFIED : ((0xFF << 16) | qv);
}
uint32_t
qos_throughput_policy_package(uint32_t qv)
{
return (qv == THROUGHPUT_QOS_TIER_UNSPECIFIED) ? THROUGHPUT_QOS_TIER_UNSPECIFIED : ((0xFE << 16) | qv);
}
#define TASK_POLICY_SUPPRESSION_DISABLE 0x1
#define TASK_POLICY_SUPPRESSION_IOTIER2 0x2
#define TASK_POLICY_SUPPRESSION_NONDONOR 0x4
/* TEMPORARY boot-arg controlling task_policy suppression (App Nap) */
static boolean_t task_policy_suppression_flags = TASK_POLICY_SUPPRESSION_IOTIER2 |
TASK_POLICY_SUPPRESSION_NONDONOR;
kern_return_t
task_policy_set(
task_t task,
task_policy_flavor_t flavor,
task_policy_t policy_info,
mach_msg_type_number_t count)
{
kern_return_t result = KERN_SUCCESS;
if (task == TASK_NULL || task == kernel_task) {
return KERN_INVALID_ARGUMENT;
}
switch (flavor) {
case TASK_CATEGORY_POLICY: {
task_category_policy_t info = (task_category_policy_t)policy_info;
if (count < TASK_CATEGORY_POLICY_COUNT) {
return KERN_INVALID_ARGUMENT;
}
#if !defined(XNU_TARGET_OS_OSX)
/* On embedded, you can't modify your own role. */
if (current_task() == task) {
return KERN_INVALID_ARGUMENT;
}
#endif
switch (info->role) {
case TASK_FOREGROUND_APPLICATION:
case TASK_BACKGROUND_APPLICATION:
case TASK_DEFAULT_APPLICATION:
proc_set_task_policy(task,
TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
info->role);
break;
case TASK_CONTROL_APPLICATION:
if (task != current_task() || task->sec_token.val[0] != 0) {
result = KERN_INVALID_ARGUMENT;
} else {
proc_set_task_policy(task,
TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
info->role);
}
break;
case TASK_GRAPHICS_SERVER:
/* TODO: Restrict this role to FCFS <rdar://problem/12552788> */
if (task != current_task() || task->sec_token.val[0] != 0) {
result = KERN_INVALID_ARGUMENT;
} else {
proc_set_task_policy(task,
TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
info->role);
}
break;
default:
result = KERN_INVALID_ARGUMENT;
break;
} /* switch (info->role) */
break;
}
/* Desired energy-efficiency/performance "quality-of-service" */
case TASK_BASE_QOS_POLICY:
case TASK_OVERRIDE_QOS_POLICY:
{
task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
kern_return_t kr = task_qos_policy_validate(qosinfo, count);
if (kr != KERN_SUCCESS) {
return kr;
}
uint32_t lqos = qos_extract(qosinfo->task_latency_qos_tier);
uint32_t tqos = qos_extract(qosinfo->task_throughput_qos_tier);
proc_set_task_policy2(task, TASK_POLICY_ATTRIBUTE,
flavor == TASK_BASE_QOS_POLICY ? TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS : TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS,
lqos, tqos);
}
break;
case TASK_BASE_LATENCY_QOS_POLICY:
{
task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
kern_return_t kr = task_qos_policy_validate(qosinfo, count);
if (kr != KERN_SUCCESS) {
return kr;
}
uint32_t lqos = qos_extract(qosinfo->task_latency_qos_tier);
proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_BASE_LATENCY_QOS_POLICY, lqos);
}
break;
case TASK_BASE_THROUGHPUT_QOS_POLICY:
{
task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
kern_return_t kr = task_qos_policy_validate(qosinfo, count);
if (kr != KERN_SUCCESS) {
return kr;
}
uint32_t tqos = qos_extract(qosinfo->task_throughput_qos_tier);
proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_BASE_THROUGHPUT_QOS_POLICY, tqos);
}
break;
case TASK_SUPPRESSION_POLICY:
{
#if !defined(XNU_TARGET_OS_OSX)
/*
* Suppression policy is not enabled for embedded
* because apps aren't marked as denap receivers
*/
result = KERN_INVALID_ARGUMENT;
break;
#else /* !defined(XNU_TARGET_OS_OSX) */
task_suppression_policy_t info = (task_suppression_policy_t)policy_info;
if (count < TASK_SUPPRESSION_POLICY_COUNT) {
return KERN_INVALID_ARGUMENT;
}
struct task_qos_policy qosinfo;
qosinfo.task_latency_qos_tier = info->timer_throttle;
qosinfo.task_throughput_qos_tier = info->throughput_qos;
kern_return_t kr = task_qos_policy_validate(&qosinfo, TASK_QOS_POLICY_COUNT);
if (kr != KERN_SUCCESS) {
return kr;
}
/* TEMPORARY disablement of task suppression */
if (info->active &&
(task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_DISABLE)) {
return KERN_SUCCESS;
}
struct task_pend_token pend_token = {};
task_lock(task);
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
(IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_START,
proc_selfpid(), task_pid(task), trequested_0(task),
trequested_1(task), 0);
task->requested_policy.trp_sup_active = (info->active) ? 1 : 0;
task->requested_policy.trp_sup_lowpri_cpu = (info->lowpri_cpu) ? 1 : 0;
task->requested_policy.trp_sup_timer = qos_extract(info->timer_throttle);
task->requested_policy.trp_sup_disk = (info->disk_throttle) ? 1 : 0;
task->requested_policy.trp_sup_throughput = qos_extract(info->throughput_qos);
task->requested_policy.trp_sup_cpu = (info->suppressed_cpu) ? 1 : 0;
task->requested_policy.trp_sup_bg_sockets = (info->background_sockets) ? 1 : 0;
task_policy_update_locked(task, &pend_token);
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
(IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_END,
proc_selfpid(), task_pid(task), trequested_0(task),
trequested_1(task), 0);
task_unlock(task);
task_policy_update_complete_unlocked(task, &pend_token);
break;
#endif /* !defined(XNU_TARGET_OS_OSX) */
}
default:
result = KERN_INVALID_ARGUMENT;
break;
}
return result;
}
/* Sets BSD 'nice' value on the task */
kern_return_t
task_importance(
task_t task,
integer_t importance)
{
if (task == TASK_NULL || task == kernel_task) {
return KERN_INVALID_ARGUMENT;
}
task_lock(task);
if (!task->active) {
task_unlock(task);
return KERN_TERMINATED;
}
if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) >= TASK_CONTROL_APPLICATION) {
task_unlock(task);
return KERN_INVALID_ARGUMENT;
}
task->importance = importance;
struct task_pend_token pend_token = {};
task_policy_update_locked(task, &pend_token);
task_unlock(task);
task_policy_update_complete_unlocked(task, &pend_token);
return KERN_SUCCESS;
}
kern_return_t
task_policy_get(
task_t task,
task_policy_flavor_t flavor,
task_policy_t policy_info,
mach_msg_type_number_t *count,
boolean_t *get_default)
{
if (task == TASK_NULL || task == kernel_task) {
return KERN_INVALID_ARGUMENT;
}
switch (flavor) {
case TASK_CATEGORY_POLICY:
{
task_category_policy_t info = (task_category_policy_t)policy_info;
if (*count < TASK_CATEGORY_POLICY_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (*get_default) {
info->role = TASK_UNSPECIFIED;
} else {
info->role = proc_get_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE);
}
break;
}
case TASK_BASE_QOS_POLICY: /* FALLTHRU */
case TASK_OVERRIDE_QOS_POLICY:
{
task_qos_policy_t info = (task_qos_policy_t)policy_info;
if (*count < TASK_QOS_POLICY_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (*get_default) {
info->task_latency_qos_tier = LATENCY_QOS_TIER_UNSPECIFIED;
info->task_throughput_qos_tier = THROUGHPUT_QOS_TIER_UNSPECIFIED;
} else if (flavor == TASK_BASE_QOS_POLICY) {
int value1, value2;
proc_get_task_policy2(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS, &value1, &value2);
info->task_latency_qos_tier = qos_latency_policy_package(value1);
info->task_throughput_qos_tier = qos_throughput_policy_package(value2);
} else if (flavor == TASK_OVERRIDE_QOS_POLICY) {
int value1, value2;
proc_get_task_policy2(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS, &value1, &value2);
info->task_latency_qos_tier = qos_latency_policy_package(value1);
info->task_throughput_qos_tier = qos_throughput_policy_package(value2);
}
break;
}
case TASK_POLICY_STATE:
{
task_policy_state_t info = (task_policy_state_t)policy_info;
if (*count < TASK_POLICY_STATE_COUNT) {
return KERN_INVALID_ARGUMENT;
}
/* Only root can get this info */
if (current_task()->sec_token.val[0] != 0) {
return KERN_PROTECTION_FAILURE;
}
if (*get_default) {
info->requested = 0;
info->effective = 0;
info->pending = 0;
info->imp_assertcnt = 0;
info->imp_externcnt = 0;
info->flags = 0;
info->imp_transitions = 0;
} else {
task_lock(task);
info->requested = task_requested_bitfield(task);
info->effective = task_effective_bitfield(task);
info->pending = 0;
info->tps_requested_policy = *(uint64_t*)(&task->requested_policy);
info->tps_effective_policy = *(uint64_t*)(&task->effective_policy);
info->flags = 0;
if (task->task_imp_base != NULL) {
info->imp_assertcnt = task->task_imp_base->iit_assertcnt;
info->imp_externcnt = IIT_EXTERN(task->task_imp_base);
info->flags |= (task_is_marked_importance_receiver(task) ? TASK_IMP_RECEIVER : 0);
info->flags |= (task_is_marked_importance_denap_receiver(task) ? TASK_DENAP_RECEIVER : 0);
info->flags |= (task_is_marked_importance_donor(task) ? TASK_IMP_DONOR : 0);
info->flags |= (task_is_marked_live_importance_donor(task) ? TASK_IMP_LIVE_DONOR : 0);
info->flags |= (get_task_pidsuspended(task) ? TASK_IS_PIDSUSPENDED : 0);
info->imp_transitions = task->task_imp_base->iit_transitions;
} else {
info->imp_assertcnt = 0;
info->imp_externcnt = 0;
info->imp_transitions = 0;
}
task_unlock(task);
}
break;
}
case TASK_SUPPRESSION_POLICY:
{
task_suppression_policy_t info = (task_suppression_policy_t)policy_info;
if (*count < TASK_SUPPRESSION_POLICY_COUNT) {
return KERN_INVALID_ARGUMENT;
}
task_lock(task);
if (*get_default) {
info->active = 0;
info->lowpri_cpu = 0;
info->timer_throttle = LATENCY_QOS_TIER_UNSPECIFIED;
info->disk_throttle = 0;
info->cpu_limit = 0;
info->suspend = 0;
info->throughput_qos = 0;
info->suppressed_cpu = 0;
} else {
info->active = task->requested_policy.trp_sup_active;
info->lowpri_cpu = task->requested_policy.trp_sup_lowpri_cpu;
info->timer_throttle = qos_latency_policy_package(task->requested_policy.trp_sup_timer);
info->disk_throttle = task->requested_policy.trp_sup_disk;
info->cpu_limit = 0;
info->suspend = 0;
info->throughput_qos = qos_throughput_policy_package(task->requested_policy.trp_sup_throughput);
info->suppressed_cpu = task->requested_policy.trp_sup_cpu;
info->background_sockets = task->requested_policy.trp_sup_bg_sockets;
}
task_unlock(task);
break;
}
default:
return KERN_INVALID_ARGUMENT;
}
return KERN_SUCCESS;
}
/*
* Called at task creation
* We calculate the correct effective but don't apply it to anything yet.
* The threads, etc will inherit from the task as they get created.
*/
void
task_policy_create(task_t task, task_t parent_task)
{
task->requested_policy.trp_apptype = parent_task->requested_policy.trp_apptype;
task->requested_policy.trp_int_darwinbg = parent_task->requested_policy.trp_int_darwinbg;
task->requested_policy.trp_ext_darwinbg = parent_task->requested_policy.trp_ext_darwinbg;
task->requested_policy.trp_int_iotier = parent_task->requested_policy.trp_int_iotier;
task->requested_policy.trp_ext_iotier = parent_task->requested_policy.trp_ext_iotier;
task->requested_policy.trp_int_iopassive = parent_task->requested_policy.trp_int_iopassive;
task->requested_policy.trp_ext_iopassive = parent_task->requested_policy.trp_ext_iopassive;
task->requested_policy.trp_bg_iotier = parent_task->requested_policy.trp_bg_iotier;
task->requested_policy.trp_terminated = parent_task->requested_policy.trp_terminated;
task->requested_policy.trp_qos_clamp = parent_task->requested_policy.trp_qos_clamp;
if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE && !task_is_exec_copy(task)) {
/* Do not update the apptype for exec copy task */
if (parent_task->requested_policy.trp_boosted) {
task->requested_policy.trp_apptype = TASK_APPTYPE_DAEMON_INTERACTIVE;
task_importance_mark_donor(task, TRUE);
} else {
task->requested_policy.trp_apptype = TASK_APPTYPE_DAEMON_BACKGROUND;
task_importance_mark_receiver(task, FALSE);
}
}
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
(IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_START,
task_pid(task), teffective_0(task),
teffective_1(task), task->priority, 0);
task_policy_update_internal_locked(task, true, NULL);
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
(IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_END,
task_pid(task), teffective_0(task),
teffective_1(task), task->priority, 0);
task_importance_update_live_donor(task);
}
static void
task_policy_update_locked(task_t task, task_pend_token_t pend_token)
{
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
(IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_TASK) | DBG_FUNC_START),
task_pid(task), teffective_0(task),
teffective_1(task), task->priority, 0);
task_policy_update_internal_locked(task, false, pend_token);
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
(IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_TASK)) | DBG_FUNC_END,
task_pid(task), teffective_0(task),
teffective_1(task), task->priority, 0);
}
/*
* One state update function TO RULE THEM ALL
*
* This function updates the task or thread effective policy fields
* and pushes the results to the relevant subsystems.
