darling-xnu/osfmk/kern/thread_call.c
2023-05-16 21:41:14 -07:00

2250 lines
60 KiB
C

/*
* Copyright (c) 1993-1995, 1999-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <mach/mach_types.h>
#include <mach/thread_act.h>
#include <kern/kern_types.h>
#include <kern/zalloc.h>
#include <kern/sched_prim.h>
#include <kern/clock.h>
#include <kern/task.h>
#include <kern/thread.h>
#include <kern/waitq.h>
#include <kern/ledger.h>
#include <kern/policy_internal.h>
#include <vm/vm_pageout.h>
#include <kern/thread_call.h>
#include <kern/timer_call.h>
#include <libkern/OSAtomic.h>
#include <kern/timer_queue.h>
#include <sys/kdebug.h>
#if CONFIG_DTRACE
#include <mach/sdt.h>
#endif
#include <machine/machine_routines.h>
static ZONE_DECLARE(thread_call_zone, "thread_call",
sizeof(thread_call_data_t), ZC_NOENCRYPT);
typedef enum {
TCF_ABSOLUTE = 0,
TCF_CONTINUOUS = 1,
TCF_COUNT = 2,
} thread_call_flavor_t;
__options_decl(thread_call_group_flags_t, uint32_t, {
TCG_NONE = 0x0,
TCG_PARALLEL = 0x1,
TCG_DEALLOC_ACTIVE = 0x2,
});
static struct thread_call_group {
__attribute__((aligned(128))) lck_ticket_t tcg_lock;
const char * tcg_name;
queue_head_t pending_queue;
uint32_t pending_count;
queue_head_t delayed_queues[TCF_COUNT];
struct priority_queue_deadline_min delayed_pqueues[TCF_COUNT];
timer_call_data_t delayed_timers[TCF_COUNT];
timer_call_data_t dealloc_timer;
struct waitq idle_waitq;
uint64_t idle_timestamp;
uint32_t idle_count, active_count, blocked_count;
uint32_t tcg_thread_pri;
uint32_t target_thread_count;
thread_call_group_flags_t tcg_flags;
struct waitq waiters_waitq;
} thread_call_groups[THREAD_CALL_INDEX_MAX] = {
[THREAD_CALL_INDEX_HIGH] = {
.tcg_name = "high",
.tcg_thread_pri = BASEPRI_PREEMPT_HIGH,
.target_thread_count = 4,
.tcg_flags = TCG_NONE,
},
[THREAD_CALL_INDEX_KERNEL] = {
.tcg_name = "kernel",
.tcg_thread_pri = BASEPRI_KERNEL,
.target_thread_count = 1,
.tcg_flags = TCG_PARALLEL,
},
[THREAD_CALL_INDEX_USER] = {
.tcg_name = "user",
.tcg_thread_pri = BASEPRI_DEFAULT,
.target_thread_count = 1,
.tcg_flags = TCG_PARALLEL,
},
[THREAD_CALL_INDEX_LOW] = {
.tcg_name = "low",
.tcg_thread_pri = MAXPRI_THROTTLE,
.target_thread_count = 1,
.tcg_flags = TCG_PARALLEL,
},
[THREAD_CALL_INDEX_KERNEL_HIGH] = {
.tcg_name = "kernel-high",
.tcg_thread_pri = BASEPRI_PREEMPT,
.target_thread_count = 2,
.tcg_flags = TCG_NONE,
},
[THREAD_CALL_INDEX_QOS_UI] = {
.tcg_name = "qos-ui",
.tcg_thread_pri = BASEPRI_FOREGROUND,
.target_thread_count = 1,
.tcg_flags = TCG_NONE,
},
[THREAD_CALL_INDEX_QOS_IN] = {
.tcg_name = "qos-in",
.tcg_thread_pri = BASEPRI_USER_INITIATED,
.target_thread_count = 1,
.tcg_flags = TCG_NONE,
},
[THREAD_CALL_INDEX_QOS_UT] = {
.tcg_name = "qos-ut",
.tcg_thread_pri = BASEPRI_UTILITY,
.target_thread_count = 1,
.tcg_flags = TCG_NONE,
},
};
typedef struct thread_call_group *thread_call_group_t;
#define INTERNAL_CALL_COUNT 768
#define THREAD_CALL_DEALLOC_INTERVAL_NS (5 * NSEC_PER_MSEC) /* 5 ms */
#define THREAD_CALL_ADD_RATIO 4
#define THREAD_CALL_MACH_FACTOR_CAP 3
#define THREAD_CALL_GROUP_MAX_THREADS 500
struct thread_call_thread_state {
struct thread_call_group * thc_group;
struct thread_call * thc_call; /* debug only, may be deallocated */
uint64_t thc_call_start;
uint64_t thc_call_soft_deadline;
uint64_t thc_call_hard_deadline;
uint64_t thc_call_pending_timestamp;
uint64_t thc_IOTES_invocation_timestamp;
thread_call_func_t thc_func;
thread_call_param_t thc_param0;
thread_call_param_t thc_param1;
};
static bool thread_call_daemon_awake = true;
/*
* This special waitq exists because the daemon thread
* might need to be woken while already holding a global waitq locked.
*/
static struct waitq daemon_waitq;
static thread_call_data_t internal_call_storage[INTERNAL_CALL_COUNT];
static queue_head_t thread_call_internal_queue;
int thread_call_internal_queue_count = 0;
static uint64_t thread_call_dealloc_interval_abs;
static void _internal_call_init(void);
static thread_call_t _internal_call_allocate(thread_call_func_t func, thread_call_param_t param0);
static bool _is_internal_call(thread_call_t call);
static void _internal_call_release(thread_call_t call);
static bool _pending_call_enqueue(thread_call_t call, thread_call_group_t group, uint64_t now);
static bool _delayed_call_enqueue(thread_call_t call, thread_call_group_t group,
uint64_t deadline, thread_call_flavor_t flavor);
static bool _call_dequeue(thread_call_t call, thread_call_group_t group);
static void thread_call_wake(thread_call_group_t group);
static void thread_call_daemon(void *arg);
static void thread_call_thread(thread_call_group_t group, wait_result_t wres);
static void thread_call_dealloc_timer(timer_call_param_t p0, timer_call_param_t p1);
static void thread_call_group_setup(thread_call_group_t group);
static void sched_call_thread(int type, thread_t thread);
static void thread_call_start_deallocate_timer(thread_call_group_t group);
static void thread_call_wait_locked(thread_call_t call, spl_t s);
static bool thread_call_wait_once_locked(thread_call_t call, spl_t s);
static boolean_t thread_call_enter_delayed_internal(thread_call_t call,
thread_call_func_t alt_func, thread_call_param_t alt_param0,
thread_call_param_t param1, uint64_t deadline,
uint64_t leeway, unsigned int flags);
/* non-static so dtrace can find it rdar://problem/31156135&31379348 */
extern void thread_call_delayed_timer(timer_call_param_t p0, timer_call_param_t p1);
LCK_GRP_DECLARE(thread_call_lck_grp, "thread_call");
static void
thread_call_lock_spin(thread_call_group_t group)
{
lck_ticket_lock(&group->tcg_lock, &thread_call_lck_grp);
}
static void
thread_call_unlock(thread_call_group_t group)
{
lck_ticket_unlock(&group->tcg_lock);
}
static void __assert_only
thread_call_assert_locked(thread_call_group_t group)
{
lck_ticket_assert_owned(&group->tcg_lock);
}
static spl_t
disable_ints_and_lock(thread_call_group_t group)
{
spl_t s = splsched();
thread_call_lock_spin(group);
return s;
}
static void
enable_ints_and_unlock(thread_call_group_t group, spl_t s)
{
thread_call_unlock(group);
splx(s);
}
/* Lock held */
static thread_call_group_t
thread_call_get_group(thread_call_t call)
{
thread_call_index_t index = call->tc_index;
assert(index >= 0 && index < THREAD_CALL_INDEX_MAX);
return &thread_call_groups[index];
}
/* Lock held */
static thread_call_flavor_t
