darling-xnu/tests/stackshot_tests.m
2023-05-16 21:41:14 -07:00

2514 lines
90 KiB
Objective-C

#include <darwintest.h>
#include <darwintest_utils.h>
#include <darwintest_multiprocess.h>
#include <kern/debug.h>
#include <kern/kern_cdata.h>
#include <kern/block_hint.h>
#include <kdd.h>
#include <libproc.h>
#include <mach-o/dyld.h>
#include <mach-o/dyld_images.h>
#include <mach-o/dyld_priv.h>
#include <sys/syscall.h>
#include <sys/stackshot.h>
#include <uuid/uuid.h>
#include <servers/bootstrap.h>
#include <pthread/workqueue_private.h>
#include <dispatch/private.h>
#import <zlib.h>
T_GLOBAL_META(
T_META_NAMESPACE("xnu.stackshot"),
T_META_CHECK_LEAKS(false),
T_META_ASROOT(true)
);
static const char *current_process_name(void);
static void verify_stackshot_sharedcache_layout(struct dyld_uuid_info_64 *uuids, uint32_t uuid_count);
static void parse_stackshot(uint64_t stackshot_parsing_flags, void *ssbuf, size_t sslen, NSDictionary *extra);
static void parse_thread_group_stackshot(void **sbuf, size_t sslen);
static uint64_t stackshot_timestamp(void *ssbuf, size_t sslen);
static void initialize_thread(void);
static uint64_t global_flags = 0;
#define DEFAULT_STACKSHOT_BUFFER_SIZE (1024 * 1024)
#define MAX_STACKSHOT_BUFFER_SIZE (6 * 1024 * 1024)
#define SRP_SERVICE_NAME "com.apple.xnu.test.stackshot.special_reply_port"
/* bit flags for parse_stackshot */
#define PARSE_STACKSHOT_DELTA 0x01
#define PARSE_STACKSHOT_ZOMBIE 0x02
#define PARSE_STACKSHOT_SHAREDCACHE_LAYOUT 0x04
#define PARSE_STACKSHOT_DISPATCH_QUEUE_LABEL 0x08
#define PARSE_STACKSHOT_TURNSTILEINFO 0x10
#define PARSE_STACKSHOT_POSTEXEC 0x20
#define PARSE_STACKSHOT_WAITINFO_CSEG 0x40
#define PARSE_STACKSHOT_WAITINFO_SRP 0x80
#define PARSE_STACKSHOT_TRANSLATED 0x100
#define PARSE_STACKSHOT_SHAREDCACHE_FLAGS 0x200
#define PARSE_STACKSHOT_EXEC_INPROGRESS 0x400
/* keys for 'extra' dictionary for parse_stackshot */
static const NSString* zombie_child_pid_key = @"zombie_child_pid"; // -> @(pid), required for PARSE_STACKSHOT_ZOMBIE
static const NSString* postexec_child_unique_pid_key = @"postexec_child_unique_pid"; // -> @(unique_pid), required for PARSE_STACKSHOT_POSTEXEC
static const NSString* cseg_expected_threadid_key = @"cseg_expected_threadid"; // -> @(tid), required for PARSE_STACKSHOT_WAITINFO_CSEG
static const NSString* srp_expected_threadid_key = @"srp_expected_threadid"; // -> @(tid), this or ..._pid required for PARSE_STACKSHOT_WAITINFO_SRP
static const NSString* srp_expected_pid_key = @"srp_expected_pid"; // -> @(pid), this or ..._threadid required for PARSE_STACKSHOT_WAITINFO_SRP
static const NSString* translated_child_pid_key = @"translated_child_pid"; // -> @(pid), required for PARSE_STACKSHOT_TRANSLATED
static const NSString* sharedcache_child_pid_key = @"sharedcache_child_pid"; // @(pid), required for PARSE_STACKSHOT_SHAREDCACHE_FLAGS
static const NSString* sharedcache_child_sameaddr_key = @"sharedcache_child_sameaddr"; // @(0 or 1), required for PARSE_STACKSHOT_SHAREDCACHE_FLAGS
static const NSString* exec_inprogress_pid_key = @"exec_inprogress_pid";