*
* Must call update_complete after unlocking the task,
* as some subsystems cannot be updated while holding the task lock.
*
* Called with task locked, not thread
*/
static void
task_policy_update_internal_locked(task_t task, bool in_create, task_pend_token_t pend_token)
{
/*
* Step 1:
* Gather requested policy
*/
struct task_requested_policy requested = task->requested_policy;
/*
* Step 2:
* Calculate new effective policies from requested policy and task state
* Rules:
* Don't change requested, it won't take effect
*/
struct task_effective_policy next = {};
/* Update task role */
next.tep_role = requested.trp_role;
/* Set task qos clamp and ceiling */
next.tep_qos_clamp = requested.trp_qos_clamp;
if (requested.trp_apptype == TASK_APPTYPE_APP_DEFAULT) {
switch (next.tep_role) {
case TASK_FOREGROUND_APPLICATION:
/* Foreground apps get urgent scheduler priority */
next.tep_qos_ui_is_urgent = 1;
next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
break;
case TASK_BACKGROUND_APPLICATION:
/* This is really 'non-focal but on-screen' */
next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
break;
case TASK_DEFAULT_APPLICATION:
/* This is 'may render UI but we don't know if it's focal/nonfocal' */
next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
break;
case TASK_NONUI_APPLICATION:
/* i.e. 'off-screen' */
next.tep_qos_ceiling = THREAD_QOS_LEGACY;
break;
case TASK_CONTROL_APPLICATION:
case TASK_GRAPHICS_SERVER:
next.tep_qos_ui_is_urgent = 1;
next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
break;
case TASK_THROTTLE_APPLICATION:
/* i.e. 'TAL launch' */
next.tep_qos_ceiling = THREAD_QOS_UTILITY;
break;
case TASK_DARWINBG_APPLICATION:
/* i.e. 'DARWIN_BG throttled background application' */
next.tep_qos_ceiling = THREAD_QOS_BACKGROUND;
break;
case TASK_UNSPECIFIED:
default:
/* Apps that don't have an application role get
* USER_INTERACTIVE and USER_INITIATED squashed to LEGACY */
next.tep_qos_ceiling = THREAD_QOS_LEGACY;
break;
}
} else {
/* Daemons and dext get USER_INTERACTIVE squashed to USER_INITIATED */
next.tep_qos_ceiling = THREAD_QOS_USER_INITIATED;
}
/* Calculate DARWIN_BG */
bool wants_darwinbg = false;
bool wants_all_sockets_bg = false; /* Do I want my existing sockets to be bg */
bool wants_watchersbg = false; /* Do I want my pidbound threads to be bg */
bool adaptive_bg_only = false; /* This task is BG only because it's adaptive unboosted */
/* Adaptive daemons are DARWIN_BG unless boosted, and don't get network throttled. */
if (requested.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE &&
requested.trp_boosted == 0) {
wants_darwinbg = true;
adaptive_bg_only = true;
}
/*
* If DARWIN_BG has been requested at either level, it's engaged.
* Only true DARWIN_BG changes cause watchers to transition.
*
* Backgrounding due to apptype does.
*/
if (requested.trp_int_darwinbg || requested.trp_ext_darwinbg ||
next.tep_role == TASK_DARWINBG_APPLICATION) {
wants_watchersbg = wants_all_sockets_bg = wants_darwinbg = true;
adaptive_bg_only = false;
}
/* Application launching in special Transparent App Lifecycle throttle mode */
if (requested.trp_apptype == TASK_APPTYPE_APP_DEFAULT &&
requested.trp_role == TASK_THROTTLE_APPLICATION) {
next.tep_tal_engaged = 1;
}
/* Background daemons are always DARWIN_BG, no exceptions, and don't get network throttled. */
if (requested.trp_apptype == TASK_APPTYPE_DAEMON_BACKGROUND) {
wants_darwinbg = true;
adaptive_bg_only = false;
}
if (next.tep_qos_clamp == THREAD_QOS_BACKGROUND ||
next.tep_qos_clamp == THREAD_QOS_MAINTENANCE) {
wants_darwinbg = true;
adaptive_bg_only = false;
}
/* Calculate side effects of DARWIN_BG */
if (wants_darwinbg) {
next.tep_darwinbg = 1;
/* darwinbg tasks always create bg sockets, but we don't always loop over all sockets */
next.tep_new_sockets_bg = 1;
next.tep_lowpri_cpu = 1;
}
if (wants_all_sockets_bg) {
next.tep_all_sockets_bg = 1;
}
if (wants_watchersbg) {
next.tep_watchers_bg = 1;
}
next.tep_adaptive_bg = adaptive_bg_only;
/* Calculate low CPU priority */
boolean_t wants_lowpri_cpu = false;
if (wants_darwinbg) {
wants_lowpri_cpu = true;
}
if (next.tep_tal_engaged) {
wants_lowpri_cpu = true;
}
if (requested.trp_sup_lowpri_cpu && requested.trp_boosted == 0) {
wants_lowpri_cpu = true;
}
if (wants_lowpri_cpu) {
next.tep_lowpri_cpu = 1;
}
/* Calculate IO policy */
/* Update BG IO policy (so we can see if it has changed) */
next.tep_bg_iotier = requested.trp_bg_iotier;
int iopol = THROTTLE_LEVEL_TIER0;
if (wants_darwinbg) {
iopol = MAX(iopol, requested.trp_bg_iotier);
}
if (requested.trp_apptype == TASK_APPTYPE_DAEMON_STANDARD) {
iopol = MAX(iopol, proc_standard_daemon_tier);
}
if (requested.trp_sup_disk && requested.trp_boosted == 0) {
iopol = MAX(iopol, proc_suppressed_disk_tier);
}
if (next.tep_tal_engaged) {
iopol = MAX(iopol, proc_tal_disk_tier);
}
if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
iopol = MAX(iopol, thread_qos_policy_params.qos_iotier[next.tep_qos_clamp]);
}
iopol = MAX(iopol, requested.trp_int_iotier);
iopol = MAX(iopol, requested.trp_ext_iotier);
next.tep_io_tier = iopol;
/* Calculate Passive IO policy */
if (requested.trp_ext_iopassive || requested.trp_int_iopassive) {
next.tep_io_passive = 1;
}
/* Calculate suppression-active flag */
boolean_t appnap_transition = false;
if (requested.trp_sup_active && requested.trp_boosted == 0) {
next.tep_sup_active = 1;
}
if (task->effective_policy.tep_sup_active != next.tep_sup_active) {
appnap_transition = true;
}
/* Calculate timer QOS */
int latency_qos = requested.trp_base_latency_qos;
if (requested.trp_sup_timer && requested.trp_boosted == 0) {
latency_qos = requested.trp_sup_timer;
}
if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
latency_qos = MAX(latency_qos, (int)thread_qos_policy_params.qos_latency_qos[next.tep_qos_clamp]);
}
if (requested.trp_over_latency_qos != 0) {
latency_qos = requested.trp_over_latency_qos;
}
/* Treat the windowserver special */
if (requested.trp_role == TASK_GRAPHICS_SERVER) {
latency_qos = proc_graphics_timer_qos;
}
next.tep_latency_qos = latency_qos;
/* Calculate throughput QOS */
int through_qos = requested.trp_base_through_qos;
if (requested.trp_sup_throughput && requested.trp_boosted == 0) {
through_qos = requested.trp_sup_throughput;
}
if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
through_qos = MAX(through_qos, (int)thread_qos_policy_params.qos_through_qos[next.tep_qos_clamp]);
}
if (requested.trp_over_through_qos != 0) {
through_qos = requested.trp_over_through_qos;
}
next.tep_through_qos = through_qos;
/* Calculate suppressed CPU priority */
if (requested.trp_sup_cpu && requested.trp_boosted == 0) {
next.tep_suppressed_cpu = 1;
}
/*
* Calculate background sockets
* Don't take into account boosting to limit transition frequency.
*/
if (requested.trp_sup_bg_sockets) {
next.tep_all_sockets_bg = 1;
next.tep_new_sockets_bg = 1;
}
/* Apply SFI Managed class bit */
next.tep_sfi_managed = requested.trp_sfi_managed;
/* Calculate 'live donor' status for live importance */
switch (requested.trp_apptype) {
case TASK_APPTYPE_APP_TAL:
case TASK_APPTYPE_APP_DEFAULT:
if (requested.trp_ext_darwinbg == 1 ||
(next.tep_sup_active == 1 &&
(task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_NONDONOR)) ||
next.tep_role == TASK_DARWINBG_APPLICATION) {
next.tep_live_donor = 0;
} else {
next.tep_live_donor = 1;
}
break;
case TASK_APPTYPE_DAEMON_INTERACTIVE:
case TASK_APPTYPE_DAEMON_STANDARD:
case TASK_APPTYPE_DAEMON_ADAPTIVE:
case TASK_APPTYPE_DAEMON_BACKGROUND:
case TASK_APPTYPE_DRIVER:
default:
next.tep_live_donor = 0;
break;
}
if (requested.trp_terminated) {
/*
* Shoot down the throttles that slow down exit or response to SIGTERM
* We don't need to shoot down:
* passive (don't want to cause others to throttle)
* all_sockets_bg (don't need to iterate FDs on every exit)
* new_sockets_bg (doesn't matter for exiting process)
* pidsuspend (jetsam-ed BG process shouldn't run again)
* watchers_bg (watcher threads don't need to be unthrottled)
* latency_qos (affects userspace timers only)
*/
next.tep_terminated = 1;
next.tep_darwinbg = 0;
next.tep_lowpri_cpu = 0;
next.tep_io_tier = THROTTLE_LEVEL_TIER0;
next.tep_tal_engaged = 0;
next.tep_role = TASK_UNSPECIFIED;
next.tep_suppressed_cpu = 0;
}
/*
* Step 3:
* Swap out old policy for new policy
*/
struct task_effective_policy prev = task->effective_policy;
/* This is the point where the new values become visible to other threads */
task->effective_policy = next;
/* Don't do anything further to a half-formed task */
if (in_create) {
return;
}
if (task == kernel_task) {
panic("Attempting to set task policy on kernel_task");
}
/*
* Step 4:
* Pend updates that can't be done while holding the task lock
*/
if (prev.tep_all_sockets_bg != next.tep_all_sockets_bg) {
pend_token->tpt_update_sockets = 1;
}
/* Only re-scan the timer list if the qos level is getting less strong */
if (prev.tep_latency_qos > next.tep_latency_qos) {
pend_token->tpt_update_timers = 1;
}
#if CONFIG_TASKWATCH
if (prev.tep_watchers_bg != next.tep_watchers_bg) {
pend_token->tpt_update_watchers = 1;
}
#endif /* CONFIG_TASKWATCH */
if (prev.tep_live_donor != next.tep_live_donor) {
pend_token->tpt_update_live_donor = 1;
}
/*
* Step 5:
* Update other subsystems as necessary if something has changed
*/
bool update_threads = false, update_sfi = false;
/*
* Check for the attributes that thread_policy_update_internal_locked() consults,
* and trigger thread policy re-evaluation.
*/
if (prev.tep_io_tier != next.tep_io_tier ||
prev.tep_bg_iotier != next.tep_bg_iotier ||
prev.tep_io_passive != next.tep_io_passive ||
prev.tep_darwinbg != next.tep_darwinbg ||
prev.tep_qos_clamp != next.tep_qos_clamp ||
prev.tep_qos_ceiling != next.tep_qos_ceiling ||
prev.tep_qos_ui_is_urgent != next.tep_qos_ui_is_urgent ||
prev.tep_latency_qos != next.tep_latency_qos ||
prev.tep_through_qos != next.tep_through_qos ||
prev.tep_lowpri_cpu != next.tep_lowpri_cpu ||
prev.tep_new_sockets_bg != next.tep_new_sockets_bg ||
prev.tep_terminated != next.tep_terminated ||
prev.tep_adaptive_bg != next.tep_adaptive_bg) {
update_threads = true;
}
/*
* Check for the attributes that sfi_thread_classify() consults,
* and trigger SFI re-evaluation.
