darling-xnu/tests/kpc.c
2023-05-16 21:41:14 -07:00

593 lines
16 KiB
C

// Copyright (c) 2018-2020 Apple Inc. All rights reserved.
#include <darwintest.h>
#include <ktrace/config.h>
#include <ktrace/session.h>
#include <inttypes.h>
#include <libproc.h>
#include <pthread.h>
#include <stdint.h>
#include <sys/resource.h>
#include <sys/sysctl.h>
#include <kperf/kpc.h>
#include <kperf/kperf.h>
#include "ktrace_helpers.h"
#include "kperf_helpers.h"
T_GLOBAL_META(
T_META_NAMESPACE("xnu.ktrace"),
T_META_ASROOT(true),
T_META_CHECK_LEAKS(false));
struct machine {
unsigned int ncpus;
unsigned int nfixed;
unsigned int nconfig;
};
static void
skip_if_unsupported(void)
{
int r;
int supported = 0;
size_t supported_size = sizeof(supported);
r = sysctlbyname("kern.monotonic.supported", &supported, &supported_size,
NULL, 0);
if (r < 0) {
T_WITH_ERRNO;
T_SKIP("could not find \"kern.monotonic.supported\" sysctl");
}
if (!supported) {
T_SKIP("PMCs are not supported on this platform");
}
}
static struct rusage_info_v4 pre_ru = {};
static void
start_kpc(void)
{
T_SETUPBEGIN;
kpc_classmask_t classes = KPC_CLASS_FIXED_MASK |
KPC_CLASS_CONFIGURABLE_MASK;
int ret = kpc_set_counting(classes);
T_ASSERT_POSIX_SUCCESS(ret, "started counting");
ret = proc_pid_rusage(getpid(), RUSAGE_INFO_V4, (rusage_info_t *)&pre_ru);
T_QUIET; T_ASSERT_POSIX_SUCCESS(ret, "got rusage information");
kpc_classmask_t classes_on = kpc_get_counting();
T_QUIET;
T_ASSERT_EQ(classes, classes_on, "classes counting is correct");
T_SETUPEND;
}
static void kpc_reset_atend(void);
#if defined(__arm__) || defined(__arm64__)
#define CYCLES_EVENT 0x02
#else // defined(__arm__) || defined(__arm64__)
#define CYCLES_EVENT (0x10000 | 0x20000 | 0x3c)
#endif // !defined(__arm__) && !defined(__arm64__)
static void
prepare_kpc(struct machine *mch, bool config, bool reset)
{
T_SETUPBEGIN;
if (!reset) {
T_ATEND(kpc_reset_atend);
}
size_t ncpus_sz = sizeof(mch->ncpus);
int ret = sysctlbyname("hw.logicalcpu_max", &mch->ncpus, &ncpus_sz,
NULL, 0);
T_QUIET;
T_ASSERT_POSIX_SUCCESS(ret, "sysctlbyname(hw.logicalcpu_max)");
T_QUIET;
T_ASSERT_GT(mch->ncpus, 0, "must have some number of CPUs");
ret = kpc_force_all_ctrs_set(1);
T_QUIET; T_ASSERT_POSIX_SUCCESS(ret, "kpc_force_all_ctrs_set(1)");
int forcing = 0;
ret = kpc_force_all_ctrs_get(&forcing);
T_QUIET; T_ASSERT_POSIX_SUCCESS(ret, "kpc_force_all_ctrs_get");
T_QUIET; T_ASSERT_EQ(forcing, 1, "counters must be forced");
mch->nfixed = kpc_get_counter_count(KPC_CLASS_FIXED_MASK);
mch->nconfig = kpc_get_counter_count(KPC_CLASS_CONFIGURABLE_MASK);
T_LOG("machine: ncpus = %d, nfixed = %d, nconfig = %d", mch->ncpus,
mch->nfixed, mch->nconfig);
if (config) {
uint32_t nconfigs = kpc_get_config_count(
KPC_CLASS_CONFIGURABLE_MASK);
uint64_t *configs = calloc(nconfigs, sizeof(*configs));
T_QUIET; T_ASSERT_NOTNULL(configs, "allocated config words");
for (unsigned int i = 0; i < nconfigs; i++) {
configs[i] = reset ? 0 : CYCLES_EVENT;
}
ret = kpc_set_config(KPC_CLASS_CONFIGURABLE_MASK, configs);
T_QUIET; T_ASSERT_POSIX_SUCCESS(ret, "kpc_set_config");
}
T_SETUPEND;
}
static void
kpc_reset_atend(void)
{
struct machine mch = {};
prepare_kpc(&mch, true, true);