static const NSString* exec_inprogress_found_key = @"exec_inprogress_found"; // callback when inprogress is found
#define TEST_STACKSHOT_QUEUE_LABEL "houston.we.had.a.problem"
#define TEST_STACKSHOT_QUEUE_LABEL_LENGTH sizeof(TEST_STACKSHOT_QUEUE_LABEL)
T_DECL(microstackshots, "test the microstackshot syscall")
{
void *buf = NULL;
unsigned int size = DEFAULT_STACKSHOT_BUFFER_SIZE;
while (1) {
buf = malloc(size);
T_QUIET; T_ASSERT_NOTNULL(buf, "allocated stackshot buffer");
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
int len = syscall(SYS_microstackshot, buf, size,
(uint32_t) STACKSHOT_GET_MICROSTACKSHOT);
#pragma clang diagnostic pop
if (len == ENOSYS) {
T_SKIP("microstackshot syscall failed, likely not compiled with CONFIG_TELEMETRY");
}
if (len == -1 && errno == ENOSPC) {
/* syscall failed because buffer wasn't large enough, try again */
free(buf);
buf = NULL;
size *= 2;
T_ASSERT_LE(size, (unsigned int)MAX_STACKSHOT_BUFFER_SIZE,
"growing stackshot buffer to sane size");
continue;
}
T_ASSERT_POSIX_SUCCESS(len, "called microstackshot syscall");
break;
}
T_EXPECT_EQ(*(uint32_t *)buf,
(uint32_t)STACKSHOT_MICRO_SNAPSHOT_MAGIC,
"magic value for microstackshot matches");
free(buf);
}
struct scenario {
const char *name;
uint64_t flags;
bool quiet;
bool should_fail;
bool maybe_unsupported;
pid_t target_pid;
uint64_t since_timestamp;
uint32_t size_hint;
dt_stat_time_t timer;
};
static void
quiet(struct scenario *scenario)
{
if (scenario->timer || scenario->quiet) {
T_QUIET;
}
}
static void
take_stackshot(struct scenario *scenario, bool compress_ok, void (^cb)(void *buf, size_t size))
{
start:
initialize_thread();
void *config = stackshot_config_create();
quiet(scenario);
T_ASSERT_NOTNULL(config, "created stackshot config");
int ret = stackshot_config_set_flags(config, scenario->flags | global_flags);
quiet(scenario);
T_ASSERT_POSIX_ZERO(ret, "set flags %#llx on stackshot config", scenario->flags);
if (scenario->size_hint > 0) {
ret = stackshot_config_set_size_hint(config, scenario->size_hint);
quiet(scenario);
T_ASSERT_POSIX_ZERO(ret, "set size hint %" PRIu32 " on stackshot config",
scenario->size_hint);
}
if (scenario->target_pid > 0) {
ret = stackshot_config_set_pid(config, scenario->target_pid);
quiet(scenario);
T_ASSERT_POSIX_ZERO(ret, "set target pid %d on stackshot config",
scenario->target_pid);
}
if (scenario->since_timestamp > 0) {
ret = stackshot_config_set_delta_timestamp(config, scenario->since_timestamp);
quiet(scenario);
T_ASSERT_POSIX_ZERO(ret, "set since timestamp %" PRIu64 " on stackshot config",
scenario->since_timestamp);
}
int retries_remaining = 5;
retry: ;
uint64_t start_time = mach_absolute_time();
ret = stackshot_capture_with_config(config);
uint64_t end_time = mach_absolute_time();
if (scenario->should_fail) {
T_EXPECTFAIL;
T_ASSERT_POSIX_ZERO(ret, "called stackshot_capture_with_config");
return;
}
if (ret == EBUSY || ret == ETIMEDOUT) {
if (retries_remaining > 0) {
if (!scenario->timer) {
T_LOG("stackshot_capture_with_config failed with %s (%d), retrying",