*/
if (prev.tep_latency_qos != next.tep_latency_qos ||
prev.tep_role != next.tep_role ||
prev.tep_sfi_managed != next.tep_sfi_managed) {
update_sfi = true;
}
/* Reflect task role transitions into the coalition role counters */
if (prev.tep_role != next.tep_role) {
if (task_policy_update_coalition_focal_tasks(task, prev.tep_role, next.tep_role, pend_token)) {
update_sfi = true;
}
}
bool update_priority = false;
int16_t priority = BASEPRI_DEFAULT;
int16_t max_priority = MAXPRI_USER;
if (next.tep_lowpri_cpu) {
priority = MAXPRI_THROTTLE;
max_priority = MAXPRI_THROTTLE;
} else if (next.tep_suppressed_cpu) {
priority = MAXPRI_SUPPRESSED;
max_priority = MAXPRI_SUPPRESSED;
} else {
switch (next.tep_role) {
case TASK_CONTROL_APPLICATION:
priority = BASEPRI_CONTROL;
break;
case TASK_GRAPHICS_SERVER:
priority = BASEPRI_GRAPHICS;
max_priority = MAXPRI_RESERVED;
break;
default:
break;
}
/* factor in 'nice' value */
priority += task->importance;
if (task->effective_policy.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
int16_t qos_clamp_priority = thread_qos_policy_params.qos_pri[task->effective_policy.tep_qos_clamp];
priority = MIN(priority, qos_clamp_priority);
max_priority = MIN(max_priority, qos_clamp_priority);
}
if (priority > max_priority) {
priority = max_priority;
} else if (priority < MINPRI) {
priority = MINPRI;
}
}
assert(priority <= max_priority);
/* avoid extra work if priority isn't changing */
if (priority != task->priority ||
max_priority != task->max_priority) {
/* update the scheduling priority for the task */
task->max_priority = max_priority;
task->priority = priority;
update_priority = true;
}
/* Loop over the threads in the task:
* only once
* only if necessary
* with one thread mutex hold per thread
*/
if (update_threads || update_priority || update_sfi) {
thread_t thread;
queue_iterate(&task->threads, thread, thread_t, task_threads) {
struct task_pend_token thread_pend_token = {};
if (update_sfi) {
thread_pend_token.tpt_update_thread_sfi = 1;
}
if (update_priority || update_threads) {
thread_policy_update_tasklocked(thread,
task->priority, task->max_priority,
&thread_pend_token);
}
assert(!thread_pend_token.tpt_update_sockets);
// Slightly risky, as we still hold the task lock...
thread_policy_update_complete_unlocked(thread, &thread_pend_token);
}
}
/*
* Use the app-nap transitions to influence the
* transition of the process within the jetsam band
* [and optionally its live-donor status]
* On macOS only.
*/
if (appnap_transition) {
if (task->effective_policy.tep_sup_active == 1) {
memorystatus_update_priority_for_appnap(((proc_t) task->bsd_info), TRUE);
} else {
memorystatus_update_priority_for_appnap(((proc_t) task->bsd_info), FALSE);
}
}
}
/*
* Yet another layering violation. We reach out and bang on the coalition directly.
*/
static boolean_t
task_policy_update_coalition_focal_tasks(task_t task,
int prev_role,
int next_role,
task_pend_token_t pend_token)
{
boolean_t sfi_transition = FALSE;
uint32_t new_count = 0;
/* task moving into/out-of the foreground */
if (prev_role != TASK_FOREGROUND_APPLICATION && next_role == TASK_FOREGROUND_APPLICATION) {
if (task_coalition_adjust_focal_count(task, 1, &new_count) && (new_count == 1)) {
sfi_transition = TRUE;
pend_token->tpt_update_tg_ui_flag = TRUE;
}
} else if (prev_role == TASK_FOREGROUND_APPLICATION && next_role != TASK_FOREGROUND_APPLICATION) {
if (task_coalition_adjust_focal_count(task, -1, &new_count) && (new_count == 0)) {
sfi_transition = TRUE;
pend_token->tpt_update_tg_ui_flag = TRUE;
}
}
/* task moving into/out-of background */
if (prev_role != TASK_BACKGROUND_APPLICATION && next_role == TASK_BACKGROUND_APPLICATION) {
if (task_coalition_adjust_nonfocal_count(task, 1, &new_count) && (new_count == 1)) {
sfi_transition = TRUE;
}
} else if (prev_role == TASK_BACKGROUND_APPLICATION && next_role != TASK_BACKGROUND_APPLICATION) {
if (task_coalition_adjust_nonfocal_count(task, -1, &new_count) && (new_count == 0)) {
sfi_transition = TRUE;
}
}
if (sfi_transition) {
pend_token->tpt_update_coal_sfi = 1;
}
return sfi_transition;
}
#if CONFIG_SCHED_SFI
/* coalition object is locked */
static void
task_sfi_reevaluate_cb(coalition_t coal, void *ctx, task_t task)
{
thread_t thread;
/* unused for now */
(void)coal;
/* skip the task we're re-evaluating on behalf of: it's already updated */
if (task == (task_t)ctx) {
return;
}
task_lock(task);
queue_iterate(&task->threads, thread, thread_t, task_threads) {
sfi_reevaluate(thread);
}
task_unlock(task);
}
#endif /* CONFIG_SCHED_SFI */
/*
* Called with task unlocked to do things that can't be done while holding the task lock
*/
void
task_policy_update_complete_unlocked(task_t task, task_pend_token_t pend_token)
{
#ifdef MACH_BSD
if (pend_token->tpt_update_sockets) {
proc_apply_task_networkbg(task->bsd_info, THREAD_NULL);
}
#endif /* MACH_BSD */
/* The timer throttle has been removed or reduced, we need to look for expired timers and fire them */
if (pend_token->tpt_update_timers) {
ml_timer_evaluate();
}
#if CONFIG_TASKWATCH
if (pend_token->tpt_update_watchers) {
apply_appstate_watchers(task);
}
#endif /* CONFIG_TASKWATCH */
if (pend_token->tpt_update_live_donor) {
task_importance_update_live_donor(task);
}
#if CONFIG_SCHED_SFI
/* use the resource coalition for SFI re-evaluation */
if (pend_token->tpt_update_coal_sfi) {
coalition_for_each_task(task->coalition[COALITION_TYPE_RESOURCE],
(void *)task, task_sfi_reevaluate_cb);
}
#endif /* CONFIG_SCHED_SFI */
#if CONFIG_THREAD_GROUPS
if (pend_token->tpt_update_tg_ui_flag) {
task_coalition_thread_group_focal_update(task);
}
#endif /* CONFIG_THREAD_GROUPS */
}
/*
* Initiate a task policy state transition
*
* Everything that modifies requested except functions that need to hold the task lock
* should use this function
*
* Argument validation should be performed before reaching this point.
*
* TODO: Do we need to check task->active?
*/
void
proc_set_task_policy(task_t task,
int category,
int flavor,
int value)
{
struct task_pend_token pend_token = {};
task_lock(task);
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
(IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_START,
task_pid(task), trequested_0(task),
trequested_1(task), value, 0);
proc_set_task_policy_locked(task, category, flavor, value, 0);
task_policy_update_locked(task, &pend_token);
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
(IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_END,
task_pid(task), trequested_0(task),
trequested_1(task), tpending(&pend_token), 0);
task_unlock(task);
task_policy_update_complete_unlocked(task, &pend_token);
}
/*
* Variant of proc_set_task_policy() that sets two scalars in the requested policy structure.
* Same locking rules apply.
*/
void
proc_set_task_policy2(task_t task,
int category,
int flavor,
int value,
int value2)
{
struct task_pend_token pend_token = {};
task_lock(task);
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
(IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_START,
task_pid(task), trequested_0(task),
trequested_1(task), value, 0);
proc_set_task_policy_locked(task, category, flavor, value, value2);
task_policy_update_locked(task, &pend_token);
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
(IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_END,
task_pid(task), trequested_0(task),
trequested_1(task), tpending(&pend_token), 0);
task_unlock(task);
task_policy_update_complete_unlocked(task, &pend_token);
}
/*
* Set the requested state for a specific flavor to a specific value.
*
* TODO:
* Verify that arguments to non iopol things are 1 or 0
*/
static void
proc_set_task_policy_locked(task_t task,
int category,
int flavor,
int value,
int value2)
{
int tier, passive;
struct task_requested_policy requested = task->requested_policy;
switch (flavor) {
/* Category: EXTERNAL and INTERNAL */
case TASK_POLICY_DARWIN_BG:
if (category == TASK_POLICY_EXTERNAL) {
requested.trp_ext_darwinbg = value;
} else {
requested.trp_int_darwinbg = value;
}
break;
case TASK_POLICY_IOPOL:
proc_iopol_to_tier(value, &tier, &passive);
if (category == TASK_POLICY_EXTERNAL) {
requested.trp_ext_iotier = tier;
requested.trp_ext_iopassive = passive;
} else {
requested.trp_int_iotier = tier;
requested.trp_int_iopassive = passive;
}
break;
case TASK_POLICY_IO:
if (category == TASK_POLICY_EXTERNAL) {
requested.trp_ext_iotier = value;
} else {
requested.trp_int_iotier = value;
}
break;
case TASK_POLICY_PASSIVE_IO:
if (category == TASK_POLICY_EXTERNAL) {
requested.trp_ext_iopassive = value;
} else {
requested.trp_int_iopassive = value;
}
break;
/* Category: INTERNAL */
case TASK_POLICY_DARWIN_BG_IOPOL:
assert(category == TASK_POLICY_INTERNAL);
proc_iopol_to_tier(value, &tier, &passive);
requested.trp_bg_iotier = tier;
break;
/* Category: ATTRIBUTE */
case TASK_POLICY_BOOST:
assert(category == TASK_POLICY_ATTRIBUTE);
requested.trp_boosted = value;
break;
case TASK_POLICY_ROLE:
assert(category == TASK_POLICY_ATTRIBUTE);
requested.trp_role = value;
break;
case TASK_POLICY_TERMINATED:
assert(category == TASK_POLICY_ATTRIBUTE);
requested.trp_terminated = value;
break;
case TASK_BASE_LATENCY_QOS_POLICY:
assert(category == TASK_POLICY_ATTRIBUTE);
requested.trp_base_latency_qos = value;
break;
case TASK_BASE_THROUGHPUT_QOS_POLICY:
assert(category == TASK_POLICY_ATTRIBUTE);
requested.trp_base_through_qos = value;
break;
case TASK_POLICY_SFI_MANAGED:
assert(category == TASK_POLICY_ATTRIBUTE);
requested.trp_sfi_managed = value;
break;
case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS:
assert(category == TASK_POLICY_ATTRIBUTE);
requested.trp_base_latency_qos = value;
requested.trp_base_through_qos = value2;
break;
case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS:
assert(category == TASK_POLICY_ATTRIBUTE);
requested.trp_over_latency_qos = value;
requested.trp_over_through_qos = value2;
break;
default:
panic("unknown task policy: %d %d %d %d", category, flavor, value, value2);
break;
}
task->requested_policy = requested;
}
/*
* Gets what you set. Effective values may be different.
*/
int
proc_get_task_policy(task_t task,
int category,
int flavor)
{
int value = 0;
task_lock(task);
struct task_requested_policy requested = task->requested_policy;
switch (flavor) {
case TASK_POLICY_DARWIN_BG:
if (category == TASK_POLICY_EXTERNAL) {
value = requested.trp_ext_darwinbg;
} else {
value = requested.trp_int_darwinbg;
}
break;
case TASK_POLICY_IOPOL:
if (category == TASK_POLICY_EXTERNAL) {
value = proc_tier_to_iopol(requested.trp_ext_iotier,
requested.trp_ext_iopassive);
} else {
value = proc_tier_to_iopol(requested.trp_int_iotier,
requested.trp_int_iopassive);
}
break;
case TASK_POLICY_IO:
if (category == TASK_POLICY_EXTERNAL) {
value = requested.trp_ext_iotier;
} else {
value = requested.trp_int_iotier;
}
break;
case TASK_POLICY_PASSIVE_IO:
if (category == TASK_POLICY_EXTERNAL) {
value = requested.trp_ext_iopassive;
} else {
value = requested.trp_int_iopassive;
}
break;
case TASK_POLICY_DARWIN_BG_IOPOL:
assert(category == TASK_POLICY_INTERNAL);
value = proc_tier_to_iopol(requested.trp_bg_iotier, 0);
break;
case TASK_POLICY_ROLE:
assert(category == TASK_POLICY_ATTRIBUTE);
value = requested.trp_role;
break;
case TASK_POLICY_SFI_MANAGED:
assert(category == TASK_POLICY_ATTRIBUTE);
value = requested.trp_sfi_managed;
break;
default:
panic("unknown policy_flavor %d", flavor);
break;
}
task_unlock(task);
return value;
}
/*
* Variant of proc_get_task_policy() that returns two scalar outputs.
*/
void
proc_get_task_policy2(task_t task,
__assert_only int category,
int flavor,
int *value1,
int *value2)
{
task_lock(task);
struct task_requested_policy requested = task->requested_policy;
switch (flavor) {
case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS:
assert(category == TASK_POLICY_ATTRIBUTE);
*value1 = requested.trp_base_latency_qos;
*value2 = requested.trp_base_through_qos;
break;
case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS:
assert(category == TASK_POLICY_ATTRIBUTE);
*value1 = requested.trp_over_latency_qos;
*value2 = requested.trp_over_through_qos;
break;
default:
panic("unknown policy_flavor %d", flavor);
break;
}
task_unlock(task);
}
/*
* Function for querying effective state for relevant subsystems
* Gets what is actually in effect, for subsystems which pull policy instead of receive updates.
*
* ONLY the relevant subsystem should query this.
* NEVER take a value from the 'effective' function and stuff it into a setter.
*
* NOTE: This accessor does not take the task lock.
* Notifications of state updates need to be externally synchronized with state queries.
* This routine *MUST* remain interrupt safe, as it is potentially invoked
* within the context of a timer interrupt. It is also called in KDP context for stackshot.