uint64_t *periods = calloc(mch.nconfig, sizeof(*periods));
T_QUIET; T_WITH_ERRNO; T_ASSERT_NOTNULL(periods, "allocate periods array");
int ret = kpc_set_period(KPC_CLASS_CONFIGURABLE_MASK, periods);
T_QUIET; T_ASSERT_POSIX_SUCCESS(ret, "kpc_set_period");
free(periods);
}
static void *
spin(void *arg)
{
while (*(volatile int *)arg == 0) {
;
}
return NULL;
}
static pthread_t *
start_threads(const struct machine *mch, void *(*func)(void *), void *arg)
{
T_SETUPBEGIN;
pthread_t *threads = calloc((unsigned int)mch->ncpus,
sizeof(*threads));
T_QUIET; T_ASSERT_NOTNULL(threads, "allocated array of threads");
for (unsigned int i = 0; i < mch->ncpus; i++) {
int error = pthread_create(&threads[i], NULL, func, arg);
T_QUIET; T_ASSERT_POSIX_ZERO(error, "pthread_create");
}
T_SETUPEND;
return threads;
}
static void
end_threads(const struct machine *mch, pthread_t *threads)
{
for (unsigned int i = 0; i < mch->ncpus; i++) {
int error = pthread_join(threads[i], NULL);
T_QUIET; T_ASSERT_POSIX_ZERO(error, "joined thread %d", i);
}
free(threads);
}
struct tally {
uint64_t firstvalue;
uint64_t lastvalue;
uint64_t nchecks;
uint64_t nzero;
uint64_t nstuck;
uint64_t ndecrease;
};
static void
check_counters(unsigned int ncpus, unsigned int nctrs, struct tally *tallies,
uint64_t *counts)
{
for (unsigned int i = 0; i < ncpus; i++) {
for (unsigned int j = 0; j < nctrs; j++) {
unsigned int ctr = i * nctrs + j;
struct tally *tly = &tallies[ctr];
uint64_t count = counts[ctr];
if (counts[ctr] == 0) {
tly->nzero++;
}
if (tly->lastvalue == count) {
tly->nstuck++;
}
if (tly->lastvalue > count) {
tly->ndecrease++;
}
tly->lastvalue = count;
if (tly->nchecks == 0) {
tly->firstvalue = count;
}
tly->nchecks++;
}
}
}
static void
check_tally(const char *name, unsigned int ncpus, unsigned int nctrs,
struct tally *tallies)
{
for (unsigned int i = 0; i < ncpus; i++) {
for (unsigned int j = 0; j < nctrs; j++) {
unsigned int ctr = i * nctrs + j;
struct tally *tly = &tallies[ctr];
T_LOG("CPU %2u PMC %u: nchecks = %llu, last value = %llx, "
"delta = %llu, nstuck = %llu", i, j,
tly->nchecks, tly->lastvalue, tly->lastvalue - tly->firstvalue,
tly->nstuck);
T_QUIET; T_EXPECT_GT(tly->nchecks, 0ULL,
"checked that CPU %d %s counter %d values", i, name, j);
T_QUIET; T_EXPECT_EQ(tly->nzero, 0ULL,
"CPU %d %s counter %d value was zero", i, name, j);
T_QUIET; T_EXPECT_EQ(tly->nstuck, 0ULL,
"CPU %d %s counter %d value was stuck", i, name, j);
T_QUIET; T_EXPECT_EQ(tly->ndecrease, 0ULL,
"CPU %d %s counter %d value decreased", i, name, j);
}
}
}
#define TESTDUR_NS (5 * NSEC_PER_SEC)
T_DECL(kpc_cpu_direct_configurable,
"test that configurable counters return monotonically increasing values")
{
skip_if_unsupported();
struct machine mch = {};
prepare_kpc(&mch, true, false);
int until = 0;
pthread_t *threads = start_threads(&mch, spin, &until);
start_kpc();
T_SETUPBEGIN;
uint64_t startns = clock_gettime_nsec_np(CLOCK_MONOTONIC);
uint64_t *counts = kpc_counterbuf_alloc();
T_QUIET; T_ASSERT_NOTNULL(counts, "allocated space for counter values");
memset(counts, 0, sizeof(*counts) * mch.ncpus * (mch.nfixed + mch.nconfig));
struct tally *tly = calloc(mch.ncpus * mch.nconfig, sizeof(*tly));