strerror(ret), ret);
}
retries_remaining--;
goto retry;
} else {
T_ASSERT_POSIX_ZERO(ret,
"called stackshot_capture_with_config (no retries remaining)");
}
} else if ((ret == ENOTSUP) && scenario->maybe_unsupported) {
T_SKIP("kernel indicated this stackshot configuration is not supported");
} else {
quiet(scenario);
T_ASSERT_POSIX_ZERO(ret, "called stackshot_capture_with_config");
}
if (scenario->timer) {
dt_stat_mach_time_add(scenario->timer, end_time - start_time);
}
void *buf = stackshot_config_get_stackshot_buffer(config);
size_t size = stackshot_config_get_stackshot_size(config);
if (scenario->name) {
char sspath[MAXPATHLEN];
strlcpy(sspath, scenario->name, sizeof(sspath));
strlcat(sspath, ".kcdata", sizeof(sspath));
T_QUIET; T_ASSERT_POSIX_ZERO(dt_resultfile(sspath, sizeof(sspath)),
"create result file path");
if (!scenario->quiet) {
T_LOG("writing stackshot to %s", sspath);
}
FILE *f = fopen(sspath, "w");
T_WITH_ERRNO; T_QUIET; T_ASSERT_NOTNULL(f,
"open stackshot output file");
size_t written = fwrite(buf, size, 1, f);
T_QUIET; T_ASSERT_POSIX_SUCCESS(written, "wrote stackshot to file");
fclose(f);
}
cb(buf, size);
if (compress_ok) {
if (global_flags == 0) {
T_LOG("Restarting test with compression");
global_flags |= STACKSHOT_DO_COMPRESS;
goto start;
} else {
global_flags = 0;
}
}
ret = stackshot_config_dealloc(config);
T_QUIET; T_EXPECT_POSIX_ZERO(ret, "deallocated stackshot config");
}
T_DECL(simple_compressed, "take a simple compressed stackshot")
{
struct scenario scenario = {
.name = "kcdata_compressed",
.flags = (STACKSHOT_DO_COMPRESS | STACKSHOT_SAVE_LOADINFO | STACKSHOT_THREAD_WAITINFO | STACKSHOT_GET_GLOBAL_MEM_STATS |
STACKSHOT_SAVE_IMP_DONATION_PIDS | STACKSHOT_KCDATA_FORMAT),
};
T_LOG("taking compressed kcdata stackshot");
take_stackshot(&scenario, true, ^(void *ssbuf, size_t sslen) {
parse_stackshot(0, ssbuf, sslen, nil);
});
}
T_DECL(panic_compressed, "take a compressed stackshot with the same flags as a panic stackshot")
{
uint64_t stackshot_flags = (STACKSHOT_SAVE_KEXT_LOADINFO |
STACKSHOT_SAVE_LOADINFO |
STACKSHOT_KCDATA_FORMAT |
STACKSHOT_ENABLE_BT_FAULTING |
STACKSHOT_ENABLE_UUID_FAULTING |
STACKSHOT_DO_COMPRESS |
STACKSHOT_NO_IO_STATS |
STACKSHOT_THREAD_WAITINFO |
#if TARGET_OS_MAC
STACKSHOT_COLLECT_SHAREDCACHE_LAYOUT |
#endif
STACKSHOT_DISABLE_LATENCY_INFO);
struct scenario scenario = {
.name = "kcdata_panic_compressed",
.flags = stackshot_flags,
};
T_LOG("taking compressed kcdata stackshot with panic flags");
take_stackshot(&scenario, true, ^(void *ssbuf, size_t sslen) {
parse_stackshot(0, ssbuf, sslen, nil);
});
}
T_DECL(kcdata, "test that kcdata stackshots can be taken and parsed")
{
struct scenario scenario = {
.name = "kcdata",
.flags = (STACKSHOT_SAVE_LOADINFO | STACKSHOT_GET_GLOBAL_MEM_STATS |
STACKSHOT_SAVE_IMP_DONATION_PIDS | STACKSHOT_KCDATA_FORMAT),
};
T_LOG("taking kcdata stackshot");
take_stackshot(&scenario, true, ^(void *ssbuf, size_t sslen) {
parse_stackshot(0, ssbuf, sslen, nil);
});
}
T_DECL(kcdata_faulting, "test that kcdata stackshots while faulting can be taken and parsed")
