darling-xnu/tests/perf_vmfault.c
2023-05-16 21:41:14 -07:00

461 lines
15 KiB
C

#include <unistd.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/sysctl.h>
#include <mach/mach.h>
#include <mach/vm_map.h>
#include <darwintest.h>
#include <TargetConditionals.h>
#include <perfcheck_keys.h>
#include "benchmark/helpers.h"
T_GLOBAL_META(
T_META_NAMESPACE("xnu.vm.perf"),
T_META_CHECK_LEAKS(false),
T_META_TAG_PERF
);
#ifdef DT_IOSMARK
#define MEMSIZE (1UL<<29) /* 512 MB */
#else
#define MEMSIZE (1UL<<27) /* 128 MB */
#endif
#define VM_TAG1 100
#define VM_TAG2 101
enum {
SOFT_FAULT,
ZERO_FILL,
NUM_FAULT_TYPES
};
enum {
VARIANT_DEFAULT = 1,
VARIANT_SINGLE_REGION,
VARIANT_MULTIPLE_REGIONS,
NUM_MAPPING_VARIANTS
};
static char *variant_str[] = {
"none",
"default",
"single-region",
"multiple-regions"
};
typedef struct {
char *region_addr;
char *shared_region_addr;
size_t region_len;
} memregion_config;
static memregion_config *memregion_config_per_thread;
static size_t pgsize;
static int num_threads;
static int ready_thread_count;
static int finished_thread_count;
static dt_stat_time_t runtime;
static pthread_cond_t start_cvar;
static pthread_cond_t threads_ready_cvar;
static pthread_cond_t threads_finished_cvar;
static pthread_mutex_t ready_thread_count_lock;
static pthread_mutex_t finished_thread_count_lock;
static void map_mem_regions_default(int fault_type, size_t memsize);
static void map_mem_regions_single(int fault_type, size_t memsize);
static void map_mem_regions_multiple(int fault_type, size_t memsize);
static void map_mem_regions(int fault_type, int mapping_variant, size_t memsize);
static void unmap_mem_regions(int mapping_variant, size_t memsize);
static void setup_per_thread_regions(char *memblock, char *memblock_share, int fault_type, size_t memsize);
static void fault_pages(int thread_id);
static void execute_threads(void);
static void *thread_setup(void *arg);
static void run_test(int fault_type, int mapping_variant, size_t memsize);
static void setup_and_run_test(int test, int threads);
/* Allocates memory using the default mmap behavior. Each VM region created is capped at 128 MB. */
static void
map_mem_regions_default(int fault_type, size_t memsize)
{
volatile char val;
vm_prot_t curprot, maxprot;
char *ptr, *memblock, *memblock_share = NULL;
memblock = (char *)mmap(NULL, memsize, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
T_QUIET; T_ASSERT_NE((void *)memblock, MAP_FAILED, "mmap");
if (fault_type == SOFT_FAULT) {
/* Fault in all the pages of the original region. */
for (ptr = memblock; ptr < memblock + memsize; ptr += pgsize) {
val = *ptr;
}
/* Remap the region so that subsequent accesses result in read soft faults. */
T_QUIET; T_ASSERT_MACH_SUCCESS(vm_remap(mach_task_self(), (vm_address_t *)&memblock_share,
memsize, 0, VM_FLAGS_ANYWHERE, mach_task_self(), (vm_address_t)memblock, FALSE,
&curprot, &maxprot, VM_INHERIT_DEFAULT), "vm_remap");
}
setup_per_thread_regions(memblock, memblock_share, fault_type, memsize);
}
/* Creates a single VM region by mapping in a named memory entry. */
static void
map_mem_regions_single(int fault_type, size_t memsize)
{
volatile char val;
vm_prot_t curprot, maxprot;
char *ptr, *memblock = NULL, *memblock_share = NULL;
vm_size_t size = memsize;
vm_offset_t addr1 = 0;
mach_port_t mem_handle = MACH_PORT_NULL;
/* Allocate a region and fault in all the pages. */
T_QUIET; T_ASSERT_MACH_SUCCESS(vm_allocate(mach_task_self(), &addr1, size, VM_FLAGS_ANYWHERE), "vm_allocate");
for (ptr = (char *)addr1; ptr < (char *)addr1 + memsize; ptr += pgsize) {
val = *ptr;
}
/* Create a named memory entry from the region allocated above, and de-allocate said region. */