*/
int
proc_get_effective_task_policy(task_t task,
int flavor)
{
int value = 0;
switch (flavor) {
case TASK_POLICY_DARWIN_BG:
/*
* This backs the KPI call proc_pidbackgrounded to find
* out if a pid is backgrounded.
* It is used to communicate state to the VM system, as well as
* prioritizing requests to the graphics system.
* Returns 1 for background mode, 0 for normal mode
*/
value = task->effective_policy.tep_darwinbg;
break;
case TASK_POLICY_ALL_SOCKETS_BG:
/*
* do_background_socket() calls this to determine what it should do to the proc's sockets
* Returns 1 for background mode, 0 for normal mode
*
* This consults both thread and task so un-DBGing a thread while the task is BG
* doesn't get you out of the network throttle.
*/
value = task->effective_policy.tep_all_sockets_bg;
break;
case TASK_POLICY_SUP_ACTIVE:
/*
* Is the task in AppNap? This is used to determine the urgency
* that's passed to the performance management subsystem for threads
* that are running at a priority <= MAXPRI_THROTTLE.
*/
value = task->effective_policy.tep_sup_active;
break;
case TASK_POLICY_LATENCY_QOS:
/*
* timer arming calls into here to find out the timer coalescing level
* Returns a QoS tier (0-6)
*/
value = task->effective_policy.tep_latency_qos;
break;
case TASK_POLICY_THROUGH_QOS:
/*
* This value is passed into the urgency callout from the scheduler
* to the performance management subsystem.
* Returns a QoS tier (0-6)
*/
value = task->effective_policy.tep_through_qos;
break;
case TASK_POLICY_ROLE:
/*
* This controls various things that ask whether a process is foreground,
* like SFI, VM, access to GPU, etc
*/
value = task->effective_policy.tep_role;
break;
case TASK_POLICY_WATCHERS_BG:
/*
* This controls whether or not a thread watching this process should be BG.
*/
value = task->effective_policy.tep_watchers_bg;
break;
case TASK_POLICY_SFI_MANAGED:
/*
* This controls whether or not a process is targeted for specific control by thermald.
*/
value = task->effective_policy.tep_sfi_managed;
break;
default:
panic("unknown policy_flavor %d", flavor);
break;
}
return value;
}
/*
* Convert from IOPOL_* values to throttle tiers.
*
* TODO: Can this be made more compact, like an array lookup
* Note that it is possible to support e.g. IOPOL_PASSIVE_STANDARD in the future
*/
void
proc_iopol_to_tier(int iopolicy, int *tier, int *passive)
{
*passive = 0;
*tier = 0;
switch (iopolicy) {
case IOPOL_IMPORTANT:
*tier = THROTTLE_LEVEL_TIER0;
break;
case IOPOL_PASSIVE:
*tier = THROTTLE_LEVEL_TIER0;
*passive = 1;
break;
case IOPOL_STANDARD:
*tier = THROTTLE_LEVEL_TIER1;
break;
case IOPOL_UTILITY:
*tier = THROTTLE_LEVEL_TIER2;
break;
case IOPOL_THROTTLE:
*tier = THROTTLE_LEVEL_TIER3;
break;
default:
panic("unknown I/O policy %d", iopolicy);
break;
}
}
int
proc_tier_to_iopol(int tier, int passive)
{
if (passive == 1) {
switch (tier) {
case THROTTLE_LEVEL_TIER0:
return IOPOL_PASSIVE;
default:
panic("unknown passive tier %d", tier);
return IOPOL_DEFAULT;
}
} else {
switch (tier) {
case THROTTLE_LEVEL_NONE:
case THROTTLE_LEVEL_TIER0:
return IOPOL_DEFAULT;
case THROTTLE_LEVEL_TIER1:
return IOPOL_STANDARD;
case THROTTLE_LEVEL_TIER2:
return IOPOL_UTILITY;
case THROTTLE_LEVEL_TIER3:
return IOPOL_THROTTLE;
default:
panic("unknown tier %d", tier);
return IOPOL_DEFAULT;
}
}
}
int
proc_darwin_role_to_task_role(int darwin_role, task_role_t* task_role)
{
integer_t role = TASK_UNSPECIFIED;
switch (darwin_role) {
case PRIO_DARWIN_ROLE_DEFAULT:
role = TASK_UNSPECIFIED;
break;
case PRIO_DARWIN_ROLE_UI_FOCAL:
role = TASK_FOREGROUND_APPLICATION;
break;
case PRIO_DARWIN_ROLE_UI:
role = TASK_DEFAULT_APPLICATION;
break;
case PRIO_DARWIN_ROLE_NON_UI:
role = TASK_NONUI_APPLICATION;
break;
case PRIO_DARWIN_ROLE_UI_NON_FOCAL:
role = TASK_BACKGROUND_APPLICATION;
break;
case PRIO_DARWIN_ROLE_TAL_LAUNCH:
role = TASK_THROTTLE_APPLICATION;
break;
case PRIO_DARWIN_ROLE_DARWIN_BG:
role = TASK_DARWINBG_APPLICATION;
break;
default:
return EINVAL;
}
*task_role = role;
return 0;
}
int
proc_task_role_to_darwin_role(task_role_t task_role)
{
switch (task_role) {
case TASK_FOREGROUND_APPLICATION:
return PRIO_DARWIN_ROLE_UI_FOCAL;
case TASK_BACKGROUND_APPLICATION:
return PRIO_DARWIN_ROLE_UI_NON_FOCAL;
case TASK_NONUI_APPLICATION:
return PRIO_DARWIN_ROLE_NON_UI;
case TASK_DEFAULT_APPLICATION:
return PRIO_DARWIN_ROLE_UI;
case TASK_THROTTLE_APPLICATION:
return PRIO_DARWIN_ROLE_TAL_LAUNCH;
case TASK_DARWINBG_APPLICATION:
return PRIO_DARWIN_ROLE_DARWIN_BG;
case TASK_UNSPECIFIED:
default:
return PRIO_DARWIN_ROLE_DEFAULT;
}
}
/* TODO: remove this variable when interactive daemon audit period is over */
static TUNABLE(bool, ipc_importance_interactive_receiver,
"imp_interactive_receiver", false);
/*
* Called at process exec to initialize the apptype, qos clamp, and qos seed of a process
*
* TODO: Make this function more table-driven instead of ad-hoc
*/
void
proc_set_task_spawnpolicy(task_t task, thread_t thread, int apptype, int qos_clamp, task_role_t role,
ipc_port_t * portwatch_ports, uint32_t portwatch_count)
{
struct task_pend_token pend_token = {};
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
(IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_START,
task_pid(task), trequested_0(task), trequested_1(task),
apptype, 0);
switch (apptype) {
case TASK_APPTYPE_APP_DEFAULT:
/* Apps become donors via the 'live-donor' flag instead of the static donor flag */
task_importance_mark_donor(task, FALSE);
task_importance_mark_live_donor(task, TRUE);
task_importance_mark_receiver(task, FALSE);
#if !defined(XNU_TARGET_OS_OSX)
task_importance_mark_denap_receiver(task, FALSE);
#else
/* Apps are de-nap recievers on macOS for suppression behaviors */
task_importance_mark_denap_receiver(task, TRUE);
#endif /* !defined(XNU_TARGET_OS_OSX) */
break;
case TASK_APPTYPE_DAEMON_INTERACTIVE:
task_importance_mark_donor(task, TRUE);
task_importance_mark_live_donor(task, FALSE);
/*
* A boot arg controls whether interactive daemons are importance receivers.
* Normally, they are not. But for testing their behavior as an adaptive
* daemon, the boot-arg can be set.
*
* TODO: remove this when the interactive daemon audit period is over.
*/
task_importance_mark_receiver(task, /* FALSE */ ipc_importance_interactive_receiver);
task_importance_mark_denap_receiver(task, FALSE);
break;
case TASK_APPTYPE_DAEMON_STANDARD:
task_importance_mark_donor(task, TRUE);
task_importance_mark_live_donor(task, FALSE);
task_importance_mark_receiver(task, FALSE);
task_importance_mark_denap_receiver(task, FALSE);
break;
case TASK_APPTYPE_DAEMON_ADAPTIVE:
task_importance_mark_donor(task, FALSE);
task_importance_mark_live_donor(task, FALSE);
task_importance_mark_receiver(task, TRUE);
task_importance_mark_denap_receiver(task, FALSE);
break;
case TASK_APPTYPE_DAEMON_BACKGROUND:
task_importance_mark_donor(task, FALSE);
task_importance_mark_live_donor(task, FALSE);
task_importance_mark_receiver(task, FALSE);
task_importance_mark_denap_receiver(task, FALSE);
break;
case TASK_APPTYPE_DRIVER:
task_importance_mark_donor(task, FALSE);
task_importance_mark_live_donor(task, FALSE);
task_importance_mark_receiver(task, FALSE);
task_importance_mark_denap_receiver(task, FALSE);
break;
case TASK_APPTYPE_NONE:
break;
}
if (portwatch_ports != NULL && apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
int portwatch_boosts = 0;
for (uint32_t i = 0; i < portwatch_count; i++) {
ipc_port_t port = NULL;
if (IP_VALID(port = portwatch_ports[i])) {
int boost = 0;
task_add_importance_watchport(task, port, &boost);
portwatch_boosts += boost;
}
}
if (portwatch_boosts > 0) {
task_importance_hold_internal_assertion(task, portwatch_boosts);
}
}
/* Redirect the turnstile push of watchports to task */
if (portwatch_count && portwatch_ports != NULL) {
task_add_turnstile_watchports(task, thread, portwatch_ports, portwatch_count);
}
task_lock(task);
if (apptype != TASK_APPTYPE_NONE) {
task->requested_policy.trp_apptype = apptype;
}
#if !defined(XNU_TARGET_OS_OSX)
/* Remove this after launchd starts setting it properly */
if (apptype == TASK_APPTYPE_APP_DEFAULT && role == TASK_UNSPECIFIED) {
task->requested_policy.trp_role = TASK_FOREGROUND_APPLICATION;
} else
#endif
if (role != TASK_UNSPECIFIED) {
task->requested_policy.trp_role = (uint32_t)role;
}
if (qos_clamp != THREAD_QOS_UNSPECIFIED) {
task->requested_policy.trp_qos_clamp = qos_clamp;
}
task_policy_update_locked(task, &pend_token);
task_unlock(task);
/* Ensure the donor bit is updated to be in sync with the new live donor status */
pend_token.tpt_update_live_donor = 1;
task_policy_update_complete_unlocked(task, &pend_token);
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
(IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_END,
task_pid(task), trequested_0(task), trequested_1(task),
task_is_importance_receiver(task), 0);
}
/*
* Inherit task role across exec
*/
void
proc_inherit_task_role(task_t new_task,
task_t old_task)
{
int role;
/* inherit the role from old task to new task */
role = proc_get_task_policy(old_task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE);
proc_set_task_policy(new_task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE, role);
}
extern void * XNU_PTRAUTH_SIGNED_PTR("initproc") initproc;
/*
* Compute the default main thread qos for a task
*/
thread_qos_t
task_compute_main_thread_qos(task_t task)
{
thread_qos_t primordial_qos = THREAD_QOS_UNSPECIFIED;
thread_qos_t qos_clamp = task->requested_policy.trp_qos_clamp;
switch (task->requested_policy.trp_apptype) {
case TASK_APPTYPE_APP_TAL:
case TASK_APPTYPE_APP_DEFAULT:
primordial_qos = THREAD_QOS_USER_INTERACTIVE;
break;
case TASK_APPTYPE_DAEMON_INTERACTIVE:
case TASK_APPTYPE_DAEMON_STANDARD:
case TASK_APPTYPE_DAEMON_ADAPTIVE:
case TASK_APPTYPE_DRIVER:
primordial_qos = THREAD_QOS_LEGACY;
break;
case TASK_APPTYPE_DAEMON_BACKGROUND:
primordial_qos = THREAD_QOS_BACKGROUND;
break;
}
if (task->bsd_info == initproc) {
/* PID 1 gets a special case */
primordial_qos = MAX(primordial_qos, THREAD_QOS_USER_INITIATED);
}
if (qos_clamp != THREAD_QOS_UNSPECIFIED) {
if (primordial_qos != THREAD_QOS_UNSPECIFIED) {
primordial_qos = MIN(qos_clamp, primordial_qos);
} else {
primordial_qos = qos_clamp;
}
}
return primordial_qos;
}
/* for process_policy to check before attempting to set */
boolean_t
proc_task_is_tal(task_t task)
{
return (task->requested_policy.trp_apptype == TASK_APPTYPE_APP_TAL) ? TRUE : FALSE;
}
int
task_get_apptype(task_t task)
{
return task->requested_policy.trp_apptype;
}
boolean_t
task_is_daemon(task_t task)
{
switch (task->requested_policy.trp_apptype) {
case TASK_APPTYPE_DAEMON_INTERACTIVE:
case TASK_APPTYPE_DAEMON_STANDARD:
case TASK_APPTYPE_DAEMON_ADAPTIVE:
case TASK_APPTYPE_DAEMON_BACKGROUND:
return TRUE;
default:
return FALSE;
}
}
bool
task_is_driver(task_t task)
{
if (!task) {
return FALSE;
}
return task->requested_policy.trp_apptype == TASK_APPTYPE_DRIVER;
}
boolean_t
task_is_app(task_t task)
{
switch (task->requested_policy.trp_apptype) {
case TASK_APPTYPE_APP_DEFAULT:
case TASK_APPTYPE_APP_TAL:
return TRUE;
default:
return FALSE;
}
}
/* for telemetry */
integer_t
task_grab_latency_qos(task_t task)
{
return qos_latency_policy_package(proc_get_effective_task_policy(task, TASK_POLICY_LATENCY_QOS));
}
/* update the darwin background action state in the flags field for libproc */
int
proc_get_darwinbgstate(task_t task, uint32_t * flagsp)
{
if (task->requested_policy.trp_ext_darwinbg) {
*flagsp |= PROC_FLAG_EXT_DARWINBG;
}
if (task->requested_policy.trp_int_darwinbg) {
*flagsp |= PROC_FLAG_DARWINBG;
}
#if !defined(XNU_TARGET_OS_OSX)
if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_BACKGROUND) {
*flagsp |= PROC_FLAG_IOS_APPLEDAEMON;
}
if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
*flagsp |= PROC_FLAG_IOS_IMPPROMOTION;
}
#endif /* !defined(XNU_TARGET_OS_OSX) */
if (task->requested_policy.trp_apptype == TASK_APPTYPE_APP_DEFAULT ||
task->requested_policy.trp_apptype == TASK_APPTYPE_APP_TAL) {
*flagsp |= PROC_FLAG_APPLICATION;
}
if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
*flagsp |= PROC_FLAG_ADAPTIVE;
}
if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE &&
task->requested_policy.trp_boosted == 1) {
*flagsp |= PROC_FLAG_ADAPTIVE_IMPORTANT;
}
if (task_is_importance_donor(task)) {
*flagsp |= PROC_FLAG_IMPORTANCE_DONOR;
}
if (task->effective_policy.tep_sup_active) {
*flagsp |= PROC_FLAG_SUPPRESSED;
}
return 0;
}
/*
* Tracepoint data... Reading the tracepoint data can be somewhat complicated.