thread_call_get_flavor(thread_call_t call)
{
return (call->tc_flags & THREAD_CALL_FLAG_CONTINUOUS) ? TCF_CONTINUOUS : TCF_ABSOLUTE;
}
/* Lock held */
static thread_call_flavor_t
thread_call_set_flavor(thread_call_t call, thread_call_flavor_t flavor)
{
assert(flavor == TCF_CONTINUOUS || flavor == TCF_ABSOLUTE);
thread_call_flavor_t old_flavor = thread_call_get_flavor(call);
if (old_flavor != flavor) {
if (flavor == TCF_CONTINUOUS) {
call->tc_flags |= THREAD_CALL_FLAG_CONTINUOUS;
} else {
call->tc_flags &= ~THREAD_CALL_FLAG_CONTINUOUS;
}
}
return old_flavor;
}
/* returns true if it was on a queue */
static bool
thread_call_enqueue_tail(
thread_call_t call,
queue_t new_queue)
{
queue_t old_queue = call->tc_queue;
thread_call_group_t group = thread_call_get_group(call);
thread_call_flavor_t flavor = thread_call_get_flavor(call);
if (old_queue != NULL &&
old_queue != &group->delayed_queues[flavor]) {
panic("thread call (%p) on bad queue (old_queue: %p)", call, old_queue);
}
if (old_queue == &group->delayed_queues[flavor]) {
priority_queue_remove(&group->delayed_pqueues[flavor], &call->tc_pqlink);
}
if (old_queue == NULL) {
enqueue_tail(new_queue, &call->tc_qlink);
} else {
re_queue_tail(new_queue, &call->tc_qlink);
}
call->tc_queue = new_queue;
return old_queue != NULL;
}
static queue_head_t *
thread_call_dequeue(
thread_call_t call)
{
queue_t old_queue = call->tc_queue;
thread_call_group_t group = thread_call_get_group(call);
thread_call_flavor_t flavor = thread_call_get_flavor(call);
if (old_queue != NULL &&
old_queue != &group->pending_queue &&
old_queue != &group->delayed_queues[flavor]) {
panic("thread call (%p) on bad queue (old_queue: %p)", call, old_queue);
}
if (old_queue == &group->delayed_queues[flavor]) {
priority_queue_remove(&group->delayed_pqueues[flavor], &call->tc_pqlink);
}
if (old_queue != NULL) {
remqueue(&call->tc_qlink);
call->tc_queue = NULL;
}
return old_queue;
}
static queue_head_t *
thread_call_enqueue_deadline(
thread_call_t call,
thread_call_group_t group,
thread_call_flavor_t flavor,
uint64_t deadline)
{
queue_t old_queue = call->tc_queue;
queue_t new_queue = &group->delayed_queues[flavor];
thread_call_flavor_t old_flavor = thread_call_set_flavor(call, flavor);
if (old_queue != NULL &&
old_queue != &group->pending_queue &&
old_queue != &group->delayed_queues[old_flavor]) {
panic("thread call (%p) on bad queue (old_queue: %p)", call, old_queue);
}
if (old_queue == new_queue) {
/* optimize the same-queue case to avoid a full re-insert */
uint64_t old_deadline = call->tc_pqlink.deadline;
call->tc_pqlink.deadline = deadline;
if (old_deadline < deadline) {
priority_queue_entry_increased(&group->delayed_pqueues[flavor],
&call->tc_pqlink);
} else {
priority_queue_entry_decreased(&group->delayed_pqueues[flavor],
&call->tc_pqlink);
}
} else {
if (old_queue == &group->delayed_queues[old_flavor]) {
priority_queue_remove(&group->delayed_pqueues[old_flavor],
&call->tc_pqlink);
}
call->tc_pqlink.deadline = deadline;
priority_queue_insert(&group->delayed_pqueues[flavor], &call->tc_pqlink);
}
if (old_queue == NULL) {
enqueue_tail(new_queue, &call->tc_qlink);
} else if (old_queue != new_queue) {
re_queue_tail(new_queue, &call->tc_qlink);
}
call->tc_queue = new_queue;
return old_queue;
}
uint64_t
thread_call_get_armed_deadline(thread_call_t call)
{
return call->tc_pqlink.deadline;
}
static bool
group_isparallel(thread_call_group_t group)
{
return (group->tcg_flags & TCG_PARALLEL) != 0;
}
static bool
thread_call_group_should_add_thread(thread_call_group_t group)
{
if ((group->active_count + group->blocked_count + group->idle_count) >= THREAD_CALL_GROUP_MAX_THREADS) {
panic("thread_call group '%s' reached max thread cap (%d): active: %d, blocked: %d, idle: %d",
group->tcg_name, THREAD_CALL_GROUP_MAX_THREADS,
group->active_count, group->blocked_count, group->idle_count);
}
if (group_isparallel(group) == false) {
if (group->pending_count > 0 && group->active_count == 0) {
return true;
}
return false;
}
if (group->pending_count > 0) {
if (group->idle_count > 0) {
return false;
}
uint32_t thread_count = group->active_count;
/*
* Add a thread if either there are no threads,
* the group has fewer than its target number of
* threads, or the amount of work is large relative
* to the number of threads. In the last case, pay attention
* to the total load on the system, and back off if
* it's high.
*/
if ((thread_count == 0) ||
(thread_count < group->target_thread_count) ||
((group->pending_count > THREAD_CALL_ADD_RATIO * thread_count) &&
(sched_mach_factor < THREAD_CALL_MACH_FACTOR_CAP))) {
return true;
}
}
return false;
}
static void
thread_call_group_setup(thread_call_group_t group)
{
lck_ticket_init(&group->tcg_lock, &thread_call_lck_grp);
queue_init(&group->pending_queue);
for (thread_call_flavor_t flavor = 0; flavor < TCF_COUNT; flavor++) {
queue_init(&group->delayed_queues[flavor]);
priority_queue_init(&group->delayed_pqueues[flavor]);
timer_call_setup(&group->delayed_timers[flavor], thread_call_delayed_timer, group);
}
timer_call_setup(&group->dealloc_timer, thread_call_dealloc_timer, group);
waitq_init(&group->waiters_waitq, SYNC_POLICY_DISABLE_IRQ);
/* Reverse the wait order so we re-use the most recently parked thread from the pool */
waitq_init(&group->idle_waitq, SYNC_POLICY_REVERSED | SYNC_POLICY_DISABLE_IRQ);
}
/*
* Simple wrapper for creating threads bound to
* thread call groups.
*/
static void
thread_call_thread_create(
thread_call_group_t group)
{
thread_t thread;
kern_return_t result;
int thread_pri = group->tcg_thread_pri;
result = kernel_thread_start_priority((thread_continue_t)thread_call_thread,
group, thread_pri, &thread);
if (result != KERN_SUCCESS) {
panic("cannot create new thread call thread %d", result);
}
if (thread_pri <= BASEPRI_KERNEL) {
/*
* THREAD_CALL_PRIORITY_KERNEL and lower don't get to run to completion
* in kernel if there are higher priority threads available.
*/
thread_set_eager_preempt(thread);
}
char name[MAXTHREADNAMESIZE] = "";
int group_thread_count = group->idle_count + group->active_count + group->blocked_count;
snprintf(name, sizeof(name), "thread call %s #%d", group->tcg_name, group_thread_count);
thread_set_thread_name(thread, name);
thread_deallocate(thread);
}
/*
* thread_call_initialize:
*
* Initialize this module, called
* early during system initialization.