T_QUIET; T_ASSERT_MACH_SUCCESS(mach_make_memory_entry(mach_task_self(), &size, addr1, VM_PROT_ALL | MAP_MEM_NAMED_CREATE,
&mem_handle, MACH_PORT_NULL), "mach_make_memory_entry");
T_QUIET; T_ASSERT_MACH_SUCCESS(vm_deallocate(mach_task_self(), addr1, size), "vm_deallocate");
/* Map in the named entry and deallocate it. */
T_QUIET; T_ASSERT_MACH_SUCCESS(vm_map(mach_task_self(), (vm_address_t *)&memblock, size, 0, VM_FLAGS_ANYWHERE, mem_handle, 0,
FALSE, VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_NONE), "vm_map");
T_QUIET; T_ASSERT_MACH_SUCCESS(mach_port_deallocate(mach_task_self(), mem_handle), "mach_port_deallocate");
if (fault_type == SOFT_FAULT) {
/* Fault in all the pages of the original region. */
for (ptr = memblock; ptr < memblock + memsize; ptr += pgsize) {
val = *ptr;
}
/* Remap the region so that subsequent accesses result in read soft faults. */
T_QUIET; T_ASSERT_MACH_SUCCESS(vm_remap(mach_task_self(), (vm_address_t *)&memblock_share,
memsize, 0, VM_FLAGS_ANYWHERE, mach_task_self(), (vm_address_t)memblock, FALSE,
&curprot, &maxprot, VM_INHERIT_DEFAULT), "vm_remap");
}
setup_per_thread_regions(memblock, memblock_share, fault_type, memsize);
}
/* Allocates a separate VM region for each thread. */
static void
map_mem_regions_multiple(int fault_type, size_t memsize)
{
int i;
size_t region_len, num_pages;
volatile char val;
char *ptr, *memblock, *memblock_share;
vm_prot_t curprot, maxprot;
num_pages = memsize / pgsize;
for (i = 0; i < num_threads; i++) {
memblock = NULL;
region_len = num_pages / (size_t)num_threads;
if ((size_t)i < num_pages % (size_t)num_threads) {
region_len++;
}
region_len *= pgsize;
int fd = VM_MAKE_TAG((i % 2)? VM_TAG1 : VM_TAG2);
memblock = (char *)mmap(NULL, region_len, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, fd, 0);
T_QUIET; T_ASSERT_NE((void *)memblock, MAP_FAILED, "mmap");
memregion_config_per_thread[i].region_addr = memblock;
memregion_config_per_thread[i].shared_region_addr = 0;
memregion_config_per_thread[i].region_len = region_len;
if (fault_type == SOFT_FAULT) {
/* Fault in all the pages of the original region. */
for (ptr = memblock; ptr < memblock + region_len; ptr += pgsize) {
val = *ptr;
}
memblock_share = NULL;
/* Remap the region so that subsequent accesses result in read soft faults. */
T_QUIET; T_ASSERT_MACH_SUCCESS(vm_remap(mach_task_self(), (vm_address_t *)&memblock_share,
region_len, 0, VM_FLAGS_ANYWHERE, mach_task_self(), (vm_address_t)memblock, FALSE,
&curprot, &maxprot, VM_INHERIT_DEFAULT), "vm_remap");
memregion_config_per_thread[i].shared_region_addr = memblock_share;
}
}
}
static void
map_mem_regions(int fault_type, int mapping_variant, size_t memsize)
{
memregion_config_per_thread = (memregion_config *)malloc(sizeof(*memregion_config_per_thread) * (size_t)num_threads);
switch (mapping_variant) {
case VARIANT_SINGLE_REGION:
map_mem_regions_single(fault_type, memsize);
break;
case VARIANT_MULTIPLE_REGIONS:
map_mem_regions_multiple(fault_type, memsize);
break;
case VARIANT_DEFAULT:
default:
map_mem_regions_default(fault_type, memsize);
}
}
static void
setup_per_thread_regions(char *memblock, char *memblock_share, int fault_type, size_t memsize)
{
int i;
size_t region_len, region_start, num_pages;
num_pages = memsize / pgsize;
for (i = 0; i < num_threads; i++) {
region_len = num_pages / (size_t)num_threads;
region_start = region_len * (size_t)i;
if ((size_t)i < num_pages % (size_t)num_threads) {
region_start += (size_t)i;
region_len++;
} else {
region_start += num_pages % (size_t)num_threads;
}
region_start *= pgsize;
region_len *= pgsize;
memregion_config_per_thread[i].region_addr = memblock + region_start;
memregion_config_per_thread[i].shared_region_addr = ((fault_type == SOFT_FAULT) ?