* The current scheme packs as much data into a single tracepoint as it can.
*
* Each task/thread requested/effective structure is 64 bits in size. Any
* given tracepoint will emit either requested or effective data, but not both.
*
* A tracepoint may emit any of task, thread, or task & thread data.
*
* The type of data emitted varies with pointer size. Where possible, both
* task and thread data are emitted. In LP32 systems, the first and second
* halves of either the task or thread data is emitted.
*
* The code uses uintptr_t array indexes instead of high/low to avoid
* confusion WRT big vs little endian.
*
* The truth table for the tracepoint data functions is below, and has the
* following invariants:
*
* 1) task and thread are uintptr_t*
* 2) task may never be NULL
*
*
* LP32 LP64
* trequested_0(task, NULL) task[0] task[0]
* trequested_1(task, NULL) task[1] NULL
* trequested_0(task, thread) thread[0] task[0]
* trequested_1(task, thread) thread[1] thread[0]
*
* Basically, you get a full task or thread on LP32, and both on LP64.
*
* The uintptr_t munging here is squicky enough to deserve a comment.
*
* The variables we are accessing are laid out in memory like this:
*
* [ LP64 uintptr_t 0 ]
* [ LP32 uintptr_t 0 ] [ LP32 uintptr_t 1 ]
*
* 1 2 3 4 5 6 7 8
*
*/
static uintptr_t
trequested_0(task_t task)
{
static_assert(sizeof(struct task_requested_policy) == sizeof(uint64_t), "size invariant violated");
uintptr_t* raw = (uintptr_t*)&task->requested_policy;
return raw[0];
}
static uintptr_t
trequested_1(task_t task)
{
#if defined __LP64__
(void)task;
return 0;
#else
uintptr_t* raw = (uintptr_t*)(&task->requested_policy);
return raw[1];
#endif
}
static uintptr_t
teffective_0(task_t task)
{
uintptr_t* raw = (uintptr_t*)&task->effective_policy;
return raw[0];
}
static uintptr_t
teffective_1(task_t task)
{
#if defined __LP64__
(void)task;
return 0;
#else
uintptr_t* raw = (uintptr_t*)(&task->effective_policy);
return raw[1];
#endif
}
/* dump pending for tracepoint */
uint32_t
tpending(task_pend_token_t pend_token)
{
return *(uint32_t*)(void*)(pend_token);
}
uint64_t
task_requested_bitfield(task_t task)
{
uint64_t bits = 0;
struct task_requested_policy requested = task->requested_policy;
bits |= (requested.trp_int_darwinbg ? POLICY_REQ_INT_DARWIN_BG : 0);
bits |= (requested.trp_ext_darwinbg ? POLICY_REQ_EXT_DARWIN_BG : 0);
bits |= (requested.trp_int_iotier ? (((uint64_t)requested.trp_int_iotier) << POLICY_REQ_INT_IO_TIER_SHIFT) : 0);
bits |= (requested.trp_ext_iotier ? (((uint64_t)requested.trp_ext_iotier) << POLICY_REQ_EXT_IO_TIER_SHIFT) : 0);
bits |= (requested.trp_int_iopassive ? POLICY_REQ_INT_PASSIVE_IO : 0);
bits |= (requested.trp_ext_iopassive ? POLICY_REQ_EXT_PASSIVE_IO : 0);
bits |= (requested.trp_bg_iotier ? (((uint64_t)requested.trp_bg_iotier) << POLICY_REQ_BG_IOTIER_SHIFT) : 0);
bits |= (requested.trp_terminated ? POLICY_REQ_TERMINATED : 0);
bits |= (requested.trp_boosted ? POLICY_REQ_BOOSTED : 0);
bits |= (requested.trp_tal_enabled ? POLICY_REQ_TAL_ENABLED : 0);
bits |= (requested.trp_apptype ? (((uint64_t)requested.trp_apptype) << POLICY_REQ_APPTYPE_SHIFT) : 0);
bits |= (requested.trp_role ? (((uint64_t)requested.trp_role) << POLICY_REQ_ROLE_SHIFT) : 0);
bits |= (requested.trp_sup_active ? POLICY_REQ_SUP_ACTIVE : 0);
bits |= (requested.trp_sup_lowpri_cpu ? POLICY_REQ_SUP_LOWPRI_CPU : 0);
bits |= (requested.trp_sup_cpu ? POLICY_REQ_SUP_CPU : 0);
bits |= (requested.trp_sup_timer ? (((uint64_t)requested.trp_sup_timer) << POLICY_REQ_SUP_TIMER_THROTTLE_SHIFT) : 0);
bits |= (requested.trp_sup_throughput ? (((uint64_t)requested.trp_sup_throughput) << POLICY_REQ_SUP_THROUGHPUT_SHIFT) : 0);
bits |= (requested.trp_sup_disk ? POLICY_REQ_SUP_DISK_THROTTLE : 0);
bits |= (requested.trp_sup_bg_sockets ? POLICY_REQ_SUP_BG_SOCKETS : 0);
bits |= (requested.trp_base_latency_qos ? (((uint64_t)requested.trp_base_latency_qos) << POLICY_REQ_BASE_LATENCY_QOS_SHIFT) : 0);
bits |= (requested.trp_over_latency_qos ? (((uint64_t)requested.trp_over_latency_qos) << POLICY_REQ_OVER_LATENCY_QOS_SHIFT) : 0);
bits |= (requested.trp_base_through_qos ? (((uint64_t)requested.trp_base_through_qos) << POLICY_REQ_BASE_THROUGH_QOS_SHIFT) : 0);
bits |= (requested.trp_over_through_qos ? (((uint64_t)requested.trp_over_through_qos) << POLICY_REQ_OVER_THROUGH_QOS_SHIFT) : 0);
bits |= (requested.trp_sfi_managed ? POLICY_REQ_SFI_MANAGED : 0);
bits |= (requested.trp_qos_clamp ? (((uint64_t)requested.trp_qos_clamp) << POLICY_REQ_QOS_CLAMP_SHIFT) : 0);
return bits;
}
uint64_t
task_effective_bitfield(task_t task)
{
uint64_t bits = 0;
struct task_effective_policy effective = task->effective_policy;
bits |= (effective.tep_io_tier ? (((uint64_t)effective.tep_io_tier) << POLICY_EFF_IO_TIER_SHIFT) : 0);
bits |= (effective.tep_io_passive ? POLICY_EFF_IO_PASSIVE : 0);
bits |= (effective.tep_darwinbg ? POLICY_EFF_DARWIN_BG : 0);
bits |= (effective.tep_lowpri_cpu ? POLICY_EFF_LOWPRI_CPU : 0);
bits |= (effective.tep_terminated ? POLICY_EFF_TERMINATED : 0);
bits |= (effective.tep_all_sockets_bg ? POLICY_EFF_ALL_SOCKETS_BG : 0);
bits |= (effective.tep_new_sockets_bg ? POLICY_EFF_NEW_SOCKETS_BG : 0);
bits |= (effective.tep_bg_iotier ? (((uint64_t)effective.tep_bg_iotier) << POLICY_EFF_BG_IOTIER_SHIFT) : 0);
bits |= (effective.tep_qos_ui_is_urgent ? POLICY_EFF_QOS_UI_IS_URGENT : 0);
bits |= (effective.tep_tal_engaged ? POLICY_EFF_TAL_ENGAGED : 0);
bits |= (effective.tep_watchers_bg ? POLICY_EFF_WATCHERS_BG : 0);
bits |= (effective.tep_sup_active ? POLICY_EFF_SUP_ACTIVE : 0);
bits |= (effective.tep_suppressed_cpu ? POLICY_EFF_SUP_CPU : 0);
bits |= (effective.tep_role ? (((uint64_t)effective.tep_role) << POLICY_EFF_ROLE_SHIFT) : 0);
bits |= (effective.tep_latency_qos ? (((uint64_t)effective.tep_latency_qos) << POLICY_EFF_LATENCY_QOS_SHIFT) : 0);
bits |= (effective.tep_through_qos ? (((uint64_t)effective.tep_through_qos) << POLICY_EFF_THROUGH_QOS_SHIFT) : 0);
bits |= (effective.tep_sfi_managed ? POLICY_EFF_SFI_MANAGED : 0);
bits |= (effective.tep_qos_ceiling ? (((uint64_t)effective.tep_qos_ceiling) << POLICY_EFF_QOS_CEILING_SHIFT) : 0);
return bits;
}
/*
* Resource usage and CPU related routines
*/
int
proc_get_task_ruse_cpu(task_t task, uint32_t *policyp, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep)
{
int error = 0;
int scope;
task_lock(task);
error = task_get_cpuusage(task, percentagep, intervalp, deadlinep, &scope);
task_unlock(task);
/*
* Reverse-map from CPU resource limit scopes back to policies (see comment below).
*/
if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
*policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC;
} else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) {
*policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE;
} else if (scope == TASK_RUSECPU_FLAGS_DEADLINE) {
*policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
}
return error;
}
/*
* Configure the default CPU usage monitor parameters.
*
* For tasks which have this mechanism activated: if any thread in the
* process consumes more CPU than this, an EXC_RESOURCE exception will be generated.
*/
void
proc_init_cpumon_params(void)
{
/*
* The max CPU percentage can be configured via the boot-args and
* a key in the device tree. The boot-args are honored first, then the
* device tree.
*/
if (!PE_parse_boot_argn("max_cpumon_percentage", &proc_max_cpumon_percentage,
sizeof(proc_max_cpumon_percentage))) {
uint64_t max_percentage = 0ULL;
if (!PE_get_default("kern.max_cpumon_percentage", &max_percentage,
sizeof(max_percentage))) {
max_percentage = DEFAULT_CPUMON_PERCENTAGE;
}
assert(max_percentage <= UINT8_MAX);
proc_max_cpumon_percentage = (uint8_t) max_percentage;
}
if (proc_max_cpumon_percentage > 100) {
proc_max_cpumon_percentage = 100;
}
/*
* The interval should be specified in seconds.
*
* Like the max CPU percentage, the max CPU interval can be configured
* via boot-args and the device tree.
*/
if (!PE_parse_boot_argn("max_cpumon_interval", &proc_max_cpumon_interval,
sizeof(proc_max_cpumon_interval))) {
if (!PE_get_default("kern.max_cpumon_interval", &proc_max_cpumon_interval,
sizeof(proc_max_cpumon_interval))) {
proc_max_cpumon_interval = DEFAULT_CPUMON_INTERVAL;
}
}
proc_max_cpumon_interval *= NSEC_PER_SEC;
/* TEMPORARY boot arg to control App suppression */
PE_parse_boot_argn("task_policy_suppression_flags",
&task_policy_suppression_flags,
sizeof(task_policy_suppression_flags));
/* adjust suppression disk policy if called for in boot arg */
if (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_IOTIER2) {
proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER2;
}
}
/*
* Currently supported configurations for CPU limits.
*
* Policy | Deadline-based CPU limit | Percentage-based CPU limit
* -------------------------------------+--------------------------+------------------------------
* PROC_POLICY_RSRCACT_THROTTLE | ENOTSUP | Task-wide scope only
* PROC_POLICY_RSRCACT_SUSPEND | Task-wide scope only | ENOTSUP
* PROC_POLICY_RSRCACT_TERMINATE | Task-wide scope only | ENOTSUP
* PROC_POLICY_RSRCACT_NOTIFY_KQ | Task-wide scope only | ENOTSUP
* PROC_POLICY_RSRCACT_NOTIFY_EXC | ENOTSUP | Per-thread scope only
*
* A deadline-based CPU limit is actually a simple wallclock timer - the requested action is performed
* after the specified amount of wallclock time has elapsed.