*/
void
thread_call_initialize(void)
{
nanotime_to_absolutetime(0, THREAD_CALL_DEALLOC_INTERVAL_NS, &thread_call_dealloc_interval_abs);
waitq_init(&daemon_waitq, SYNC_POLICY_DISABLE_IRQ | SYNC_POLICY_FIFO);
for (uint32_t i = 0; i < THREAD_CALL_INDEX_MAX; i++) {
thread_call_group_setup(&thread_call_groups[i]);
}
_internal_call_init();
thread_t thread;
kern_return_t result;
result = kernel_thread_start_priority((thread_continue_t)thread_call_daemon,
NULL, BASEPRI_PREEMPT_HIGH + 1, &thread);
if (result != KERN_SUCCESS) {
panic("thread_call_initialize");
}
thread_deallocate(thread);
}
void
thread_call_setup_with_options(
thread_call_t call,
thread_call_func_t func,
thread_call_param_t param0,
thread_call_priority_t pri,
thread_call_options_t options)
{
bzero(call, sizeof(*call));
*call = (struct thread_call) {
.tc_func = func,
.tc_param0 = param0,
};
switch (pri) {
case THREAD_CALL_PRIORITY_HIGH:
call->tc_index = THREAD_CALL_INDEX_HIGH;
break;
case THREAD_CALL_PRIORITY_KERNEL:
call->tc_index = THREAD_CALL_INDEX_KERNEL;
break;
case THREAD_CALL_PRIORITY_USER:
call->tc_index = THREAD_CALL_INDEX_USER;
break;
case THREAD_CALL_PRIORITY_LOW:
call->tc_index = THREAD_CALL_INDEX_LOW;
break;
case THREAD_CALL_PRIORITY_KERNEL_HIGH:
call->tc_index = THREAD_CALL_INDEX_KERNEL_HIGH;
break;
default:
panic("Invalid thread call pri value: %d", pri);
break;
}
if (options & THREAD_CALL_OPTIONS_ONCE) {
call->tc_flags |= THREAD_CALL_ONCE;
}
if (options & THREAD_CALL_OPTIONS_SIGNAL) {
call->tc_flags |= THREAD_CALL_SIGNAL | THREAD_CALL_ONCE;
}
}
void
thread_call_setup(
thread_call_t call,
thread_call_func_t func,
thread_call_param_t param0)
{
thread_call_setup_with_options(call, func, param0,
THREAD_CALL_PRIORITY_HIGH, 0);
}
static void
_internal_call_init(void)
{
/* Function-only thread calls are only kept in the default HIGH group */
thread_call_group_t group = &thread_call_groups[THREAD_CALL_INDEX_HIGH];
spl_t s = disable_ints_and_lock(group);
queue_init(&thread_call_internal_queue);
for (unsigned i = 0; i < INTERNAL_CALL_COUNT; i++) {
enqueue_tail(&thread_call_internal_queue, &internal_call_storage[i].tc_qlink);
thread_call_internal_queue_count++;
}
enable_ints_and_unlock(group, s);
}
/*
* _internal_call_allocate:
*
* Allocate an internal callout entry.
*
* Called with thread_call_lock held.
*/
static thread_call_t
_internal_call_allocate(thread_call_func_t func, thread_call_param_t param0)
{
/* Function-only thread calls are only kept in the default HIGH group */
thread_call_group_t group = &thread_call_groups[THREAD_CALL_INDEX_HIGH];
spl_t s = disable_ints_and_lock(group);
thread_call_t call = qe_dequeue_head(&thread_call_internal_queue,
struct thread_call, tc_qlink);
if (call == NULL) {
panic("_internal_call_allocate: thread_call_internal_queue empty");
}
thread_call_internal_queue_count--;
thread_call_setup(call, func, param0);
/* THREAD_CALL_ALLOC not set, do not free back to zone */
assert((call->tc_flags & THREAD_CALL_ALLOC) == 0);
enable_ints_and_unlock(group, s);
return call;
}
/* Check if a call is internal and needs to be returned to the internal pool. */
static bool
_is_internal_call(thread_call_t call)
{
if (call >= internal_call_storage &&
call < &internal_call_storage[INTERNAL_CALL_COUNT]) {
assert((call->tc_flags & THREAD_CALL_ALLOC) == 0);
return true;
}
return false;
}
/*
* _internal_call_release:
*
* Release an internal callout entry which
* is no longer pending (or delayed).
*
* Called with thread_call_lock held.
*/
static void
_internal_call_release(thread_call_t call)
{
assert(_is_internal_call(call));
thread_call_group_t group = thread_call_get_group(call);
assert(group == &thread_call_groups[THREAD_CALL_INDEX_HIGH]);
thread_call_assert_locked(group);
enqueue_head(&thread_call_internal_queue, &call->tc_qlink);
thread_call_internal_queue_count++;
}
/*
* _pending_call_enqueue:
*
* Place an entry at the end of the
* pending queue, to be executed soon.
*
* Returns TRUE if the entry was already
* on a queue.
*
* Called with thread_call_lock held.
*/
static bool
_pending_call_enqueue(thread_call_t call,
thread_call_group_t group,
uint64_t now)
{
if ((THREAD_CALL_ONCE | THREAD_CALL_RUNNING)
== (call->tc_flags & (THREAD_CALL_ONCE | THREAD_CALL_RUNNING))) {
call->tc_pqlink.deadline = 0;
thread_call_flags_t flags = call->tc_flags;
call->tc_flags |= THREAD_CALL_RESCHEDULE;
assert(call->tc_queue == NULL);
return flags & THREAD_CALL_RESCHEDULE;
}
call->tc_pending_timestamp = now;
bool was_on_queue = thread_call_enqueue_tail(call, &group->pending_queue);
if (!was_on_queue) {
call->tc_submit_count++;
}
group->pending_count++;
thread_call_wake(group);
return was_on_queue;
}
/*
* _delayed_call_enqueue:
*
* Place an entry on the delayed queue,
* after existing entries with an earlier
* (or identical) deadline.
*
* Returns TRUE if the entry was already
* on a queue.
*
* Called with thread_call_lock held.
*/
static bool
_delayed_call_enqueue(
thread_call_t call,
thread_call_group_t group,
uint64_t deadline,
thread_call_flavor_t flavor)
{
if ((THREAD_CALL_ONCE | THREAD_CALL_RUNNING)
== (call->tc_flags & (THREAD_CALL_ONCE | THREAD_CALL_RUNNING))) {
call->tc_pqlink.deadline = deadline;
thread_call_flags_t flags = call->tc_flags;
call->tc_flags |= THREAD_CALL_RESCHEDULE;
assert(call->tc_queue == NULL);
thread_call_set_flavor(call, flavor);
return flags & THREAD_CALL_RESCHEDULE;
}
queue_head_t *old_queue = thread_call_enqueue_deadline(call, group, flavor, deadline);
if (old_queue == &group->pending_queue) {
group->pending_count--;
} else if (old_queue == NULL) {
call->tc_submit_count++;
}
return old_queue != NULL;
}
/*
* _call_dequeue:
*
* Remove an entry from a queue.
*
* Returns TRUE if the entry was on a queue.
*
* Called with thread_call_lock held.
*/
static bool
_call_dequeue(
thread_call_t call,
thread_call_group_t group)
{
queue_head_t *old_queue = thread_call_dequeue(call);
if (old_queue == NULL) {
return false;
}
call->tc_finish_count++;
if (old_queue == &group->pending_queue) {
group->pending_count--;
}
return true;
}
/*
* _arm_delayed_call_timer:
*
* Check if the timer needs to be armed for this flavor,
* and if so, arm it.
*
* If call is non-NULL, only re-arm the timer if the specified call
* is the first in the queue.
*
* Returns true if the timer was armed/re-armed, false if it was left unset
* Caller should cancel the timer if need be.
*
* Called with thread_call_lock held.
*/
static bool
_arm_delayed_call_timer(thread_call_t new_call,
thread_call_group_t group,
thread_call_flavor_t flavor)
{
/* No calls implies no timer needed */
if (queue_empty(&group->delayed_queues[flavor])) {
return false;
}
thread_call_t call = priority_queue_min(&group->delayed_pqueues[flavor], struct thread_call, tc_pqlink);
/* We only need to change the hard timer if this new call is the first in the list */
if (new_call != NULL && new_call != call) {
return false;
}
assert((call->tc_soft_deadline != 0) && ((call->tc_soft_deadline <= call->tc_pqlink.deadline)));
uint64_t fire_at = call->tc_soft_deadline;
if (flavor == TCF_CONTINUOUS) {
assert(call->tc_flags & THREAD_CALL_FLAG_CONTINUOUS);
fire_at = continuoustime_to_absolutetime(fire_at);
} else {
assert((call->tc_flags & THREAD_CALL_FLAG_CONTINUOUS) == 0);
}
/*
* Note: This picks the soonest-deadline call's leeway as the hard timer's leeway,
* which does not take into account later-deadline timers with a larger leeway.
* This is a valid coalescing behavior, but masks a possible window to
* fire a timer instead of going idle.