memblock_share + region_start : 0);
memregion_config_per_thread[i].region_len = region_len;
}
}
static void
unmap_mem_regions(int mapping_variant, size_t memsize)
{
if (mapping_variant == VARIANT_MULTIPLE_REGIONS) {
int i;
for (i = 0; i < num_threads; i++) {
if (memregion_config_per_thread[i].shared_region_addr != 0) {
T_QUIET; T_ASSERT_MACH_SUCCESS(munmap(memregion_config_per_thread[i].shared_region_addr,
memregion_config_per_thread[i].region_len), "munmap");
}
T_QUIET; T_ASSERT_MACH_SUCCESS(munmap(memregion_config_per_thread[i].region_addr,
memregion_config_per_thread[i].region_len), "munmap");
}
} else {
if (memregion_config_per_thread[0].shared_region_addr != 0) {
T_QUIET; T_ASSERT_MACH_SUCCESS(munmap(memregion_config_per_thread[0].shared_region_addr, memsize), "munmap");
}
T_QUIET; T_ASSERT_MACH_SUCCESS(munmap(memregion_config_per_thread[0].region_addr, memsize), "munmap");
}
}
static void
fault_pages(int thread_id)
{
char *ptr, *block;
volatile char val;
block = memregion_config_per_thread[thread_id].shared_region_addr ?
memregion_config_per_thread[thread_id].shared_region_addr :
memregion_config_per_thread[thread_id].region_addr;
for (ptr = block; ptr < block + memregion_config_per_thread[thread_id].region_len; ptr += pgsize) {
val = *ptr;
}
}
static void *
thread_setup(void *arg)
{
int my_index = *((int *)arg);
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_mutex_lock(&ready_thread_count_lock), "pthread_mutex_lock");
ready_thread_count++;
if (ready_thread_count == num_threads) {
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_cond_signal(&threads_ready_cvar), "pthread_cond_signal");
}
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_cond_wait(&start_cvar, &ready_thread_count_lock), "pthread_cond_wait");
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_mutex_unlock(&ready_thread_count_lock), "pthread_mutex_unlock");
fault_pages(my_index);
/* Up the finished count */
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_mutex_lock(&finished_thread_count_lock), "pthread_mutex_lock");
finished_thread_count++;
if (finished_thread_count == num_threads) {
/* All the threads are done. Wake up the main thread */
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_cond_signal(&threads_finished_cvar), "pthread_cond_signal");
}
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_mutex_unlock(&finished_thread_count_lock), "pthread_mutex_unlock");
return NULL;
}
static void
execute_threads(void)
{
int thread_index, thread_retval;
int *thread_indices;
void *thread_retval_ptr = &thread_retval;
pthread_t* threads;
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_cond_init(&threads_ready_cvar, NULL), "pthread_cond_init");
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_cond_init(&start_cvar, NULL), "pthread_cond_init");
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_mutex_init(&ready_thread_count_lock, NULL), "pthread_mutex_init");
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_cond_init(&threads_finished_cvar, NULL), "pthread_cond_init");
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_mutex_init(&finished_thread_count_lock, NULL), "pthread_mutex_init");
ready_thread_count = 0;
finished_thread_count = 0;
threads = (pthread_t *)malloc(sizeof(*threads) * (size_t)num_threads);
thread_indices = (int *)malloc(sizeof(*thread_indices) * (size_t)num_threads);
for (thread_index = 0; thread_index < num_threads; thread_index++) {
thread_indices[thread_index] = thread_index;
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_create(&threads[thread_index], NULL,
thread_setup, (void *)&thread_indices[thread_index]), "pthread_create");
}
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_mutex_lock(&ready_thread_count_lock), "pthread_mutex_lock");
while (ready_thread_count != num_threads) {
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_cond_wait(&threads_ready_cvar, &ready_thread_count_lock),