*
* A percentage-based CPU limit performs the requested action after the specified amount of actual CPU time
* has been consumed -- regardless of how much wallclock time has elapsed -- by either the task as an
* aggregate entity (so-called "Task-wide" or "Proc-wide" scope, whereby the CPU time consumed by all threads
* in the task are added together), or by any one thread in the task (so-called "per-thread" scope).
*
* We support either deadline != 0 OR percentage != 0, but not both. The original intention in having them
* share an API was to use actual CPU time as the basis of the deadline-based limit (as in: perform an action
* after I have used some amount of CPU time; this is different than the recurring percentage/interval model)
* but the potential consumer of the API at the time was insisting on wallclock time instead.
*
* Currently, requesting notification via an exception is the only way to get per-thread scope for a
* CPU limit. All other types of notifications force task-wide scope for the limit.
*/
int
proc_set_task_ruse_cpu(task_t task, uint16_t policy, uint8_t percentage, uint64_t interval, uint64_t deadline,
int cpumon_entitled)
{
int error = 0;
int scope;
/*
* Enforce the matrix of supported configurations for policy, percentage, and deadline.
*/
switch (policy) {
// If no policy is explicitly given, the default is to throttle.
case TASK_POLICY_RESOURCE_ATTRIBUTE_NONE:
case TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE:
if (deadline != 0) {
return ENOTSUP;
}
scope = TASK_RUSECPU_FLAGS_PROC_LIMIT;
break;
case TASK_POLICY_RESOURCE_ATTRIBUTE_SUSPEND:
case TASK_POLICY_RESOURCE_ATTRIBUTE_TERMINATE:
case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_KQ:
if (percentage != 0) {
return ENOTSUP;
}
scope = TASK_RUSECPU_FLAGS_DEADLINE;
break;
case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC:
if (deadline != 0) {
return ENOTSUP;
}
scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
#ifdef CONFIG_NOMONITORS
return error;
#endif /* CONFIG_NOMONITORS */
break;
default:
return EINVAL;
}
task_lock(task);
if (task != current_task()) {
task->policy_ru_cpu_ext = policy;
} else {
task->policy_ru_cpu = policy;
}
error = task_set_cpuusage(task, percentage, interval, deadline, scope, cpumon_entitled);
task_unlock(task);
return error;
}
/* TODO: get rid of these */
#define TASK_POLICY_CPU_RESOURCE_USAGE 0
#define TASK_POLICY_WIREDMEM_RESOURCE_USAGE 1
#define TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE 2
#define TASK_POLICY_DISK_RESOURCE_USAGE 3
#define TASK_POLICY_NETWORK_RESOURCE_USAGE 4
#define TASK_POLICY_POWER_RESOURCE_USAGE 5
#define TASK_POLICY_RESOURCE_USAGE_COUNT 6
int
proc_clear_task_ruse_cpu(task_t task, int cpumon_entitled)
{
int error = 0;
int action;
void * bsdinfo = NULL;
task_lock(task);
if (task != current_task()) {
task->policy_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT;
} else {
task->policy_ru_cpu = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT;
}
error = task_clear_cpuusage_locked(task, cpumon_entitled);
if (error != 0) {
goto out;
}
action = task->applied_ru_cpu;
if (task->applied_ru_cpu_ext != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
/* reset action */
task->applied_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
}
if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
bsdinfo = task->bsd_info;
task_unlock(task);
proc_restore_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action);
goto out1;
}
out:
task_unlock(task);
out1:
return error;
}
/* used to apply resource limit related actions */
static int
task_apply_resource_actions(task_t task, int type)
{
int action = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
void * bsdinfo = NULL;
switch (type) {
case TASK_POLICY_CPU_RESOURCE_USAGE:
break;
case TASK_POLICY_WIREDMEM_RESOURCE_USAGE:
case TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE:
case TASK_POLICY_DISK_RESOURCE_USAGE:
case TASK_POLICY_NETWORK_RESOURCE_USAGE:
case TASK_POLICY_POWER_RESOURCE_USAGE:
return 0;
default:
return 1;
}
;
/* only cpu actions for now */
task_lock(task);
if (task->applied_ru_cpu_ext == TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
/* apply action */
task->applied_ru_cpu_ext = task->policy_ru_cpu_ext;
action = task->applied_ru_cpu_ext;
} else {
action = task->applied_ru_cpu_ext;
}
if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
bsdinfo = task->bsd_info;
task_unlock(task);
proc_apply_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action);
} else {
task_unlock(task);
}
return 0;
}
/*
* XXX This API is somewhat broken; we support multiple simultaneous CPU limits, but the get/set API
* only allows for one at a time. This means that if there is a per-thread limit active, the other
* "scopes" will not be accessible via this API. We could change it to pass in the scope of interest
* to the caller, and prefer that, but there's no need for that at the moment.
*/
static int
task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope)
{
*percentagep = 0;
*intervalp = 0;
*deadlinep = 0;
if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) != 0) {
*scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
*percentagep = task->rusage_cpu_perthr_percentage;
*intervalp = task->rusage_cpu_perthr_interval;
} else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) != 0) {
*scope = TASK_RUSECPU_FLAGS_PROC_LIMIT;
*percentagep = task->rusage_cpu_percentage;
*intervalp = task->rusage_cpu_interval;
} else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) != 0) {
*scope = TASK_RUSECPU_FLAGS_DEADLINE;
*deadlinep = task->rusage_cpu_deadline;
} else {
*scope = 0;
}
return 0;
}
/*
* Suspend the CPU usage monitor for the task. Return value indicates
* if the mechanism was actually enabled.
*/
int
task_suspend_cpumon(task_t task)
{
thread_t thread;
task_lock_assert_owned(task);
if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) == 0) {
return KERN_INVALID_ARGUMENT;
}
#if CONFIG_TELEMETRY
/*
* Disable task-wide telemetry if it was ever enabled by the CPU usage
* monitor's warning zone.
*/
telemetry_task_ctl_locked(task, TF_CPUMON_WARNING, 0);
#endif
/*
* Suspend monitoring for the task, and propagate that change to each thread.
*/
task->rusage_cpu_flags &= ~(TASK_RUSECPU_FLAGS_PERTHR_LIMIT | TASK_RUSECPU_FLAGS_FATAL_CPUMON);
queue_iterate(&task->threads, thread, thread_t, task_threads) {
act_set_astledger(thread);
}
return KERN_SUCCESS;
}
/*
* Remove all traces of the CPU monitor.
*/
int
task_disable_cpumon(task_t task)
{
int kret;
task_lock_assert_owned(task);
kret = task_suspend_cpumon(task);
if (kret) {
return kret;
}
/* Once we clear these values, the monitor can't be resumed */
task->rusage_cpu_perthr_percentage = 0;
task->rusage_cpu_perthr_interval = 0;
return KERN_SUCCESS;
}
static int
task_enable_cpumon_locked(task_t task)
{
thread_t thread;
task_lock_assert_owned(task);
if (task->rusage_cpu_perthr_percentage == 0 ||
task->rusage_cpu_perthr_interval == 0) {
return KERN_INVALID_ARGUMENT;
}
task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
queue_iterate(&task->threads, thread, thread_t, task_threads) {
act_set_astledger(thread);
}
return KERN_SUCCESS;
}
int
task_resume_cpumon(task_t task)
{
kern_return_t kret;
if (!task) {
return EINVAL;
}
task_lock(task);
kret = task_enable_cpumon_locked(task);
task_unlock(task);
return kret;
}
/* duplicate values from bsd/sys/process_policy.h */
#define PROC_POLICY_CPUMON_DISABLE 0xFF
#define PROC_POLICY_CPUMON_DEFAULTS 0xFE
static int
task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int cpumon_entitled)
{
uint64_t abstime = 0;
uint64_t limittime = 0;
lck_mtx_assert(&task->lock, LCK_MTX_ASSERT_OWNED);
/* By default, refill once per second */
if (interval == 0) {
interval = NSEC_PER_SEC;
}
if (percentage != 0) {
if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
boolean_t warn = FALSE;
/*
* A per-thread CPU limit on a task generates an exception
* (LEDGER_ACTION_EXCEPTION) if any one thread in the task
* exceeds the limit.
*/
if (percentage == PROC_POLICY_CPUMON_DISABLE) {
if (cpumon_entitled) {
/* 25095698 - task_disable_cpumon() should be reliable */
task_disable_cpumon(task);
return 0;
}
/*
* This task wishes to disable the CPU usage monitor, but it's
* missing the required entitlement:
* com.apple.private.kernel.override-cpumon
*
* Instead, treat this as a request to reset its params
* back to the defaults.
*/
warn = TRUE;
percentage = PROC_POLICY_CPUMON_DEFAULTS;
}
if (percentage == PROC_POLICY_CPUMON_DEFAULTS) {
percentage = proc_max_cpumon_percentage;
interval = proc_max_cpumon_interval;
}
if (percentage > 100) {
percentage = 100;
}
/*
* Passing in an interval of -1 means either:
* - Leave the interval as-is, if there's already a per-thread
* limit configured
* - Use the system default.
*/
if (interval == -1ULL) {
if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
interval = task->rusage_cpu_perthr_interval;
} else {
interval = proc_max_cpumon_interval;
}
}
/*
* Enforce global caps on CPU usage monitor here if the process is not
* entitled to escape the global caps.
*/
if ((percentage > proc_max_cpumon_percentage) && (cpumon_entitled == 0)) {
warn = TRUE;
percentage = proc_max_cpumon_percentage;
}
if ((interval > proc_max_cpumon_interval) && (cpumon_entitled == 0)) {
warn = TRUE;
interval = proc_max_cpumon_interval;
}
if (warn) {
int pid = 0;
const char *procname = "unknown";
#ifdef MACH_BSD
pid = proc_selfpid();
if (current_task()->bsd_info != NULL) {
procname = proc_name_address(current_task()->bsd_info);
}
#endif
printf("process %s[%d] denied attempt to escape CPU monitor"
" (missing required entitlement).\n", procname, pid);
}
/* configure the limit values */
task->rusage_cpu_perthr_percentage = percentage;
task->rusage_cpu_perthr_interval = interval;
/* and enable the CPU monitor */
(void)task_enable_cpumon_locked(task);
} else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) {
/*
* Currently, a proc-wide CPU limit always blocks if the limit is
* exceeded (LEDGER_ACTION_BLOCK).
*/
task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PROC_LIMIT;
task->rusage_cpu_percentage = percentage;
task->rusage_cpu_interval = interval;
limittime = (interval * percentage) / 100;
nanoseconds_to_absolutetime(limittime, &abstime);
ledger_set_limit(task->ledger, task_ledgers.cpu_time, abstime, 0);
ledger_set_period(task->ledger, task_ledgers.cpu_time, interval);
ledger_set_action(task->ledger, task_ledgers.cpu_time, LEDGER_ACTION_BLOCK);
}
}
if (deadline != 0) {
assert(scope == TASK_RUSECPU_FLAGS_DEADLINE);
/* if already in use, cancel and wait for it to cleanout */
if (task->rusage_cpu_callt != NULL) {
task_unlock(task);
thread_call_cancel_wait(task->rusage_cpu_callt);
task_lock(task);
}
if (task->rusage_cpu_callt == NULL) {
task->rusage_cpu_callt = thread_call_allocate_with_priority(task_action_cpuusage, (thread_call_param_t)task, THREAD_CALL_PRIORITY_KERNEL);
}
/* setup callout */
if (task->rusage_cpu_callt != 0) {
uint64_t save_abstime = 0;
task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_DEADLINE;
task->rusage_cpu_deadline = deadline;
nanoseconds_to_absolutetime(deadline, &abstime);
save_abstime = abstime;
clock_absolutetime_interval_to_deadline(save_abstime, &abstime);
thread_call_enter_delayed(task->rusage_cpu_callt, abstime);
}
}
return 0;
}
int
task_clear_cpuusage(task_t task, int cpumon_entitled)
{
int retval = 0;
task_lock(task);
retval = task_clear_cpuusage_locked(task, cpumon_entitled);
task_unlock(task);
return retval;
}
static int
task_clear_cpuusage_locked(task_t task, int cpumon_entitled)
{
thread_call_t savecallt;
/* cancel percentage handling if set */
if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) {
task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_PROC_LIMIT;
ledger_set_limit(task->ledger, task_ledgers.cpu_time, LEDGER_LIMIT_INFINITY, 0);
task->rusage_cpu_percentage = 0;
task->rusage_cpu_interval = 0;
}
/*
* Disable the CPU usage monitor.