T_QUIET; T_ASSERT_NOTNULL(tly, "allocated space for tallies");
T_SETUPEND;
int n = 0;
while (clock_gettime_nsec_np(CLOCK_MONOTONIC) - startns < TESTDUR_NS) {
int ret = kpc_get_cpu_counters(true,
KPC_CLASS_CONFIGURABLE_MASK, NULL, counts);
T_QUIET; T_ASSERT_POSIX_SUCCESS(ret, "kpc_get_cpu_counters");
check_counters(mch.ncpus, mch.nconfig, tly, counts);
usleep(10000);
n++;
if (n % 100 == 0) {
T_LOG("checked 100 times");
}
}
check_tally("config", mch.ncpus, mch.nconfig, tly);
until = 1;
end_threads(&mch, threads);
}
T_DECL(kpc_thread_direct_instrs_cycles,
"test that fixed thread counters return monotonically increasing values")
{
int err;
uint32_t ctrs_cnt;
uint64_t *ctrs_a;
uint64_t *ctrs_b;
skip_if_unsupported();
T_SETUPBEGIN;
ctrs_cnt = kpc_get_counter_count(KPC_CLASS_FIXED_MASK);
if (ctrs_cnt == 0) {
T_SKIP("no fixed counters available");
}
T_LOG("device has %" PRIu32 " fixed counters", ctrs_cnt);
T_QUIET; T_ASSERT_POSIX_SUCCESS(kpc_force_all_ctrs_set(1), NULL);
T_ASSERT_POSIX_SUCCESS(kpc_set_counting(KPC_CLASS_FIXED_MASK),
"kpc_set_counting");
T_ASSERT_POSIX_SUCCESS(kpc_set_thread_counting(KPC_CLASS_FIXED_MASK),
"kpc_set_thread_counting");
T_SETUPEND;
ctrs_a = malloc(ctrs_cnt * sizeof(uint64_t));
T_QUIET; T_ASSERT_NOTNULL(ctrs_a, NULL);
err = kpc_get_thread_counters(0, ctrs_cnt, ctrs_a);
T_ASSERT_POSIX_SUCCESS(err, "kpc_get_thread_counters");
for (uint32_t i = 0; i < ctrs_cnt; i++) {
T_LOG("checking counter %d with value %" PRIu64 " > 0", i, ctrs_a[i]);
T_QUIET;
T_EXPECT_GT(ctrs_a[i], UINT64_C(0), "counter %d is non-zero", i);
}
ctrs_b = malloc(ctrs_cnt * sizeof(uint64_t));
T_QUIET; T_ASSERT_NOTNULL(ctrs_b, NULL);
err = kpc_get_thread_counters(0, ctrs_cnt, ctrs_b);
T_ASSERT_POSIX_SUCCESS(err, "kpc_get_thread_counters");
for (uint32_t i = 0; i < ctrs_cnt; i++) {
T_LOG("checking counter %d with value %" PRIu64
" > previous value %" PRIu64, i, ctrs_b[i], ctrs_a[i]);
T_QUIET;
T_EXPECT_GT(ctrs_b[i], UINT64_C(0), "counter %d is non-zero", i);
T_QUIET; T_EXPECT_LT(ctrs_a[i], ctrs_b[i],
"counter %d is increasing", i);
}
free(ctrs_a);
free(ctrs_b);
}
#define PMI_TEST_DURATION_NS (15 * NSEC_PER_SEC)
#define PERIODIC_CPU_COUNT_MS (250)
#define NTIMESLICES (72)
#define PMI_PERIOD (50ULL * 1000 * 1000)
#define END_EVENT KDBG_EVENTID(0xfe, 0xfe, 0)
struct cpu {
uint64_t prev_count, max_skid;
unsigned int timeslices[NTIMESLICES];
};
T_DECL(kpc_pmi_configurable,
"test that PMIs don't interfere with sampling counters in kperf")
{
skip_if_unsupported();
start_controlling_ktrace();
struct machine mch = {};
prepare_kpc(&mch, true, false);
T_SETUPBEGIN;
uint64_t *periods = calloc(mch.nconfig, sizeof(*periods));
T_QUIET; T_WITH_ERRNO; T_ASSERT_NOTNULL(periods, "allocate periods array");
periods[0] = PMI_PERIOD;
int ret = kpc_set_period(KPC_CLASS_CONFIGURABLE_MASK, periods);
T_QUIET; T_ASSERT_POSIX_SUCCESS(ret, "kpc_set_period");
free(periods);
int32_t *actions = calloc(mch.nconfig, sizeof(*actions));
actions[0] = 1;
ret = kpc_set_actionid(KPC_CLASS_CONFIGURABLE_MASK, actions);
T_QUIET; T_ASSERT_POSIX_SUCCESS(ret, "kpc_set_actionid");
free(actions);
(void)kperf_action_count_set(1);
ret = kperf_action_samplers_set(1,