*/
uint64_t leeway = call->tc_pqlink.deadline - call->tc_soft_deadline;
timer_call_enter_with_leeway(&group->delayed_timers[flavor], (timer_call_param_t)flavor,
fire_at, leeway,
TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LEEWAY,
((call->tc_flags & THREAD_CALL_RATELIMITED) == THREAD_CALL_RATELIMITED));
return true;
}
/*
* _cancel_func_from_queue:
*
* Remove the first (or all) matching
* entries from the specified queue.
*
* Returns TRUE if any matching entries
* were found.
*
* Called with thread_call_lock held.
*/
static boolean_t
_cancel_func_from_queue(thread_call_func_t func,
thread_call_param_t param0,
thread_call_group_t group,
boolean_t remove_all,
queue_head_t *queue)
{
boolean_t call_removed = FALSE;
thread_call_t call;
qe_foreach_element_safe(call, queue, tc_qlink) {
if (call->tc_func != func ||
call->tc_param0 != param0) {
continue;
}
_call_dequeue(call, group);
if (_is_internal_call(call)) {
_internal_call_release(call);
}
call_removed = TRUE;
if (!remove_all) {
break;
}
}
return call_removed;
}
/*
* thread_call_func_delayed:
*
* Enqueue a function callout to
* occur at the stated time.
*/
void
thread_call_func_delayed(
thread_call_func_t func,
thread_call_param_t param,
uint64_t deadline)
{
(void)thread_call_enter_delayed_internal(NULL, func, param, 0, deadline, 0, 0);
}
/*
* thread_call_func_delayed_with_leeway:
*
* Same as thread_call_func_delayed(), but with
* leeway/flags threaded through.
*/
void
thread_call_func_delayed_with_leeway(
thread_call_func_t func,
thread_call_param_t param,
uint64_t deadline,
uint64_t leeway,
uint32_t flags)
{
(void)thread_call_enter_delayed_internal(NULL, func, param, 0, deadline, leeway, flags);
}
/*
* thread_call_func_cancel:
*
* Dequeue a function callout.
*
* Removes one (or all) { function, argument }
* instance(s) from either (or both)
* the pending and the delayed queue,
* in that order.
*
* Returns TRUE if any calls were cancelled.
*
* This iterates all of the pending or delayed thread calls in the group,
* which is really inefficient. Switch to an allocated thread call instead.
*
* TODO: Give 'func' thread calls their own group, so this silliness doesn't
* affect the main 'high' group.
*/
boolean_t
thread_call_func_cancel(
thread_call_func_t func,
thread_call_param_t param,
boolean_t cancel_all)
{
boolean_t result;
assert(func != NULL);
/* Function-only thread calls are only kept in the default HIGH group */
thread_call_group_t group = &thread_call_groups[THREAD_CALL_INDEX_HIGH];
spl_t s = disable_ints_and_lock(group);
if (cancel_all) {
/* exhaustively search every queue, and return true if any search found something */
result = _cancel_func_from_queue(func, param, group, cancel_all, &group->pending_queue) |
_cancel_func_from_queue(func, param, group, cancel_all, &group->delayed_queues[TCF_ABSOLUTE]) |
_cancel_func_from_queue(func, param, group, cancel_all, &group->delayed_queues[TCF_CONTINUOUS]);
} else {
/* early-exit as soon as we find something, don't search other queues */
result = _cancel_func_from_queue(func, param, group, cancel_all, &group->pending_queue) ||
_cancel_func_from_queue(func, param, group, cancel_all, &group->delayed_queues[TCF_ABSOLUTE]) ||
_cancel_func_from_queue(func, param, group, cancel_all, &group->delayed_queues[TCF_CONTINUOUS]);
}
enable_ints_and_unlock(group, s);
return result;
}
/*
* Allocate a thread call with a given priority. Importances other than
* THREAD_CALL_PRIORITY_HIGH or THREAD_CALL_PRIORITY_KERNEL_HIGH will be run in threads
* with eager preemption enabled (i.e. may be aggressively preempted by higher-priority
* threads which are not in the normal "urgent" bands).
*/
thread_call_t
thread_call_allocate_with_priority(
thread_call_func_t func,
thread_call_param_t param0,
thread_call_priority_t pri)
{
return thread_call_allocate_with_options(func, param0, pri, 0);
}
thread_call_t
thread_call_allocate_with_options(
thread_call_func_t func,
thread_call_param_t param0,
thread_call_priority_t pri,
thread_call_options_t options)
{
thread_call_t call = zalloc(thread_call_zone);
thread_call_setup_with_options(call, func, param0, pri, options);
call->tc_refs = 1;
call->tc_flags |= THREAD_CALL_ALLOC;
return call;
}
thread_call_t
thread_call_allocate_with_qos(thread_call_func_t func,
thread_call_param_t param0,
int qos_tier,
thread_call_options_t options)
{
thread_call_t call = thread_call_allocate(func, param0);
switch (qos_tier) {
case THREAD_QOS_UNSPECIFIED:
call->tc_index = THREAD_CALL_INDEX_HIGH;
break;
case THREAD_QOS_LEGACY:
call->tc_index = THREAD_CALL_INDEX_USER;
break;
case THREAD_QOS_MAINTENANCE:
case THREAD_QOS_BACKGROUND:
call->tc_index = THREAD_CALL_INDEX_LOW;
break;
case THREAD_QOS_UTILITY:
call->tc_index = THREAD_CALL_INDEX_QOS_UT;
break;
case THREAD_QOS_USER_INITIATED:
call->tc_index = THREAD_CALL_INDEX_QOS_IN;
break;
case THREAD_QOS_USER_INTERACTIVE:
call->tc_index = THREAD_CALL_INDEX_QOS_UI;
break;
default:
panic("Invalid thread call qos value: %d", qos_tier);
break;
}
if (options & THREAD_CALL_OPTIONS_ONCE) {
call->tc_flags |= THREAD_CALL_ONCE;
}
/* does not support THREAD_CALL_OPTIONS_SIGNAL */
return call;
}
/*
* thread_call_allocate:
*
* Allocate a callout entry.
*/
thread_call_t
thread_call_allocate(
thread_call_func_t func,
thread_call_param_t param0)
{
return thread_call_allocate_with_options(func, param0,
THREAD_CALL_PRIORITY_HIGH, 0);
}
/*
* thread_call_free:
*
* Release a callout. If the callout is currently
* executing, it will be freed when all invocations
* finish.
*
* If the callout is currently armed to fire again, then
* freeing is not allowed and returns FALSE. The
* client must have canceled the pending invocation before freeing.
*/
boolean_t
thread_call_free(
thread_call_t call)
{
thread_call_group_t group = thread_call_get_group(call);
spl_t s = disable_ints_and_lock(group);
if (call->tc_queue != NULL ||
((call->tc_flags & THREAD_CALL_RESCHEDULE) != 0)) {
thread_call_unlock(group);
splx(s);
return FALSE;
}
int32_t refs = --call->tc_refs;
if (refs < 0) {
panic("Refcount negative: %d\n", refs);
}
if ((THREAD_CALL_SIGNAL | THREAD_CALL_RUNNING)
== ((THREAD_CALL_SIGNAL | THREAD_CALL_RUNNING) & call->tc_flags)) {
thread_call_wait_once_locked(call, s);
/* thread call lock has been unlocked */
} else {
enable_ints_and_unlock(group, s);
}
if (refs == 0) {
assert(call->tc_finish_count == call->tc_submit_count);
zfree(thread_call_zone, call);
}
return TRUE;
}
/*
* thread_call_enter:
*
* Enqueue a callout entry to occur "soon".
*
* Returns TRUE if the call was
* already on a queue.
*/
boolean_t
thread_call_enter(
thread_call_t call)
{
return thread_call_enter1(call, 0);
}
boolean_t
thread_call_enter1(
thread_call_t call,
thread_call_param_t param1)
{
assert(call->tc_func != NULL);
assert((call->tc_flags & THREAD_CALL_SIGNAL) == 0);
thread_call_group_t group = thread_call_get_group(call);
bool result = true;
spl_t s = disable_ints_and_lock(group);
if (call->tc_queue != &group->pending_queue) {
result = _pending_call_enqueue(call, group, mach_absolute_time());
}
call->tc_param1 = param1;
enable_ints_and_unlock(group, s);
return result;
}
/*
* thread_call_enter_delayed:
*
* Enqueue a callout entry to occur
* at the stated time.
*
* Returns TRUE if the call was
* already on a queue.