*/
if (cpumon_entitled) {
task_disable_cpumon(task);
}
/* cancel deadline handling if set */
if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) {
task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_DEADLINE;
if (task->rusage_cpu_callt != 0) {
savecallt = task->rusage_cpu_callt;
task->rusage_cpu_callt = NULL;
task->rusage_cpu_deadline = 0;
task_unlock(task);
thread_call_cancel_wait(savecallt);
thread_call_free(savecallt);
task_lock(task);
}
}
return 0;
}
/* called by ledger unit to enforce action due to resource usage criteria being met */
static void
task_action_cpuusage(thread_call_param_t param0, __unused thread_call_param_t param1)
{
task_t task = (task_t)param0;
(void)task_apply_resource_actions(task, TASK_POLICY_CPU_RESOURCE_USAGE);
return;
}
/*
* Routines for taskwatch and pidbind
*/
#if CONFIG_TASKWATCH
LCK_MTX_DECLARE_ATTR(task_watch_mtx, &task_lck_grp, &task_lck_attr);
static void
task_watch_lock(void)
{
lck_mtx_lock(&task_watch_mtx);
}
static void
task_watch_unlock(void)
{
lck_mtx_unlock(&task_watch_mtx);
}
static void
add_taskwatch_locked(task_t task, task_watch_t * twp)
{
queue_enter(&task->task_watchers, twp, task_watch_t *, tw_links);
task->num_taskwatchers++;
}
static void
remove_taskwatch_locked(task_t task, task_watch_t * twp)
{
queue_remove(&task->task_watchers, twp, task_watch_t *, tw_links);
task->num_taskwatchers--;
}
int
proc_lf_pidbind(task_t curtask, uint64_t tid, task_t target_task, int bind)
{
thread_t target_thread = NULL;
int ret = 0, setbg = 0;
task_watch_t *twp = NULL;
task_t task = TASK_NULL;
target_thread = task_findtid(curtask, tid);
if (target_thread == NULL) {
return ESRCH;
}
/* holds thread reference */
if (bind != 0) {
/* task is still active ? */
task_lock(target_task);
if (target_task->active == 0) {
task_unlock(target_task);
ret = ESRCH;
goto out;
}
task_unlock(target_task);
twp = (task_watch_t *)kalloc(sizeof(task_watch_t));
if (twp == NULL) {
task_watch_unlock();
ret = ENOMEM;
goto out;
}
bzero(twp, sizeof(task_watch_t));
task_watch_lock();
if (target_thread->taskwatch != NULL) {
/* already bound to another task */
task_watch_unlock();
kfree(twp, sizeof(task_watch_t));
ret = EBUSY;
goto out;
}
task_reference(target_task);
setbg = proc_get_effective_task_policy(target_task, TASK_POLICY_WATCHERS_BG);
twp->tw_task = target_task; /* holds the task reference */
twp->tw_thread = target_thread; /* holds the thread reference */
twp->tw_state = setbg;
twp->tw_importance = target_thread->importance;
add_taskwatch_locked(target_task, twp);
target_thread->taskwatch = twp;
task_watch_unlock();
if (setbg) {
set_thread_appbg(target_thread, setbg, INT_MIN);
}
/* retain the thread reference as it is in twp */
target_thread = NULL;
} else {
/* unbind */
task_watch_lock();
if ((twp = target_thread->taskwatch) != NULL) {
task = twp->tw_task;
target_thread->taskwatch = NULL;
remove_taskwatch_locked(task, twp);
task_watch_unlock();
task_deallocate(task); /* drop task ref in twp */
set_thread_appbg(target_thread, 0, twp->tw_importance);
thread_deallocate(target_thread); /* drop thread ref in twp */
kfree(twp, sizeof(task_watch_t));
} else {
task_watch_unlock();
ret = 0; /* return success if it not alredy bound */
goto out;
}
}
out:
thread_deallocate(target_thread); /* drop thread ref acquired in this routine */
return ret;
}
static void
set_thread_appbg(thread_t thread, int setbg, __unused int importance)
{
int enable = (setbg ? TASK_POLICY_ENABLE : TASK_POLICY_DISABLE);
proc_set_thread_policy(thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_PIDBIND_BG, enable);
}
static void
apply_appstate_watchers(task_t task)
{
int numwatchers = 0, i, j, setbg;
thread_watchlist_t * threadlist;
task_watch_t * twp;
retry:
/* if no watchers on the list return */
if ((numwatchers = task->num_taskwatchers) == 0) {
return;
}
threadlist = kheap_alloc(KHEAP_TEMP,
numwatchers * sizeof(thread_watchlist_t), Z_WAITOK | Z_ZERO);
if (threadlist == NULL) {
return;
}
task_watch_lock();
/*serialize application of app state changes */
if (task->watchapplying != 0) {
lck_mtx_sleep(&task_watch_mtx, LCK_SLEEP_DEFAULT, &task->watchapplying, THREAD_UNINT);
task_watch_unlock();
kheap_free(KHEAP_TEMP, threadlist, numwatchers * sizeof(thread_watchlist_t));
goto retry;
}
if (numwatchers != task->num_taskwatchers) {
task_watch_unlock();
kheap_free(KHEAP_TEMP, threadlist, numwatchers * sizeof(thread_watchlist_t));
goto retry;
}
setbg = proc_get_effective_task_policy(task, TASK_POLICY_WATCHERS_BG);
task->watchapplying = 1;
i = 0;
queue_iterate(&task->task_watchers, twp, task_watch_t *, tw_links) {
threadlist[i].thread = twp->tw_thread;
thread_reference(threadlist[i].thread);
if (setbg != 0) {
twp->tw_importance = twp->tw_thread->importance;
threadlist[i].importance = INT_MIN;
} else {
threadlist[i].importance = twp->tw_importance;
}
i++;
if (i > numwatchers) {
break;
}
}
task_watch_unlock();
for (j = 0; j < i; j++) {
set_thread_appbg(threadlist[j].thread, setbg, threadlist[j].importance);
thread_deallocate(threadlist[j].thread);
}
kheap_free(KHEAP_TEMP, threadlist, numwatchers * sizeof(thread_watchlist_t));
task_watch_lock();
task->watchapplying = 0;
thread_wakeup_one(&task->watchapplying);
task_watch_unlock();
}
void
thead_remove_taskwatch(thread_t thread)
{
task_watch_t * twp;
int importance = 0;
task_watch_lock();
if ((twp = thread->taskwatch) != NULL) {
thread->taskwatch = NULL;
remove_taskwatch_locked(twp->tw_task, twp);
}
task_watch_unlock();
if (twp != NULL) {
thread_deallocate(twp->tw_thread);
task_deallocate(twp->tw_task);
importance = twp->tw_importance;
kfree(twp, sizeof(task_watch_t));
/* remove the thread and networkbg */
set_thread_appbg(thread, 0, importance);
}
}
void
task_removewatchers(task_t task)
{
queue_head_t queue;
task_watch_t *twp;
task_watch_lock();
queue_new_head(&task->task_watchers, &queue, task_watch_t *, tw_links);
queue_init(&task->task_watchers);
queue_iterate(&queue, twp, task_watch_t *, tw_links) {
/*
* Since the linkage is removed and thead state cleanup is already set up,
* remove the refernce from the thread.
*/
twp->tw_thread->taskwatch = NULL; /* removed linkage, clear thread holding ref */
}
task->num_taskwatchers = 0;
task_watch_unlock();
while (!queue_empty(&queue)) {
queue_remove_first(&queue, twp, task_watch_t *, tw_links);
/* remove thread and network bg */
set_thread_appbg(twp->tw_thread, 0, twp->tw_importance);
thread_deallocate(twp->tw_thread);
task_deallocate(twp->tw_task);
kfree(twp, sizeof(task_watch_t));
}
}
#endif /* CONFIG_TASKWATCH */
/*
* Routines for importance donation/inheritance/boosting
*/
static void
task_importance_update_live_donor(task_t target_task)
{
#if IMPORTANCE_INHERITANCE
ipc_importance_task_t task_imp;
task_imp = ipc_importance_for_task(target_task, FALSE);
if (IIT_NULL != task_imp) {
ipc_importance_task_update_live_donor(task_imp);
ipc_importance_task_release(task_imp);
}
#endif /* IMPORTANCE_INHERITANCE */
}
void
task_importance_mark_donor(task_t task, boolean_t donating)
{
#if IMPORTANCE_INHERITANCE
ipc_importance_task_t task_imp;
task_imp = ipc_importance_for_task(task, FALSE);
if (IIT_NULL != task_imp) {
ipc_importance_task_mark_donor(task_imp, donating);
ipc_importance_task_release(task_imp);
}
#endif /* IMPORTANCE_INHERITANCE */
}
void
task_importance_mark_live_donor(task_t task, boolean_t live_donating)
{
#if IMPORTANCE_INHERITANCE
ipc_importance_task_t task_imp;
task_imp = ipc_importance_for_task(task, FALSE);
if (IIT_NULL != task_imp) {
ipc_importance_task_mark_live_donor(task_imp, live_donating);
ipc_importance_task_release(task_imp);
}
#endif /* IMPORTANCE_INHERITANCE */
}
void
task_importance_mark_receiver(task_t task, boolean_t receiving)
{
#if IMPORTANCE_INHERITANCE
ipc_importance_task_t task_imp;
task_imp = ipc_importance_for_task(task, FALSE);
if (IIT_NULL != task_imp) {
ipc_importance_task_mark_receiver(task_imp, receiving);
ipc_importance_task_release(task_imp);
}
#endif /* IMPORTANCE_INHERITANCE */
}
void
task_importance_mark_denap_receiver(task_t task, boolean_t denap)
{
#if IMPORTANCE_INHERITANCE
ipc_importance_task_t task_imp;
task_imp = ipc_importance_for_task(task, FALSE);
if (IIT_NULL != task_imp) {
ipc_importance_task_mark_denap_receiver(task_imp, denap);
ipc_importance_task_release(task_imp);
}
#endif /* IMPORTANCE_INHERITANCE */
}
void
task_importance_reset(__imp_only task_t task)
{
#if IMPORTANCE_INHERITANCE
ipc_importance_task_t task_imp;
/* TODO: Lower importance downstream before disconnect */
task_imp = task->task_imp_base;
ipc_importance_reset(task_imp, FALSE);
task_importance_update_live_donor(task);
#endif /* IMPORTANCE_INHERITANCE */
}
void
task_importance_init_from_parent(__imp_only task_t new_task, __imp_only task_t parent_task)
{
#if IMPORTANCE_INHERITANCE
ipc_importance_task_t new_task_imp = IIT_NULL;
new_task->task_imp_base = NULL;
if (!parent_task) {
return;
}
if (task_is_marked_importance_donor(parent_task)) {
new_task_imp = ipc_importance_for_task(new_task, FALSE);
assert(IIT_NULL != new_task_imp);
ipc_importance_task_mark_donor(new_task_imp, TRUE);
}
if (task_is_marked_live_importance_donor(parent_task)) {
if (IIT_NULL == new_task_imp) {
new_task_imp = ipc_importance_for_task(new_task, FALSE);
}
assert(IIT_NULL != new_task_imp);
ipc_importance_task_mark_live_donor(new_task_imp, TRUE);
}
/* Do not inherit 'receiver' on fork, vfexec or true spawn */
if (task_is_exec_copy(new_task) &&
task_is_marked_importance_receiver(parent_task)) {
if (IIT_NULL == new_task_imp) {
new_task_imp = ipc_importance_for_task(new_task, FALSE);
}
assert(IIT_NULL != new_task_imp);
ipc_importance_task_mark_receiver(new_task_imp, TRUE);
}
if (task_is_marked_importance_denap_receiver(parent_task)) {
if (IIT_NULL == new_task_imp) {
new_task_imp = ipc_importance_for_task(new_task, FALSE);
}
assert(IIT_NULL != new_task_imp);
ipc_importance_task_mark_denap_receiver(new_task_imp, TRUE);
}
if (IIT_NULL != new_task_imp) {
assert(new_task->task_imp_base == new_task_imp);
ipc_importance_task_release(new_task_imp);
}
#endif /* IMPORTANCE_INHERITANCE */
}
#if IMPORTANCE_INHERITANCE
/*
* Sets the task boost bit to the provided value. Does NOT run the update function.
*
* Task lock must be held.
*/
static void
task_set_boost_locked(task_t task, boolean_t boost_active)
{
#if IMPORTANCE_TRACE
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_START),
proc_selfpid(), task_pid(task), trequested_0(task), trequested_1(task), 0);
#endif /* IMPORTANCE_TRACE */
task->requested_policy.trp_boosted = boost_active;
#if IMPORTANCE_TRACE
if (boost_active == TRUE) {
DTRACE_BOOST2(boost, task_t, task, int, task_pid(task));
} else {
DTRACE_BOOST2(unboost, task_t, task, int, task_pid(task));
}
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_END),
proc_selfpid(), task_pid(task),
trequested_0(task), trequested_1(task), 0);
#endif /* IMPORTANCE_TRACE */
}
/*
* Sets the task boost bit to the provided value and applies the update.
*
* Task lock must be held. Must call update complete after unlocking the task.
*/
void
task_update_boost_locked(task_t task, boolean_t boost_active, task_pend_token_t pend_token)
{
task_set_boost_locked(task, boost_active);
task_policy_update_locked(task, pend_token);
}
/*
* Check if this task should donate importance.
*
* May be called without taking the task lock. In that case, donor status can change
* so you must check only once for each donation event.
*/
boolean_t
task_is_importance_donor(task_t task)
{
if (task->task_imp_base == IIT_NULL) {
return FALSE;
}
return ipc_importance_task_is_donor(task->task_imp_base);
}
/*
* Query the status of the task's donor mark.
*/
boolean_t
task_is_marked_importance_donor(task_t task)
{
if (task->task_imp_base == IIT_NULL) {
return FALSE;
}
return ipc_importance_task_is_marked_donor(task->task_imp_base);
}
/*
* Query the status of the task's live donor and donor mark.
*/
boolean_t
task_is_marked_live_importance_donor(task_t task)
{
if (task->task_imp_base == IIT_NULL) {
return FALSE;
}
return ipc_importance_task_is_marked_live_donor(task->task_imp_base);
}
/*
* This routine may be called without holding task lock
* since the value of imp_receiver can never be unset.