KPERF_SAMPLER_TINFO | KPERF_SAMPLER_KSTACK);
T_QUIET; T_ASSERT_POSIX_SUCCESS(ret, "kperf_action_samplers_set");
ktrace_config_t ktconfig = ktrace_config_create_current();
T_QUIET; T_WITH_ERRNO; T_ASSERT_NOTNULL(ktconfig, "create current config");
ret = ktrace_config_print_description(ktconfig, stdout);
T_QUIET; T_ASSERT_POSIX_ZERO(ret, "print config description");
struct cpu *cpus = calloc(mch.ncpus, sizeof(*cpus));
T_QUIET; T_WITH_ERRNO; T_ASSERT_NOTNULL(cpus, "allocate CPUs array");
__block unsigned int nsamples = 0;
__block unsigned int npmis = 0;
__block unsigned int nstacks = 0;
__block uint64_t first_ns = 0;
__block uint64_t last_ns = 0;
ktrace_session_t sess = ktrace_session_create();
T_QUIET; T_WITH_ERRNO; T_ASSERT_NOTNULL(sess, "ktrace_session_create");
ktrace_events_single(sess, PERF_KPC_PMI, ^(struct trace_point *tp) {
if (tp->debugid & DBG_FUNC_END) {
return;
}
uint64_t cur_ns = 0;
int cret = ktrace_convert_timestamp_to_nanoseconds(sess,
tp->timestamp, &cur_ns);
T_QUIET; T_ASSERT_POSIX_ZERO(cret, "convert timestamp");
uint64_t desc = tp->arg1;
uint64_t config = desc & UINT32_MAX;
T_QUIET; T_EXPECT_EQ(config & UINT8_MAX,
(uint64_t)CYCLES_EVENT & UINT8_MAX,
"PMI argument matches configuration");
__unused uint64_t counter = (desc >> 32) & UINT16_MAX;
__unused uint64_t flags = desc >> 48;
uint64_t count = tp->arg2;
if (first_ns == 0) {
first_ns = cur_ns;
}
struct cpu *cpu = &cpus[tp->cpuid];
if (cpu->prev_count != 0) {
uint64_t delta = count - cpu->prev_count;
uint64_t skid = delta - PMI_PERIOD;
if (skid > cpu->max_skid) {
cpu->max_skid = skid;
}
}
cpu->prev_count = count;
__unused uint64_t pc = tp->arg3;
double slice = (double)(cur_ns - first_ns) / PMI_TEST_DURATION_NS *
NTIMESLICES;
if (slice < NTIMESLICES) {
cpu->timeslices[(unsigned int)slice] += 1;
}
npmis++;
});
ktrace_events_single(sess, PERF_SAMPLE, ^(struct trace_point * tp) {
if (tp->debugid & DBG_FUNC_START) {
nsamples++;
}
});
ktrace_events_single(sess, PERF_STK_KHDR,
^(struct trace_point * __unused tp) {
nstacks++;
});
ktrace_events_single(sess, END_EVENT, ^(struct trace_point *tp) {
int cret = ktrace_convert_timestamp_to_nanoseconds(sess,
tp->timestamp, &last_ns);
T_QUIET; T_ASSERT_POSIX_ZERO(cret, "convert timestamp");
ktrace_end(sess, 1);
});
uint64_t *counts = kpc_counterbuf_alloc();
T_QUIET; T_WITH_ERRNO; T_ASSERT_NOTNULL(counts,
"allocated counter values array");
memset(counts, 0, sizeof(*counts) * mch.ncpus * (mch.nfixed + mch.nconfig));
struct tally *tly = calloc(mch.ncpus * (mch.nconfig + mch.nfixed),
sizeof(*tly));
T_QUIET; T_WITH_ERRNO; T_ASSERT_NOTNULL(tly, "allocated tallies array");
dispatch_source_t cpu_count_timer = dispatch_source_create(
DISPATCH_SOURCE_TYPE_TIMER, 0, 0, dispatch_get_main_queue());
dispatch_source_set_timer(cpu_count_timer, dispatch_time(DISPATCH_TIME_NOW,
PERIODIC_CPU_COUNT_MS * NSEC_PER_MSEC),
PERIODIC_CPU_COUNT_MS * NSEC_PER_MSEC, 0);
dispatch_source_set_cancel_handler(cpu_count_timer, ^{
dispatch_release(cpu_count_timer);
});
__block uint64_t first_check_ns = 0;
__block uint64_t last_check_ns = 0;
dispatch_source_set_event_handler(cpu_count_timer, ^{
int cret = kpc_get_cpu_counters(true,