*/
boolean_t
thread_call_enter_delayed(
thread_call_t call,
uint64_t deadline)
{
assert(call != NULL);
return thread_call_enter_delayed_internal(call, NULL, 0, 0, deadline, 0, 0);
}
boolean_t
thread_call_enter1_delayed(
thread_call_t call,
thread_call_param_t param1,
uint64_t deadline)
{
assert(call != NULL);
return thread_call_enter_delayed_internal(call, NULL, 0, param1, deadline, 0, 0);
}
boolean_t
thread_call_enter_delayed_with_leeway(
thread_call_t call,
thread_call_param_t param1,
uint64_t deadline,
uint64_t leeway,
unsigned int flags)
{
assert(call != NULL);
return thread_call_enter_delayed_internal(call, NULL, 0, param1, deadline, leeway, flags);
}
/*
* thread_call_enter_delayed_internal:
* enqueue a callout entry to occur at the stated time
*
* Returns True if the call was already on a queue
* params:
* call - structure encapsulating state of the callout
* alt_func/alt_param0 - if call is NULL, allocate temporary storage using these parameters
* deadline - time deadline in nanoseconds
* leeway - timer slack represented as delta of deadline.
* flags - THREAD_CALL_DELAY_XXX : classification of caller's desires wrt timer coalescing.
* THREAD_CALL_DELAY_LEEWAY : value in leeway is used for timer coalescing.
* THREAD_CALL_CONTINUOUS: thread call will be called according to mach_continuous_time rather
* than mach_absolute_time
*/
boolean_t
thread_call_enter_delayed_internal(
thread_call_t call,
thread_call_func_t alt_func,
thread_call_param_t alt_param0,
thread_call_param_t param1,
uint64_t deadline,
uint64_t leeway,
unsigned int flags)
{
uint64_t now, sdeadline;
thread_call_flavor_t flavor = (flags & THREAD_CALL_CONTINUOUS) ? TCF_CONTINUOUS : TCF_ABSOLUTE;
/* direct mapping between thread_call, timer_call, and timeout_urgency values */
uint32_t urgency = (flags & TIMEOUT_URGENCY_MASK);
if (call == NULL) {
/* allocate a structure out of internal storage, as a convenience for BSD callers */
call = _internal_call_allocate(alt_func, alt_param0);
}
assert(call->tc_func != NULL);
thread_call_group_t group = thread_call_get_group(call);
spl_t s = disable_ints_and_lock(group);
/*
* kevent and IOTES let you change flavor for an existing timer, so we have to
* support flipping flavors for enqueued thread calls.
*/
if (flavor == TCF_CONTINUOUS) {
now = mach_continuous_time();
} else {
now = mach_absolute_time();
}
call->tc_flags |= THREAD_CALL_DELAYED;
call->tc_soft_deadline = sdeadline = deadline;
boolean_t ratelimited = FALSE;
uint64_t slop = timer_call_slop(deadline, now, urgency, current_thread(), &ratelimited);
if ((flags & THREAD_CALL_DELAY_LEEWAY) != 0 && leeway > slop) {
slop = leeway;
}
if (UINT64_MAX - deadline <= slop) {
deadline = UINT64_MAX;
} else {
deadline += slop;
}
if (ratelimited) {
call->tc_flags |= THREAD_CALL_RATELIMITED;
} else {
call->tc_flags &= ~THREAD_CALL_RATELIMITED;
}
call->tc_param1 = param1;
call->tc_ttd = (sdeadline > now) ? (sdeadline - now) : 0;
bool result = _delayed_call_enqueue(call, group, deadline, flavor);
_arm_delayed_call_timer(call, group, flavor);
#if CONFIG_DTRACE
DTRACE_TMR5(thread_callout__create, thread_call_func_t, call->tc_func,
uint64_t, (deadline - sdeadline), uint64_t, (call->tc_ttd >> 32),
(unsigned) (call->tc_ttd & 0xFFFFFFFF), call);
#endif
enable_ints_and_unlock(group, s);
return result;
}
/*
* Remove a callout entry from the queue
* Called with thread_call_lock held
*/
static bool
thread_call_cancel_locked(thread_call_t call)
{
bool canceled;
if (call->tc_flags & THREAD_CALL_RESCHEDULE) {
call->tc_flags &= ~THREAD_CALL_RESCHEDULE;
canceled = true;
/* if reschedule was set, it must not have been queued */
assert(call->tc_queue == NULL);
} else {
bool queue_head_changed = false;
thread_call_flavor_t flavor = thread_call_get_flavor(call);
thread_call_group_t group = thread_call_get_group(call);
if (call->tc_pqlink.deadline != 0 &&
call == priority_queue_min(&group->delayed_pqueues[flavor], struct thread_call, tc_pqlink)) {
assert(call->tc_queue == &group->delayed_queues[flavor]);
queue_head_changed = true;
}
canceled = _call_dequeue(call, group);
if (queue_head_changed) {
if (_arm_delayed_call_timer(NULL, group, flavor) == false) {
timer_call_cancel(&group->delayed_timers[flavor]);
}
}
}
#if CONFIG_DTRACE
DTRACE_TMR4(thread_callout__cancel, thread_call_func_t, call->tc_func,
0, (call->tc_ttd >> 32), (unsigned) (call->tc_ttd & 0xFFFFFFFF));
#endif
return canceled;
}
/*
* thread_call_cancel:
*
* Dequeue a callout entry.
*
* Returns TRUE if the call was
* on a queue.
*/
boolean_t
thread_call_cancel(thread_call_t call)
{
thread_call_group_t group = thread_call_get_group(call);
spl_t s = disable_ints_and_lock(group);
boolean_t result = thread_call_cancel_locked(call);
enable_ints_and_unlock(group, s);
return result;
}
/*
* Cancel a thread call. If it cannot be cancelled (i.e.
* is already in flight), waits for the most recent invocation
* to finish. Note that if clients re-submit this thread call,
* it may still be pending or in flight when thread_call_cancel_wait
* returns, but all requests to execute this work item prior
* to the call to thread_call_cancel_wait will have finished.
*/
boolean_t
thread_call_cancel_wait(thread_call_t call)
{
thread_call_group_t group = thread_call_get_group(call);
if ((call->tc_flags & THREAD_CALL_ALLOC) == 0) {
panic("thread_call_cancel_wait: can't wait on thread call whose storage I don't own");
}
if (!ml_get_interrupts_enabled()) {
panic("unsafe thread_call_cancel_wait");
}
thread_t self = current_thread();
if ((thread_get_tag_internal(self) & THREAD_TAG_CALLOUT) &&
self->thc_state && self->thc_state->thc_call == call) {
panic("thread_call_cancel_wait: deadlock waiting on self from inside call: %p to function %p",
call, call->tc_func);
}
spl_t s = disable_ints_and_lock(group);
boolean_t canceled = thread_call_cancel_locked(call);
if ((call->tc_flags & THREAD_CALL_ONCE) == THREAD_CALL_ONCE) {
/*
* A cancel-wait on a 'once' call will both cancel
* the pending call and wait for the in-flight call
*/
thread_call_wait_once_locked(call, s);
/* thread call lock unlocked */
} else {
/*
* A cancel-wait on a normal call will only wait for the in-flight calls
* if it did not cancel the pending call.
*
* TODO: This seems less than useful - shouldn't it do the wait as well?
*/
if (canceled == FALSE) {
thread_call_wait_locked(call, s);
/* thread call lock unlocked */
} else {
enable_ints_and_unlock(group, s);
}
}
return canceled;
}
/*
* thread_call_wake:
*
* Wake a call thread to service
* pending call entries. May wake
* the daemon thread in order to
* create additional call threads.
*
* Called with thread_call_lock held.
*
* For high-priority group, only does wakeup/creation if there are no threads
* running.
*/
static void
thread_call_wake(
thread_call_group_t group)
{
/*
* New behavior: use threads if you've got 'em.
* Traditional behavior: wake only if no threads running.