*/
boolean_t
task_is_importance_receiver(task_t task)
{
if (task->task_imp_base == IIT_NULL) {
return FALSE;
}
return ipc_importance_task_is_marked_receiver(task->task_imp_base);
}
/*
* Query the task's receiver mark.
*/
boolean_t
task_is_marked_importance_receiver(task_t task)
{
if (task->task_imp_base == IIT_NULL) {
return FALSE;
}
return ipc_importance_task_is_marked_receiver(task->task_imp_base);
}
/*
* This routine may be called without holding task lock
* since the value of de-nap receiver can never be unset.
*/
boolean_t
task_is_importance_denap_receiver(task_t task)
{
if (task->task_imp_base == IIT_NULL) {
return FALSE;
}
return ipc_importance_task_is_denap_receiver(task->task_imp_base);
}
/*
* Query the task's de-nap receiver mark.
*/
boolean_t
task_is_marked_importance_denap_receiver(task_t task)
{
if (task->task_imp_base == IIT_NULL) {
return FALSE;
}
return ipc_importance_task_is_marked_denap_receiver(task->task_imp_base);
}
/*
* This routine may be called without holding task lock
* since the value of imp_receiver can never be unset.
*/
boolean_t
task_is_importance_receiver_type(task_t task)
{
if (task->task_imp_base == IIT_NULL) {
return FALSE;
}
return task_is_importance_receiver(task) ||
task_is_importance_denap_receiver(task);
}
/*
* External importance assertions are managed by the process in userspace
* Internal importance assertions are the responsibility of the kernel
* Assertions are changed from internal to external via task_importance_externalize_assertion
*/
int
task_importance_hold_internal_assertion(task_t target_task, uint32_t count)
{
ipc_importance_task_t task_imp;
kern_return_t ret;
/* may be first time, so allow for possible importance setup */
task_imp = ipc_importance_for_task(target_task, FALSE);
if (IIT_NULL == task_imp) {
return EOVERFLOW;
}
ret = ipc_importance_task_hold_internal_assertion(task_imp, count);
ipc_importance_task_release(task_imp);
return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
}
int
task_importance_hold_file_lock_assertion(task_t target_task, uint32_t count)
{
ipc_importance_task_t task_imp;
kern_return_t ret;
/* may be first time, so allow for possible importance setup */
task_imp = ipc_importance_for_task(target_task, FALSE);
if (IIT_NULL == task_imp) {
return EOVERFLOW;
}
ret = ipc_importance_task_hold_file_lock_assertion(task_imp, count);
ipc_importance_task_release(task_imp);
return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
}
int
task_importance_hold_legacy_external_assertion(task_t target_task, uint32_t count)
{
ipc_importance_task_t task_imp;
kern_return_t ret;
/* must already have set up an importance */
task_imp = target_task->task_imp_base;
if (IIT_NULL == task_imp) {
return EOVERFLOW;
}
ret = ipc_importance_task_hold_legacy_external_assertion(task_imp, count);
return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
}
int
task_importance_drop_file_lock_assertion(task_t target_task, uint32_t count)
{
ipc_importance_task_t task_imp;
kern_return_t ret;
/* must already have set up an importance */
task_imp = target_task->task_imp_base;
if (IIT_NULL == task_imp) {
return EOVERFLOW;
}
ret = ipc_importance_task_drop_file_lock_assertion(target_task->task_imp_base, count);
return (KERN_SUCCESS != ret) ? EOVERFLOW : 0;
}
int
task_importance_drop_legacy_external_assertion(task_t target_task, uint32_t count)
{
ipc_importance_task_t task_imp;
kern_return_t ret;
/* must already have set up an importance */
task_imp = target_task->task_imp_base;
if (IIT_NULL == task_imp) {
return EOVERFLOW;
}
ret = ipc_importance_task_drop_legacy_external_assertion(task_imp, count);
return (KERN_SUCCESS != ret) ? EOVERFLOW : 0;
}
static void
task_add_importance_watchport(task_t task, mach_port_t port, int *boostp)
{
int boost = 0;
__imptrace_only int released_pid = 0;
__imptrace_only int pid = task_pid(task);
ipc_importance_task_t release_imp_task = IIT_NULL;
if (IP_VALID(port) != 0) {
ipc_importance_task_t new_imp_task = ipc_importance_for_task(task, FALSE);
ip_lock(port);
/*
* The port must have been marked tempowner already.
* This also filters out ports whose receive rights
* are already enqueued in a message, as you can't
* change the right's destination once it's already
* on its way.
*/
if (port->ip_tempowner != 0) {
assert(port->ip_impdonation != 0);
boost = port->ip_impcount;
if (IIT_NULL != port->ip_imp_task) {
/*
* if this port is already bound to a task,
* release the task reference and drop any
* watchport-forwarded boosts
*/
release_imp_task = port->ip_imp_task;
port->ip_imp_task = IIT_NULL;
}
/* mark the port is watching another task (reference held in port->ip_imp_task) */
if (ipc_importance_task_is_marked_receiver(new_imp_task)) {
port->ip_imp_task = new_imp_task;
new_imp_task = IIT_NULL;
}
}
ip_unlock(port);
if (IIT_NULL != new_imp_task) {
ipc_importance_task_release(new_imp_task);
}
if (IIT_NULL != release_imp_task) {
if (boost > 0) {
ipc_importance_task_drop_internal_assertion(release_imp_task, boost);
}
// released_pid = task_pid(release_imp_task); /* TODO: Need ref-safe way to get pid */
ipc_importance_task_release(release_imp_task);
}
#if IMPORTANCE_TRACE
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_WATCHPORT, 0)) | DBG_FUNC_NONE,
proc_selfpid(), pid, boost, released_pid, 0);
#endif /* IMPORTANCE_TRACE */
}
*boostp = boost;
return;
}
#endif /* IMPORTANCE_INHERITANCE */
/*
* Routines for VM to query task importance
*/
/*
* Order to be considered while estimating importance
* for low memory notification and purging purgeable memory.
*/
#define TASK_IMPORTANCE_FOREGROUND 4
#define TASK_IMPORTANCE_NOTDARWINBG 1
/*
* (Un)Mark the task as a privileged listener for memory notifications.
* if marked, this task will be among the first to be notified amongst
* the bulk of all other tasks when the system enters a pressure level
* of interest to this task.
*/
int
task_low_mem_privileged_listener(task_t task, boolean_t new_value, boolean_t *old_value)
{
if (old_value != NULL) {
*old_value = (boolean_t)task->low_mem_privileged_listener;
} else {
task_lock(task);
task->low_mem_privileged_listener = (uint32_t)new_value;
task_unlock(task);
}
return 0;
}
/*
* Checks if the task is already notified.
*
* Condition: task lock should be held while calling this function.
*/
boolean_t
task_has_been_notified(task_t task, int pressurelevel)
{
if (task == NULL) {
return FALSE;
}
if (pressurelevel == kVMPressureWarning) {
return task->low_mem_notified_warn ? TRUE : FALSE;
} else if (pressurelevel == kVMPressureCritical) {
return task->low_mem_notified_critical ? TRUE : FALSE;
} else {
return TRUE;
}
}
/*
* Checks if the task is used for purging.
*
* Condition: task lock should be held while calling this function.
*/
boolean_t
task_used_for_purging(task_t task, int pressurelevel)
{
if (task == NULL) {
return FALSE;
}
if (pressurelevel == kVMPressureWarning) {
return task->purged_memory_warn ? TRUE : FALSE;
} else if (pressurelevel == kVMPressureCritical) {
return task->purged_memory_critical ? TRUE : FALSE;
} else {
return TRUE;
}
}
/*
* Mark the task as notified with memory notification.
*
* Condition: task lock should be held while calling this function.
*/
void
task_mark_has_been_notified(task_t task, int pressurelevel)
{
if (task == NULL) {
return;
}
if (pressurelevel == kVMPressureWarning) {
task->low_mem_notified_warn = 1;
} else if (pressurelevel == kVMPressureCritical) {
task->low_mem_notified_critical = 1;
}
}
/*
* Mark the task as purged.
*
* Condition: task lock should be held while calling this function.
*/
void
task_mark_used_for_purging(task_t task, int pressurelevel)
{
if (task == NULL) {
return;
}
if (pressurelevel == kVMPressureWarning) {
task->purged_memory_warn = 1;
} else if (pressurelevel == kVMPressureCritical) {
task->purged_memory_critical = 1;
}
}
/*
* Mark the task eligible for low memory notification.
*
* Condition: task lock should be held while calling this function.
*/
void
task_clear_has_been_notified(task_t task, int pressurelevel)
{
if (task == NULL) {
return;
}
if (pressurelevel == kVMPressureWarning) {
task->low_mem_notified_warn = 0;
} else if (pressurelevel == kVMPressureCritical) {
task->low_mem_notified_critical = 0;
}
}
/*
* Mark the task eligible for purging its purgeable memory.
*
* Condition: task lock should be held while calling this function.
*/
void
task_clear_used_for_purging(task_t task)
{
if (task == NULL) {
return;
}
task->purged_memory_warn = 0;
task->purged_memory_critical = 0;
}
/*
* Estimate task importance for purging its purgeable memory
* and low memory notification.
*
* Importance is calculated in the following order of criteria:
* -Task role : Background vs Foreground
* -Boost status: Not boosted vs Boosted
* -Darwin BG status.
*
* Returns: Estimated task importance. Less important task will have lower
* estimated importance.
*/
int
task_importance_estimate(task_t task)
{
int task_importance = 0;
if (task == NULL) {
return 0;
}
if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION) {
task_importance += TASK_IMPORTANCE_FOREGROUND;
}
if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG) == 0) {
task_importance += TASK_IMPORTANCE_NOTDARWINBG;
}
return task_importance;
}
boolean_t
task_has_assertions(task_t task)
{
return task->task_imp_base->iit_assertcnt? TRUE : FALSE;
}
kern_return_t
send_resource_violation(typeof(send_cpu_usage_violation) sendfunc,
task_t violator,
struct ledger_entry_info *linfo,
resource_notify_flags_t flags)
{
#ifndef MACH_BSD
return KERN_NOT_SUPPORTED;
#else
kern_return_t kr = KERN_SUCCESS;
proc_t proc = NULL;
posix_path_t proc_path = "";
proc_name_t procname = "<unknown>";
int pid = -1;
clock_sec_t secs;
clock_nsec_t nsecs;
mach_timespec_t timestamp;
thread_t curthread = current_thread();
ipc_port_t dstport = MACH_PORT_NULL;
if (!violator) {
kr = KERN_INVALID_ARGUMENT; goto finish;
}
/* extract violator information */
task_lock(violator);
if (!(proc = get_bsdtask_info(violator))) {
task_unlock(violator);
kr = KERN_INVALID_ARGUMENT; goto finish;
}
(void)mig_strncpy(procname, proc_best_name(proc), sizeof(procname));
pid = task_pid(violator);
if (flags & kRNFatalLimitFlag) {
kr = proc_pidpathinfo_internal(proc, 0, proc_path,
sizeof(proc_path), NULL);
}
task_unlock(violator);
if (kr) {
goto finish;
}
/* violation time ~ now */
clock_get_calendar_nanotime(&secs, &nsecs);
timestamp.tv_sec = (int32_t)secs;
timestamp.tv_nsec = (int32_t)nsecs;
/* 25567702 tracks widening mach_timespec_t */
/* send message */
kr = host_get_special_port(host_priv_self(), HOST_LOCAL_NODE,
HOST_RESOURCE_NOTIFY_PORT, &dstport);
if (kr) {
goto finish;
}
thread_set_honor_qlimit(curthread);
kr = sendfunc(dstport,
procname, pid, proc_path, timestamp,
linfo->lei_balance, linfo->lei_last_refill,
linfo->lei_limit, linfo->lei_refill_period,
flags);
thread_clear_honor_qlimit(curthread);
ipc_port_release_send(dstport);
finish:
return kr;
#endif /* MACH_BSD */
}
/*
* Resource violations trace four 64-bit integers. For K32, two additional
* codes are allocated, the first with the low nibble doubled. So if the K64
* code is 0x042, the K32 codes would be 0x044 and 0x45.
*/
#ifdef __LP64__
void
trace_resource_violation(uint16_t code,
struct ledger_entry_info *linfo)
{
KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, code),
linfo->lei_balance, linfo->lei_last_refill,
linfo->lei_limit, linfo->lei_refill_period);
}
#else /* K32 */
/* TODO: create/find a trace_two_LLs() for K32 systems */
#define MASK32 0xffffffff
void
trace_resource_violation(uint16_t code,
struct ledger_entry_info *linfo)
{
int8_t lownibble = (code & 0x3) * 2;
int16_t codeA = (code & 0xffc) | lownibble;
int16_t codeB = codeA + 1;
int32_t balance_high = (linfo->lei_balance >> 32) & MASK32;
int32_t balance_low = linfo->lei_balance & MASK32;
int32_t last_refill_high = (linfo->lei_last_refill >> 32) & MASK32;
int32_t last_refill_low = linfo->lei_last_refill & MASK32;
int32_t limit_high = (linfo->lei_limit >> 32) & MASK32;
int32_t limit_low = linfo->lei_limit & MASK32;
int32_t refill_period_high = (linfo->lei_refill_period >> 32) & MASK32;
int32_t refill_period_low = linfo->lei_refill_period & MASK32;
KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, codeA),
balance_high, balance_low,
last_refill_high, last_refill_low);
KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, codeB),
limit_high, limit_low,
refill_period_high, refill_period_low);
}
#endif /* K64/K32 */