{
struct scenario scenario = {
.name = "faulting",
.flags = (STACKSHOT_SAVE_LOADINFO | STACKSHOT_GET_GLOBAL_MEM_STATS
| STACKSHOT_SAVE_IMP_DONATION_PIDS | STACKSHOT_KCDATA_FORMAT
| STACKSHOT_ENABLE_BT_FAULTING | STACKSHOT_ENABLE_UUID_FAULTING),
};
T_LOG("taking faulting stackshot");
take_stackshot(&scenario, true, ^(void *ssbuf, size_t sslen) {
parse_stackshot(0, ssbuf, sslen, nil);
});
}
T_DECL(bad_flags, "test a poorly-formed stackshot syscall")
{
struct scenario scenario = {
.flags = STACKSHOT_SAVE_IN_KERNEL_BUFFER /* not allowed from user space */,
.should_fail = true,
};
T_LOG("attempting to take stackshot with kernel-only flag");
take_stackshot(&scenario, true, ^(__unused void *ssbuf, __unused size_t sslen) {
T_ASSERT_FAIL("stackshot data callback called");
});
}
T_DECL(delta, "test delta stackshots")
{
struct scenario scenario = {
.name = "delta",
.flags = (STACKSHOT_SAVE_LOADINFO | STACKSHOT_GET_GLOBAL_MEM_STATS
| STACKSHOT_SAVE_IMP_DONATION_PIDS | STACKSHOT_KCDATA_FORMAT),
};
T_LOG("taking full stackshot");
take_stackshot(&scenario, false, ^(void *ssbuf, size_t sslen) {
uint64_t stackshot_time = stackshot_timestamp(ssbuf, sslen);
T_LOG("taking delta stackshot since time %" PRIu64, stackshot_time);
parse_stackshot(0, ssbuf, sslen, nil);
struct scenario delta_scenario = {
.flags = (STACKSHOT_SAVE_LOADINFO | STACKSHOT_GET_GLOBAL_MEM_STATS
| STACKSHOT_SAVE_IMP_DONATION_PIDS | STACKSHOT_KCDATA_FORMAT
| STACKSHOT_COLLECT_DELTA_SNAPSHOT),
.since_timestamp = stackshot_time
};
take_stackshot(&delta_scenario, false, ^(void *dssbuf, size_t dsslen) {
parse_stackshot(PARSE_STACKSHOT_DELTA, dssbuf, dsslen, nil);
});
});
}
T_DECL(shared_cache_layout, "test stackshot inclusion of shared cache layout")
{
struct scenario scenario = {
.name = "shared_cache_layout",
.flags = (STACKSHOT_SAVE_LOADINFO | STACKSHOT_GET_GLOBAL_MEM_STATS
| STACKSHOT_SAVE_IMP_DONATION_PIDS | STACKSHOT_KCDATA_FORMAT |
STACKSHOT_COLLECT_SHAREDCACHE_LAYOUT),
};
size_t shared_cache_length;
const void *cache_header = _dyld_get_shared_cache_range(&shared_cache_length);
if (cache_header == NULL) {
T_SKIP("Device not running with shared cache, skipping test...");
}
if (shared_cache_length == 0) {
T_SKIP("dyld reports that currently running shared cache has zero length");
}
T_LOG("taking stackshot with STACKSHOT_COLLECT_SHAREDCACHE_LAYOUT set");
take_stackshot(&scenario, true, ^(void *ssbuf, size_t sslen) {
parse_stackshot(PARSE_STACKSHOT_SHAREDCACHE_LAYOUT, ssbuf, sslen, nil);
});
}
T_DECL(stress, "test that taking stackshots for 60 seconds doesn't crash the system")
{
uint64_t max_diff_time = 60ULL /* seconds */ * 1000000000ULL;
uint64_t start_time;
struct scenario scenario = {
.name = "stress",
.quiet = true,
.flags = (STACKSHOT_KCDATA_FORMAT |
STACKSHOT_THREAD_WAITINFO |
STACKSHOT_SAVE_LOADINFO |
STACKSHOT_SAVE_KEXT_LOADINFO |
STACKSHOT_GET_GLOBAL_MEM_STATS |
STACKSHOT_SAVE_IMP_DONATION_PIDS |
STACKSHOT_COLLECT_SHAREDCACHE_LAYOUT |
STACKSHOT_THREAD_GROUP |
STACKSHOT_SAVE_JETSAM_COALITIONS |
STACKSHOT_ASID |