KPC_CLASS_FIXED_MASK | KPC_CLASS_CONFIGURABLE_MASK, NULL, counts);
T_QUIET; T_ASSERT_POSIX_SUCCESS(cret, "kpc_get_cpu_counters");
if (!first_check_ns) {
first_check_ns = clock_gettime_nsec_np(CLOCK_MONOTONIC);
} else {
last_check_ns = clock_gettime_nsec_np(CLOCK_MONOTONIC);
}
check_counters(mch.ncpus, mch.nfixed + mch.nconfig, tly, counts);
});
ktrace_events_class(sess, DBG_PERF, ^(struct trace_point * __unused tp) {});
int stop = 0;
(void)start_threads(&mch, spin, &stop);
ktrace_set_completion_handler(sess, ^{
dispatch_cancel(cpu_count_timer);
check_tally("config", mch.ncpus, mch.nfixed + mch.nconfig, tly);
struct rusage_info_v4 post_ru = {};
int ruret = proc_pid_rusage(getpid(), RUSAGE_INFO_V4,
(rusage_info_t *)&post_ru);
T_QUIET; T_ASSERT_POSIX_SUCCESS(ruret, "got rusage information");
T_LOG("saw %llu cycles in process", post_ru.ri_cycles - pre_ru.ri_cycles);
uint64_t total = 0;
T_LOG("saw pmis = %u, samples = %u, stacks = %u", npmis, nsamples,
nstacks);
// Allow some slop in case the trace is cut-off midway through a
// sample.
const unsigned int cutoff_leeway = 32;
T_EXPECT_GE(nsamples + cutoff_leeway, npmis,
"saw as many samples as PMIs");
T_EXPECT_GE(nstacks + cutoff_leeway, npmis,
"saw as many stacks as PMIs");
unsigned int nsamplecpus = 0;
char sample_slices[NTIMESLICES + 1];
sample_slices[NTIMESLICES] = '\0';
for (unsigned int i = 0; i < mch.ncpus; i++) {
memset(sample_slices, '.', sizeof(sample_slices) - 1);
struct cpu *cpu = &cpus[i];
unsigned int nsampleslices = 0, ncpusamples = 0,
last_contiguous = 0;
bool seen_empty = false;
for (unsigned int j = 0; j < NTIMESLICES; j++) {
unsigned int nslice = cpu->timeslices[j];
ncpusamples += nslice;
if (nslice > 0) {
nsampleslices++;
sample_slices[j] = '*';
} else {
seen_empty = true;
}
if (!seen_empty) {
last_contiguous = j;
}
}
unsigned int ctr = i * (mch.nfixed + mch.nconfig) + mch.nfixed;
uint64_t delta = tly[ctr].lastvalue - tly[ctr].firstvalue;
T_LOG("%g GHz", (double)delta / (last_check_ns - first_check_ns));
total += delta;
T_LOG("CPU %2u: %4u/%u, %6u/%llu, max skid = %llu (%.1f%%), "
"last contiguous = %u", i,
nsampleslices, NTIMESLICES, ncpusamples, delta / PMI_PERIOD,
cpu->max_skid, (double)cpu->max_skid / PMI_PERIOD * 100,
last_contiguous);
T_LOG("%s", sample_slices);
if (nsampleslices > 0) {
nsamplecpus++;
}
T_EXPECT_EQ(last_contiguous, NTIMESLICES - 1,
"CPU %2u: saw samples in each time slice", i);
}
T_LOG("kpc reported %llu total cycles", total);
T_LOG("saw %u sample events, across %u/%u cpus", nsamples, nsamplecpus,
mch.ncpus);
T_END;
});
int dbglvl = 3;
ret = sysctlbyname("kperf.debug_level", NULL, NULL, &dbglvl,
sizeof(dbglvl));
T_QUIET; T_ASSERT_POSIX_SUCCESS(ret, "set kperf debug level");
ret = kperf_sample_set(1);
T_ASSERT_POSIX_SUCCESS(ret, "kperf_sample_set");
start_kpc();
int error = ktrace_start(sess, dispatch_get_main_queue());
T_ASSERT_POSIX_ZERO(error, "started tracing");
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, PMI_TEST_DURATION_NS),
dispatch_get_main_queue(), ^{
T_LOG("ending tracing after timeout");
kdebug_trace(END_EVENT, 0, 0, 0, 0);
});
dispatch_activate(cpu_count_timer);
T_SETUPEND;
dispatch_main();
}