*/
if (group_isparallel(group) || group->active_count == 0) {
if (group->idle_count) {
__assert_only kern_return_t kr;
kr = waitq_wakeup64_one(&group->idle_waitq, CAST_EVENT64_T(group),
THREAD_AWAKENED, WAITQ_ALL_PRIORITIES);
assert(kr == KERN_SUCCESS);
group->idle_count--;
group->active_count++;
if (group->idle_count == 0 && (group->tcg_flags & TCG_DEALLOC_ACTIVE) == TCG_DEALLOC_ACTIVE) {
if (timer_call_cancel(&group->dealloc_timer) == TRUE) {
group->tcg_flags &= ~TCG_DEALLOC_ACTIVE;
}
}
} else {
if (thread_call_group_should_add_thread(group) &&
os_atomic_cmpxchg(&thread_call_daemon_awake,
false, true, relaxed)) {
waitq_wakeup64_all(&daemon_waitq, CAST_EVENT64_T(&thread_call_daemon_awake),
THREAD_AWAKENED, WAITQ_ALL_PRIORITIES);
}
}
}
}
/*
* sched_call_thread:
*
* Call out invoked by the scheduler.
*/
static void
sched_call_thread(
int type,
thread_t thread)
{
thread_call_group_t group;
assert(thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT);
assert(thread->thc_state != NULL);
group = thread->thc_state->thc_group;
assert((group - &thread_call_groups[0]) < THREAD_CALL_INDEX_MAX);
thread_call_lock_spin(group);
switch (type) {
case SCHED_CALL_BLOCK:
assert(group->active_count);
--group->active_count;
group->blocked_count++;
if (group->pending_count > 0) {
thread_call_wake(group);
}
break;
case SCHED_CALL_UNBLOCK:
assert(group->blocked_count);
--group->blocked_count;
group->active_count++;
break;
}
thread_call_unlock(group);
}
/*
* Interrupts disabled, lock held; returns the same way.
* Only called on thread calls whose storage we own. Wakes up
* anyone who might be waiting on this work item and frees it
* if the client has so requested.
*/
static bool
thread_call_finish(thread_call_t call, thread_call_group_t group, spl_t *s)
{
assert(thread_call_get_group(call) == group);
bool repend = false;
bool signal = call->tc_flags & THREAD_CALL_SIGNAL;
bool alloc = call->tc_flags & THREAD_CALL_ALLOC;
call->tc_finish_count++;
if (!signal && alloc) {
/* The thread call thread owns a ref until the call is finished */
if (call->tc_refs <= 0) {
panic("thread_call_finish: detected over-released thread call: %p", call);
}
call->tc_refs--;
}
thread_call_flags_t old_flags = call->tc_flags;
call->tc_flags &= ~(THREAD_CALL_RESCHEDULE | THREAD_CALL_RUNNING | THREAD_CALL_WAIT);
if ((!alloc || call->tc_refs != 0) &&
(old_flags & THREAD_CALL_RESCHEDULE) != 0) {
assert(old_flags & THREAD_CALL_ONCE);
thread_call_flavor_t flavor = thread_call_get_flavor(call);
if (old_flags & THREAD_CALL_DELAYED) {
uint64_t now = mach_absolute_time();
if (flavor == TCF_CONTINUOUS) {
now = absolutetime_to_continuoustime(now);
}
if (call->tc_soft_deadline <= now) {
/* The deadline has already expired, go straight to pending */
call->tc_flags &= ~(THREAD_CALL_DELAYED | THREAD_CALL_RATELIMITED);
call->tc_pqlink.deadline = 0;
}
}
if (call->tc_pqlink.deadline) {
_delayed_call_enqueue(call, group, call->tc_pqlink.deadline, flavor);
if (!signal) {
_arm_delayed_call_timer(call, group, flavor);
}
} else if (signal) {
call->tc_submit_count++;
repend = true;
} else {
_pending_call_enqueue(call, group, mach_absolute_time());
}
}
if (!signal && alloc && call->tc_refs == 0) {
if ((old_flags & THREAD_CALL_WAIT) != 0) {
panic("Someone waiting on a thread call that is scheduled for free: %p\n", call->tc_func);
}
assert(call->tc_finish_count == call->tc_submit_count);
enable_ints_and_unlock(group, *s);
zfree(thread_call_zone, call);
*s = disable_ints_and_lock(group);
}
if ((old_flags & THREAD_CALL_WAIT) != 0) {
/*
* This may wake up a thread with a registered sched_call.
* That call might need the group lock, so we drop the lock
* to avoid deadlocking.
*
* We also must use a separate waitq from the idle waitq, as
* this path goes waitq lock->thread lock->group lock, but
* the idle wait goes group lock->waitq_lock->thread_lock.
*/
thread_call_unlock(group);
waitq_wakeup64_all(&group->waiters_waitq, CAST_EVENT64_T(call),
THREAD_AWAKENED, WAITQ_ALL_PRIORITIES);
thread_call_lock_spin(group);
/* THREAD_CALL_SIGNAL call may have been freed */
}
return repend;
}
/*
* thread_call_invoke
*
* Invoke the function provided for this thread call
*
* Note that the thread call object can be deallocated by the function if we do not control its storage.
*/
static void __attribute__((noinline))
thread_call_invoke(thread_call_func_t func,
thread_call_param_t param0,
thread_call_param_t param1,
__unused thread_call_t call)
{
#if DEVELOPMENT || DEBUG
KERNEL_DEBUG_CONSTANT(
MACHDBG_CODE(DBG_MACH_SCHED, MACH_CALLOUT) | DBG_FUNC_START,
VM_KERNEL_UNSLIDE(func), VM_KERNEL_ADDRHIDE(param0), VM_KERNEL_ADDRHIDE(param1), 0, 0);
#endif /* DEVELOPMENT || DEBUG */
#if CONFIG_DTRACE
uint64_t tc_ttd = call->tc_ttd;
boolean_t is_delayed = call->tc_flags & THREAD_CALL_DELAYED;
DTRACE_TMR6(thread_callout__start, thread_call_func_t, func, int, 0, int, (tc_ttd >> 32),
(unsigned) (tc_ttd & 0xFFFFFFFF), is_delayed, call);
#endif
(*func)(param0, param1);
#if CONFIG_DTRACE
DTRACE_TMR6(thread_callout__end, thread_call_func_t, func, int, 0, int, (tc_ttd >> 32),
(unsigned) (tc_ttd & 0xFFFFFFFF), is_delayed, call);
#endif
#if DEVELOPMENT || DEBUG
KERNEL_DEBUG_CONSTANT(
MACHDBG_CODE(DBG_MACH_SCHED, MACH_CALLOUT) | DBG_FUNC_END,
VM_KERNEL_UNSLIDE(func), 0, 0, 0, 0);
#endif /* DEVELOPMENT || DEBUG */
}
/*
* thread_call_thread:
*/
static void
thread_call_thread(
thread_call_group_t group,
wait_result_t wres)
{
thread_t self = current_thread();
if ((thread_get_tag_internal(self) & THREAD_TAG_CALLOUT) == 0) {
(void)thread_set_tag_internal(self, THREAD_TAG_CALLOUT);
}
/*
* A wakeup with THREAD_INTERRUPTED indicates that
* we should terminate.
*/
if (wres == THREAD_INTERRUPTED) {
thread_terminate(self);
/* NOTREACHED */
panic("thread_terminate() returned?");
}
spl_t s = disable_ints_and_lock(group);
struct thread_call_thread_state thc_state = { .thc_group = group };
self->thc_state = &thc_state;
thread_sched_call(self, sched_call_thread);
while (group->pending_count > 0) {
thread_call_t call = qe_dequeue_head(&group->pending_queue,
struct thread_call, tc_qlink);
assert(call != NULL);
group->pending_count--;
if (group->pending_count == 0) {
assert(queue_empty(&group->pending_queue));
}
thread_call_func_t func = call->tc_func;
thread_call_param_t param0 = call->tc_param0;
thread_call_param_t param1 = call->tc_param1;
call->tc_queue = NULL;
if (_is_internal_call(call)) {
_internal_call_release(call);
}
/*
* Can only do wakeups for thread calls whose storage
* we control.
*/
bool needs_finish = false;
if (call->tc_flags & THREAD_CALL_ALLOC) {
call->tc_refs++; /* Delay free until we're done */
}
if (call->tc_flags & (THREAD_CALL_ALLOC | THREAD_CALL_ONCE)) {
/*
* If THREAD_CALL_ONCE is used, and the timer wasn't
* THREAD_CALL_ALLOC, then clients swear they will use
* thread_call_cancel_wait() before destroying
* the thread call.