0),
};
start_time = clock_gettime_nsec_np(CLOCK_MONOTONIC);
while (clock_gettime_nsec_np(CLOCK_MONOTONIC) - start_time < max_diff_time) {
take_stackshot(&scenario, false, ^(void * __unused ssbuf,
size_t __unused sslen) {
printf(".");
fflush(stdout);
});
/* Leave some time for the testing infrastructure to catch up */
usleep(10000);
}
printf("\n");
}
T_DECL(dispatch_queue_label, "test that kcdata stackshots contain libdispatch queue labels")
{
struct scenario scenario = {
.name = "kcdata",
.flags = (STACKSHOT_GET_DQ | STACKSHOT_KCDATA_FORMAT),
};
dispatch_semaphore_t child_ready_sem, parent_done_sem;
dispatch_queue_t dq;
#if TARGET_OS_WATCH
T_SKIP("This test is flaky on watches: 51663346");
#endif
child_ready_sem = dispatch_semaphore_create(0);
T_QUIET; T_ASSERT_NOTNULL(child_ready_sem, "dqlabel child semaphore");
parent_done_sem = dispatch_semaphore_create(0);
T_QUIET; T_ASSERT_NOTNULL(parent_done_sem, "dqlabel parent semaphore");
dq = dispatch_queue_create(TEST_STACKSHOT_QUEUE_LABEL, NULL);
T_QUIET; T_ASSERT_NOTNULL(dq, "dispatch queue");
/* start the helper thread */
dispatch_async(dq, ^{
dispatch_semaphore_signal(child_ready_sem);
dispatch_semaphore_wait(parent_done_sem, DISPATCH_TIME_FOREVER);
});
/* block behind the child starting up */
dispatch_semaphore_wait(child_ready_sem, DISPATCH_TIME_FOREVER);
T_LOG("taking kcdata stackshot with libdispatch queue labels");
take_stackshot(&scenario, true, ^(void *ssbuf, size_t sslen) {
parse_stackshot(PARSE_STACKSHOT_DISPATCH_QUEUE_LABEL, ssbuf, sslen, nil);
});
dispatch_semaphore_signal(parent_done_sem);
}
#define CACHEADDR_ENV "STACKSHOT_TEST_DYLDADDR"
T_HELPER_DECL(spawn_reslide_child, "child process to spawn with alternate slide")
{
size_t shared_cache_len;
const void *addr, *prevaddr;
uintmax_t v;
char *endptr;
const char *cacheaddr_env = getenv(CACHEADDR_ENV);
T_QUIET; T_ASSERT_NOTNULL(cacheaddr_env, "getenv("CACHEADDR_ENV")");
errno = 0;
endptr = NULL;
v = strtoumax(cacheaddr_env, &endptr, 16); /* read hex value */
T_WITH_ERRNO; T_QUIET; T_ASSERT_NE(v, 0l, "getenv(%s) = \"%s\" should be a non-zero hex number", CACHEADDR_ENV, cacheaddr_env);
T_QUIET; T_ASSERT_EQ(*endptr, 0, "getenv(%s) = \"%s\" endptr \"%s\" should be empty", CACHEADDR_ENV, cacheaddr_env, endptr);
prevaddr = (const void *)v;
addr = _dyld_get_shared_cache_range(&shared_cache_len);
T_QUIET; T_ASSERT_NOTNULL(addr, "shared cache address");
T_QUIET; T_ASSERT_POSIX_SUCCESS(kill(getppid(), (addr == prevaddr) ? SIGUSR2 : SIGUSR1), "signaled parent to take stackshot");
for (;;) {
(void) pause(); /* parent will kill -9 us */
}
}
T_DECL(shared_cache_flags, "tests stackshot's task_ss_flags for the shared cache")
{
posix_spawnattr_t attr;
char *env_addr;
char path[PATH_MAX];
__block bool child_same_addr = false;
uint32_t path_size = sizeof(path);
T_QUIET; T_ASSERT_POSIX_ZERO(_NSGetExecutablePath(path, &path_size), "_NSGetExecutablePath");
char *args[] = { path, "-n", "spawn_reslide_child", NULL };
pid_t pid;
size_t shared_cache_len;
const void *addr;
dispatch_source_t child_diffsig_src, child_samesig_src;