"pthread_cond_wait");
}
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_mutex_unlock(&ready_thread_count_lock), "pthread_mutex_unlock");
T_STAT_MEASURE(runtime) {
/* Ungate the threads */
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_cond_broadcast(&start_cvar), "pthread_cond_broadcast");
/* Wait for the threads to finish */
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_mutex_lock(&finished_thread_count_lock), "pthread_mutex_lock");
while (finished_thread_count != num_threads) {
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_cond_wait(&threads_finished_cvar, &finished_thread_count_lock), "pthread_cond_wait");
}
};
/* Join the threads */
for (thread_index = 0; thread_index < num_threads; thread_index++) {
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_join(threads[thread_index], &thread_retval_ptr),
"pthread_join");
}
free(threads);
free(thread_indices);
}
static void
run_test(int fault_type, int mapping_variant, size_t memsize)
{
char metric_str[32];
size_t num_pages;
size_t sysctl_size = sizeof(pgsize);
int ret = sysctlbyname("vm.pagesize", &pgsize, &sysctl_size, NULL, 0);
T_QUIET; T_ASSERT_POSIX_SUCCESS(ret, "sysctl vm.pagesize failed");
num_pages = memsize / pgsize;
T_QUIET; T_ASSERT_LT(fault_type, NUM_FAULT_TYPES, "invalid test type");
T_QUIET; T_ASSERT_LT(mapping_variant, NUM_MAPPING_VARIANTS, "invalid mapping variant");
T_QUIET; T_ASSERT_GT(num_threads, 0, "num_threads <= 0");
T_QUIET; T_ASSERT_GT((int)num_pages / num_threads, 0, "num_pages/num_threads <= 0");
T_LOG("No. of cpus: %d", get_ncpu());
T_LOG("No. of threads: %d", num_threads);
T_LOG("No. of pages: %ld", num_pages);
T_LOG("Pagesize: %ld", pgsize);
T_LOG("Allocation size: %ld MB", memsize / (1024 * 1024));
T_LOG("Mapping variant: %s", variant_str[mapping_variant]);
snprintf(metric_str, 32, "Runtime-%s", variant_str[mapping_variant]);
runtime = dt_stat_time_create(metric_str);
while (!dt_stat_stable(runtime)) {
map_mem_regions(fault_type, mapping_variant, memsize);
execute_threads();
unmap_mem_regions(mapping_variant, memsize);
}
dt_stat_finalize(runtime);
T_LOG("Throughput-%s (MB/s): %lf\n\n", variant_str[mapping_variant], (double)memsize / (1024 * 1024) / dt_stat_mean((dt_stat_t)runtime));
}
static void
setup_and_run_test(int fault_type, int threads)
{
int i, mapping_variant;
size_t memsize;
char *e;
mapping_variant = VARIANT_DEFAULT;
memsize = MEMSIZE;
num_threads = threads;
if ((e = getenv("NTHREADS"))) {
if (threads == 1) {
T_SKIP("Custom environment variables specified. Skipping single threaded version.");
}
num_threads = (int)strtol(e, NULL, 0);
}
if ((e = getenv("MEMSIZEMB"))) {
memsize = (size_t)strtol(e, NULL, 0) * 1024 * 1024;
}
if ((e = getenv("VARIANT"))) {
mapping_variant = (int)strtol(e, NULL, 0);
run_test(fault_type, mapping_variant, memsize);
} else {
for (i = VARIANT_DEFAULT; i < NUM_MAPPING_VARIANTS; i++) {
run_test(fault_type, i, memsize);
}
}
T_END;
}
T_DECL(read_soft_fault,
"Read soft faults (single thread)")
{
setup_and_run_test(SOFT_FAULT, 1);
}
T_DECL(read_soft_fault_multithreaded,
"Read soft faults (multi-threaded)")
{
char *e;
int nthreads;
/* iOSMark passes in the no. of threads via an env. variable */
if ((e = getenv("DT_STAT_NTHREADS"))) {
nthreads = (int)strtol(e, NULL, 0);
} else {
nthreads = get_ncpu();
if (nthreads == 1) {
T_SKIP("Skipping multi-threaded test on single core device.");
}
}
setup_and_run_test(SOFT_FAULT, nthreads);
}
T_DECL(zero_fill_fault,
"Zero fill faults (single thread)")
{
setup_and_run_test(ZERO_FILL, 1);
}
T_DECL(zero_fill_fault_multithreaded,
"Zero fill faults (multi-threaded)")
{
char *e;
int nthreads;
/* iOSMark passes in the no. of threads via an env. variable */
if ((e = getenv("DT_STAT_NTHREADS"))) {
nthreads = (int)strtol(e, NULL, 0);
} else {
nthreads = get_ncpu();
if (nthreads == 1) {
T_SKIP("Skipping multi-threaded test on single core device.");
}
}
setup_and_run_test(ZERO_FILL, nthreads);
}