*
* Else, the storage for the thread call might have
* disappeared when thread_call_invoke() ran.
*/
needs_finish = true;
call->tc_flags |= THREAD_CALL_RUNNING;
}
thc_state.thc_call = call;
thc_state.thc_call_pending_timestamp = call->tc_pending_timestamp;
thc_state.thc_call_soft_deadline = call->tc_soft_deadline;
thc_state.thc_call_hard_deadline = call->tc_pqlink.deadline;
thc_state.thc_func = func;
thc_state.thc_param0 = param0;
thc_state.thc_param1 = param1;
thc_state.thc_IOTES_invocation_timestamp = 0;
enable_ints_and_unlock(group, s);
thc_state.thc_call_start = mach_absolute_time();
thread_call_invoke(func, param0, param1, call);
thc_state.thc_call = NULL;
if (get_preemption_level() != 0) {
int pl = get_preemption_level();
panic("thread_call_thread: preemption_level %d, last callout %p(%p, %p)",
pl, (void *)VM_KERNEL_UNSLIDE(func), param0, param1);
}
s = disable_ints_and_lock(group);
if (needs_finish) {
/* Release refcount, may free, may temporarily drop lock */
thread_call_finish(call, group, &s);
}
}
thread_sched_call(self, NULL);
group->active_count--;
if (self->callout_woken_from_icontext && !self->callout_woke_thread) {
ledger_credit(self->t_ledger, task_ledgers.interrupt_wakeups, 1);
if (self->callout_woken_from_platform_idle) {
ledger_credit(self->t_ledger, task_ledgers.platform_idle_wakeups, 1);
}
}
self->callout_woken_from_icontext = FALSE;
self->callout_woken_from_platform_idle = FALSE;
self->callout_woke_thread = FALSE;
self->thc_state = NULL;
if (group_isparallel(group)) {
/*
* For new style of thread group, thread always blocks.
* If we have more than the target number of threads,
* and this is the first to block, and it isn't active
* already, set a timer for deallocating a thread if we
* continue to have a surplus.
*/
group->idle_count++;
if (group->idle_count == 1) {
group->idle_timestamp = mach_absolute_time();
}
if (((group->tcg_flags & TCG_DEALLOC_ACTIVE) == 0) &&
((group->active_count + group->idle_count) > group->target_thread_count)) {
thread_call_start_deallocate_timer(group);
}
/* Wait for more work (or termination) */
wres = waitq_assert_wait64(&group->idle_waitq, CAST_EVENT64_T(group), THREAD_INTERRUPTIBLE, 0);
if (wres != THREAD_WAITING) {
panic("kcall worker unable to assert wait?");
}
enable_ints_and_unlock(group, s);
thread_block_parameter((thread_continue_t)thread_call_thread, group);
} else {
if (group->idle_count < group->target_thread_count) {
group->idle_count++;
waitq_assert_wait64(&group->idle_waitq, CAST_EVENT64_T(group), THREAD_UNINT, 0); /* Interrupted means to exit */
enable_ints_and_unlock(group, s);
thread_block_parameter((thread_continue_t)thread_call_thread, group);
/* NOTREACHED */
}
}
enable_ints_and_unlock(group, s);
thread_terminate(self);
/* NOTREACHED */
}
void
thread_call_start_iotes_invocation(__assert_only thread_call_t call)
{
thread_t self = current_thread();
if ((thread_get_tag_internal(self) & THREAD_TAG_CALLOUT) == 0) {
/* not a thread call thread, might be a workloop IOTES */
return;
}
assert(self->thc_state);
assert(self->thc_state->thc_call == call);
self->thc_state->thc_IOTES_invocation_timestamp = mach_absolute_time();
}
/*
* thread_call_daemon: walk list of groups, allocating
* threads if appropriate (as determined by
* thread_call_group_should_add_thread()).
*/
static void
thread_call_daemon_continue(__unused void *arg)
{
do {
os_atomic_store(&thread_call_daemon_awake, false, relaxed);
/* Starting at zero happens to be high-priority first. */
for (int i = 0; i < THREAD_CALL_INDEX_MAX; i++) {
thread_call_group_t group = &thread_call_groups[i];
spl_t s = disable_ints_and_lock(group);
while (thread_call_group_should_add_thread(group)) {
group->active_count++;
enable_ints_and_unlock(group, s);
thread_call_thread_create(group);
s = disable_ints_and_lock(group);
}
enable_ints_and_unlock(group, s);
}
} while (os_atomic_load(&thread_call_daemon_awake, relaxed));
waitq_assert_wait64(&daemon_waitq, CAST_EVENT64_T(&thread_call_daemon_awake), THREAD_UNINT, 0);
if (os_atomic_load(&thread_call_daemon_awake, relaxed)) {
clear_wait(current_thread(), THREAD_AWAKENED);
}
thread_block_parameter((thread_continue_t)thread_call_daemon_continue, NULL);
/* NOTREACHED */
}
static void
thread_call_daemon(
__unused void *arg)
{
thread_t self = current_thread();
self->options |= TH_OPT_VMPRIV;
vm_page_free_reserve(2); /* XXX */
thread_set_thread_name(self, "thread_call_daemon");
thread_call_daemon_continue(NULL);
/* NOTREACHED */
}
/*
* Schedule timer to deallocate a worker thread if we have a surplus
* of threads (in excess of the group's target) and at least one thread
* is idle the whole time.
*/
static void
thread_call_start_deallocate_timer(thread_call_group_t group)
{
__assert_only bool already_enqueued;
assert(group->idle_count > 0);
assert((group->tcg_flags & TCG_DEALLOC_ACTIVE) == 0);
group->tcg_flags |= TCG_DEALLOC_ACTIVE;
uint64_t deadline = group->idle_timestamp + thread_call_dealloc_interval_abs;
already_enqueued = timer_call_enter(&group->dealloc_timer, deadline, 0);
assert(already_enqueued == false);
}
/* non-static so dtrace can find it rdar://problem/31156135&31379348 */
void
thread_call_delayed_timer(timer_call_param_t p0, timer_call_param_t p1)
{
thread_call_group_t group = (thread_call_group_t) p0;
thread_call_flavor_t flavor = (thread_call_flavor_t) p1;
thread_call_t call;
uint64_t now;
thread_call_lock_spin(group);
if (flavor == TCF_CONTINUOUS) {
now = mach_continuous_time();
} else if (flavor == TCF_ABSOLUTE) {
now = mach_absolute_time();
} else {
panic("invalid timer flavor: %d", flavor);
}
while ((call = priority_queue_min(&group->delayed_pqueues[flavor],
struct thread_call, tc_pqlink)) != NULL) {
assert(thread_call_get_group(call) == group);
assert(thread_call_get_flavor(call) == flavor);
/*
* if we hit a call that isn't yet ready to expire,
* then we're done for now
* TODO: The next timer in the list could have a larger leeway
* and therefore be ready to expire.
*/
if (call->tc_soft_deadline > now) {
break;
}
/*
* If we hit a rate-limited timer, don't eagerly wake it up.
* Wait until it reaches the end of the leeway window.
*
* TODO: What if the next timer is not rate-limited?
* Have a separate rate-limited queue to avoid this
*/
if ((call->tc_flags & THREAD_CALL_RATELIMITED) &&
(call->tc_pqlink.deadline > now) &&
(ml_timer_forced_evaluation() == FALSE)) {
break;
}
if (THREAD_CALL_SIGNAL & call->tc_flags) {
__assert_only queue_head_t *old_queue;
old_queue = thread_call_dequeue(call);
assert(old_queue == &group->delayed_queues[flavor]);
do {
thread_call_func_t func = call->tc_func;
thread_call_param_t param0 = call->tc_param0;
thread_call_param_t param1 = call->tc_param1;
call->tc_flags |= THREAD_CALL_RUNNING;
thread_call_unlock(group);
thread_call_invoke(func, param0, param1, call);
thread_call_lock_spin(group);
/* finish may detect that the call has been re-pended */
} while (thread_call_finish(call, group, NULL));
/* call may have been freed by the finish */
} else {
_pending_call_enqueue(call, group, now);
}
}
_arm_delayed_call_timer(call, group, flavor);
thread_call_unlock(group);
}
static void
thread_call_delayed_timer_rescan(thread_call_group_t group,
thread_call_flavor_t flavor)
{
thread_call_t call;
uint64_t now;
spl_t s = disable_ints_and_lock(group);
assert(ml_timer_forced_evaluation() == TRUE);
if (flavor == TCF_CONTINUOUS) {
now = mach_continuous_time();
} else {
now = mach_absolute_time();
}
qe_foreach_element_safe(call, &group->delayed_queues[flavor], tc_qlink) {
if (call->tc_soft_deadline <= now) {
_pending_call_enqueue(call, group, now);
} else {
uint64_t skew = call->tc_pqlink.deadline - call->tc_soft_deadline;
assert(call->tc_pqlink.deadline >= call->tc_soft_deadline);
/*
* On a latency quality-of-service level change,
* re-sort potentially rate-limited callout. The platform
* layer determines which timers require this.