dispatch_semaphore_t child_ready_sem = dispatch_semaphore_create(0);
T_QUIET; T_ASSERT_NOTNULL(child_ready_sem, "shared_cache child semaphore");
dispatch_queue_t signal_processing_q = dispatch_queue_create("signal processing queue", NULL);
T_QUIET; T_ASSERT_NOTNULL(signal_processing_q, "signal processing queue");
signal(SIGUSR1, SIG_IGN);
signal(SIGUSR2, SIG_IGN);
child_samesig_src = dispatch_source_create(DISPATCH_SOURCE_TYPE_SIGNAL, SIGUSR1, 0, signal_processing_q);
T_QUIET; T_ASSERT_NOTNULL(child_samesig_src, "dispatch_source_create (child_samesig_src)");
child_diffsig_src = dispatch_source_create(DISPATCH_SOURCE_TYPE_SIGNAL, SIGUSR2, 0, signal_processing_q);
T_QUIET; T_ASSERT_NOTNULL(child_diffsig_src, "dispatch_source_create (child_diffsig_src)");
/* child will signal us depending on if their addr is the same or different */
dispatch_source_set_event_handler(child_samesig_src, ^{ child_same_addr = false; dispatch_semaphore_signal(child_ready_sem); });
dispatch_source_set_event_handler(child_diffsig_src, ^{ child_same_addr = true; dispatch_semaphore_signal(child_ready_sem); });
dispatch_activate(child_samesig_src);
dispatch_activate(child_diffsig_src);
addr = _dyld_get_shared_cache_range(&shared_cache_len);
T_QUIET; T_ASSERT_NOTNULL(addr, "shared cache address");
T_QUIET; T_ASSERT_POSIX_SUCCESS(asprintf(&env_addr, "%p", addr), "asprintf of env_addr succeeded");
T_QUIET; T_ASSERT_POSIX_SUCCESS(setenv(CACHEADDR_ENV, env_addr, true), "setting "CACHEADDR_ENV" to %s", env_addr);
T_QUIET; T_ASSERT_POSIX_ZERO(posix_spawnattr_init(&attr), "posix_spawnattr_init");
T_QUIET; T_ASSERT_POSIX_ZERO(posix_spawnattr_setflags(&attr, _POSIX_SPAWN_RESLIDE), "posix_spawnattr_setflags");
int sp_ret = posix_spawn(&pid, path, NULL, &attr, args, environ);
T_ASSERT_POSIX_ZERO(sp_ret, "spawned process '%s' with PID %d", args[0], pid);
dispatch_semaphore_wait(child_ready_sem, DISPATCH_TIME_FOREVER);
T_LOG("received signal from child (%s), capturing stackshot", child_same_addr ? "same shared cache addr" : "different shared cache addr");
struct scenario scenario = {
.name = "shared_cache_flags",
.flags = (STACKSHOT_SAVE_LOADINFO | STACKSHOT_GET_GLOBAL_MEM_STATS
| STACKSHOT_COLLECT_SHAREDCACHE_LAYOUT
| STACKSHOT_SAVE_IMP_DONATION_PIDS | STACKSHOT_KCDATA_FORMAT),
};
take_stackshot(&scenario, false, ^( void *ssbuf, size_t sslen) {
int status;
/* First kill the child so we can reap it */
T_QUIET; T_ASSERT_POSIX_SUCCESS(kill(pid, SIGKILL), "killing spawned process");
T_QUIET; T_ASSERT_POSIX_SUCCESS(waitpid(pid, &status, 0), "waitpid on spawned child");
T_QUIET; T_ASSERT_EQ(!!WIFSIGNALED(status), 1, "waitpid status should be signalled");
T_QUIET; T_ASSERT_EQ(WTERMSIG(status), SIGKILL, "waitpid status should be SIGKILLed");
parse_stackshot(PARSE_STACKSHOT_SHAREDCACHE_FLAGS, ssbuf, sslen,
@{sharedcache_child_pid_key: @(pid), sharedcache_child_sameaddr_key: @(child_same_addr ? 1 : 0)});
});
}
static void *stuck_sysctl_thread(void *arg) {
int val = 1;
dispatch_semaphore_t child_thread_started = *(dispatch_semaphore_t *)arg;
dispatch_semaphore_signal(child_thread_started);
T_ASSERT_POSIX_SUCCESS(sysctlbyname("kern.wedge_thread", NULL, NULL, &val, sizeof(val)), "wedge child thread");
return NULL;
}
T_HELPER_DECL(zombie_child, "child process to sample as a zombie")
{
pthread_t pthread;
dispatch_semaphore_t child_thread_started = dispatch_semaphore_create(0);
T_QUIET; T_ASSERT_NOTNULL(child_thread_started, "zombie child thread semaphore");
/* spawn another thread to get stuck in the kernel, then call exit() to become a zombie */
T_QUIET; T_ASSERT_POSIX_SUCCESS(pthread_create(&pthread, NULL, stuck_sysctl_thread, &child_thread_started), "pthread_create");
dispatch_semaphore_wait(child_thread_started, DISPATCH_TIME_FOREVER);
/* sleep for a bit in the hope of ensuring that the other thread has called the sysctl before we signal the parent */
usleep(100);
T_ASSERT_POSIX_SUCCESS(kill(getppid(), SIGUSR1), "signaled parent to take stackshot");
exit(0);
}
T_DECL(zombie, "tests a stackshot of a zombie task with a thread stuck in the kernel")
{
char path[PATH_MAX];
uint32_t path_size = sizeof(path);
T_ASSERT_POSIX_ZERO(_NSGetExecutablePath(path, &path_size), "_NSGetExecutablePath");
char *args[] = { path, "-n", "zombie_child", NULL };
dispatch_source_t child_sig_src;
dispatch_semaphore_t child_ready_sem = dispatch_semaphore_create(0);
T_QUIET; T_ASSERT_NOTNULL(child_ready_sem, "zombie child semaphore");
dispatch_queue_t signal_processing_q = dispatch_queue_create("signal processing queue", NULL);
T_QUIET; T_ASSERT_NOTNULL(signal_processing_q, "signal processing queue");
pid_t pid;
T_LOG("spawning a child");
signal(SIGUSR1, SIG_IGN);
child_sig_src = dispatch_source_create(DISPATCH_SOURCE_TYPE_SIGNAL, SIGUSR1, 0, signal_processing_q);
T_QUIET; T_ASSERT_NOTNULL(child_sig_src, "dispatch_source_create (child_sig_src)");
dispatch_source_set_event_handler(child_sig_src, ^{ dispatch_semaphore_signal(child_ready_sem); });
dispatch_activate(child_sig_src);
int sp_ret = posix_spawn(&pid, args[0], NULL, NULL, args, NULL);
T_QUIET; T_ASSERT_POSIX_ZERO(sp_ret, "spawned process '%s' with PID %d", args[0], pid);
dispatch_semaphore_wait(child_ready_sem, DISPATCH_TIME_FOREVER);
T_LOG("received signal from child, capturing stackshot");
struct proc_bsdshortinfo bsdshortinfo;
int retval, iterations_to_wait = 10;
while (iterations_to_wait > 0) {
retval = proc_pidinfo(pid, PROC_PIDT_SHORTBSDINFO, 0, &bsdshortinfo, sizeof(bsdshortinfo));
if ((retval == 0) && errno == ESRCH) {
T_LOG("unable to find child using proc_pidinfo, assuming zombie");
break;
}
T_QUIET; T_WITH_ERRNO; T_ASSERT_GT(retval, 0, "proc_pidinfo(PROC_PIDT_SHORTBSDINFO) returned a value > 0");
T_QUIET; T_ASSERT_EQ(retval, (int)sizeof(bsdshortinfo), "proc_pidinfo call for PROC_PIDT_SHORTBSDINFO returned expected size");
if (bsdshortinfo.pbsi_flags & PROC_FLAG_INEXIT) {
T_LOG("child proc info marked as in exit");
break;
}
iterations_to_wait--;
if (iterations_to_wait == 0) {
/*
* This will mark the test as failed but let it continue so we
* don't leave a process stuck in the kernel.