*
* This trick works by updating the deadline value to
* equal soft-deadline, effectively crushing away
* timer coalescing slop values for any armed
* timer in the queue.
*
* TODO: keep a hint on the timer to tell whether its inputs changed, so we
* only have to crush coalescing for timers that need it.
*
* TODO: Keep a separate queue of timers above the re-sort
* threshold, so we only have to look at those.
*/
if (timer_resort_threshold(skew)) {
_call_dequeue(call, group);
_delayed_call_enqueue(call, group, call->tc_soft_deadline, flavor);
}
}
}
_arm_delayed_call_timer(NULL, group, flavor);
enable_ints_and_unlock(group, s);
}
void
thread_call_delayed_timer_rescan_all(void)
{
for (int i = 0; i < THREAD_CALL_INDEX_MAX; i++) {
for (thread_call_flavor_t flavor = 0; flavor < TCF_COUNT; flavor++) {
thread_call_delayed_timer_rescan(&thread_call_groups[i], flavor);
}
}
}
/*
* Timer callback to tell a thread to terminate if
* we have an excess of threads and at least one has been
* idle for a long time.
*/
static void
thread_call_dealloc_timer(
timer_call_param_t p0,
__unused timer_call_param_t p1)
{
thread_call_group_t group = (thread_call_group_t)p0;
uint64_t now;
kern_return_t res;
bool terminated = false;
thread_call_lock_spin(group);
assert(group->tcg_flags & TCG_DEALLOC_ACTIVE);
now = mach_absolute_time();
if (group->idle_count > 0) {
if (now > group->idle_timestamp + thread_call_dealloc_interval_abs) {
terminated = true;
group->idle_count--;
res = waitq_wakeup64_one(&group->idle_waitq, CAST_EVENT64_T(group),
THREAD_INTERRUPTED, WAITQ_ALL_PRIORITIES);
if (res != KERN_SUCCESS) {
panic("Unable to wake up idle thread for termination?");
}
}
}
group->tcg_flags &= ~TCG_DEALLOC_ACTIVE;
/*
* If we still have an excess of threads, schedule another
* invocation of this function.
*/
if (group->idle_count > 0 && (group->idle_count + group->active_count > group->target_thread_count)) {
/*
* If we killed someone just now, push out the
* next deadline.
*/
if (terminated) {
group->idle_timestamp = now;
}
thread_call_start_deallocate_timer(group);
}
thread_call_unlock(group);
}
/*
* Wait for the invocation of the thread call to complete
* We know there's only one in flight because of the 'once' flag.
*
* If a subsequent invocation comes in before we wake up, that's OK
*
* TODO: Here is where we will add priority inheritance to the thread executing
* the thread call in case it's lower priority than the current thread
* <rdar://problem/30321792> Priority inheritance for thread_call_wait_once
*
* Takes the thread call lock locked, returns unlocked
* This lets us avoid a spurious take/drop after waking up from thread_block
*
* This thread could be a thread call thread itself, blocking and therefore making a
* sched_call upcall into the thread call subsystem, needing the group lock.
* However, we're saved from deadlock because the 'block' upcall is made in
* thread_block, not in assert_wait.
*/
static bool
thread_call_wait_once_locked(thread_call_t call, spl_t s)
{
assert(call->tc_flags & THREAD_CALL_ALLOC);
assert(call->tc_flags & THREAD_CALL_ONCE);
thread_call_group_t group = thread_call_get_group(call);
if ((call->tc_flags & THREAD_CALL_RUNNING) == 0) {
enable_ints_and_unlock(group, s);
return false;
}
/* call is running, so we have to wait for it */
call->tc_flags |= THREAD_CALL_WAIT;
wait_result_t res = waitq_assert_wait64(&group->waiters_waitq, CAST_EVENT64_T(call), THREAD_UNINT, 0);
if (res != THREAD_WAITING) {
panic("Unable to assert wait: %d", res);
}
enable_ints_and_unlock(group, s);
res = thread_block(THREAD_CONTINUE_NULL);
if (res != THREAD_AWAKENED) {
panic("Awoken with %d?", res);
}
/* returns unlocked */
return true;
}
/*
* Wait for an in-flight invocation to complete
* Does NOT try to cancel, so the client doesn't need to hold their
* lock while calling this function.
*
* Returns whether or not it had to wait.
*
* Only works for THREAD_CALL_ONCE calls.
*/
boolean_t
thread_call_wait_once(thread_call_t call)
{
if ((call->tc_flags & THREAD_CALL_ALLOC) == 0) {
panic("thread_call_wait_once: can't wait on thread call whose storage I don't own");
}
if ((call->tc_flags & THREAD_CALL_ONCE) == 0) {
panic("thread_call_wait_once: can't wait_once on a non-once call");
}
if (!ml_get_interrupts_enabled()) {
panic("unsafe thread_call_wait_once");
}
thread_t self = current_thread();
if ((thread_get_tag_internal(self) & THREAD_TAG_CALLOUT) &&
self->thc_state && self->thc_state->thc_call == call) {
panic("thread_call_wait_once: deadlock waiting on self from inside call: %p to function %p",
call, call->tc_func);
}
thread_call_group_t group = thread_call_get_group(call);
spl_t s = disable_ints_and_lock(group);
bool waited = thread_call_wait_once_locked(call, s);
/* thread call lock unlocked */
return waited;
}
/*
* Wait for all requested invocations of a thread call prior to now
* to finish. Can only be invoked on thread calls whose storage we manage.
* Just waits for the finish count to catch up to the submit count we find
* at the beginning of our wait.
*
* Called with thread_call_lock held. Returns with lock released.
*/
static void
thread_call_wait_locked(thread_call_t call, spl_t s)
{
thread_call_group_t group = thread_call_get_group(call);
assert(call->tc_flags & THREAD_CALL_ALLOC);
uint64_t submit_count = call->tc_submit_count;
while (call->tc_finish_count < submit_count) {
call->tc_flags |= THREAD_CALL_WAIT;
wait_result_t res = waitq_assert_wait64(&group->waiters_waitq,
CAST_EVENT64_T(call), THREAD_UNINT, 0);
if (res != THREAD_WAITING) {
panic("Unable to assert wait: %d", res);
}
enable_ints_and_unlock(group, s);
res = thread_block(THREAD_CONTINUE_NULL);
if (res != THREAD_AWAKENED) {
panic("Awoken with %d?", res);
}
s = disable_ints_and_lock(group);
}
enable_ints_and_unlock(group, s);
}
/*
* Determine whether a thread call is either on a queue or
* currently being executed.
*/
boolean_t
thread_call_isactive(thread_call_t call)
{
thread_call_group_t group = thread_call_get_group(call);
spl_t s = disable_ints_and_lock(group);
boolean_t active = (call->tc_submit_count > call->tc_finish_count);
enable_ints_and_unlock(group, s);
return active;
}
/*
* adjust_cont_time_thread_calls
* on wake, reenqueue delayed call timer for continuous time thread call groups
*/
void
adjust_cont_time_thread_calls(void)
{
for (int i = 0; i < THREAD_CALL_INDEX_MAX; i++) {
thread_call_group_t group = &thread_call_groups[i];
spl_t s = disable_ints_and_lock(group);
/* only the continuous timers need to be re-armed */
_arm_delayed_call_timer(NULL, group, TCF_CONTINUOUS);
enable_ints_and_unlock(group, s);
}
}