*/
T_FAIL("unable to discover that child is marked as exiting");
}
/* Give the child a few more seconds to make it to exit */
sleep(5);
}
/* Give the child some more time to make it through exit */
sleep(10);
struct scenario scenario = {
.name = "zombie",
.flags = (STACKSHOT_SAVE_LOADINFO | STACKSHOT_GET_GLOBAL_MEM_STATS
| STACKSHOT_SAVE_IMP_DONATION_PIDS | STACKSHOT_KCDATA_FORMAT),
};
take_stackshot(&scenario, false, ^( void *ssbuf, size_t sslen) {
/* First unwedge the child so we can reap it */
int val = 1, status;
T_ASSERT_POSIX_SUCCESS(sysctlbyname("kern.unwedge_thread", NULL, NULL, &val, sizeof(val)), "unwedge child");
T_QUIET; T_ASSERT_POSIX_SUCCESS(waitpid(pid, &status, 0), "waitpid on zombie child");
parse_stackshot(PARSE_STACKSHOT_ZOMBIE, ssbuf, sslen, @{zombie_child_pid_key: @(pid)});
});
}
T_HELPER_DECL(exec_child_preexec, "child process pre-exec")
{
dispatch_queue_t signal_processing_q = dispatch_queue_create("signal processing queue", NULL);
T_QUIET; T_ASSERT_NOTNULL(signal_processing_q, "signal processing queue");
signal(SIGUSR1, SIG_IGN);
dispatch_source_t parent_sig_src = dispatch_source_create(DISPATCH_SOURCE_TYPE_SIGNAL, SIGUSR1, 0, signal_processing_q);
T_QUIET; T_ASSERT_NOTNULL(parent_sig_src, "dispatch_source_create (child_sig_src)");
dispatch_source_set_event_handler(parent_sig_src, ^{
// Parent took a timestamp then signaled us: exec into the next process
char path[PATH_MAX];
uint32_t path_size = sizeof(path);
T_QUIET; T_ASSERT_POSIX_ZERO(_NSGetExecutablePath(path, &path_size), "_NSGetExecutablePath");
char *args[] = { path, "-n", "exec_child_postexec", NULL };
T_QUIET; T_ASSERT_POSIX_ZERO(execve(args[0], args, NULL), "execing into exec_child_postexec");
});
dispatch_activate(parent_sig_src);
T_ASSERT_POSIX_SUCCESS(kill(getppid(), SIGUSR1), "signaled parent to take timestamp");
sleep(100);
// Should never get here
T_FAIL("Received signal to exec from parent");
}
T_HELPER_DECL(exec_child_postexec, "child process post-exec to sample")
{
T_ASSERT_POSIX_SUCCESS(kill(getppid(), SIGUSR1), "signaled parent to take stackshot");
sleep(100);
// Should never get here
T_FAIL("Killed by parent");
}
T_DECL(exec, "test getting full task snapshots for a task that execs")
{
char path[PATH_MAX];
uint32_t path_size = sizeof(path);
T_QUIET; T_ASSERT_POSIX_ZERO(_NSGetExecutablePath(path, &path_size), "_NSGetExecutablePath");
char *args[] = { path, "-n", "exec_child_preexec", NULL };
dispatch_source_t child_sig_src;
dispatch_semaphore_t child_ready_sem = dispatch_semaphore_create(0);
T_QUIET; T_ASSERT_NOTNULL(child_ready_sem, "exec child semaphore");
dispatch_queue_t signal_processing_q = dispatch_queue_create("signal processing queue", NULL);
T_QUIET; T_ASSERT_NOTNULL(signal_processing_q, "signal processing queue");
pid_t pid;
T_LOG("spawning a child");
signal(SIGUSR1, SIG_IGN);
child_sig_src = dispatch_source_create(DISPATCH_SOURCE_TYPE_SIGNAL, SIGUSR1, 0, signal_processing_q);
T_QUIET; T_ASSERT_NOTNULL(child_sig_src, "dispatch_source_create (child_sig_src)");
dispatch_source_set_event_handler(child_sig_src, ^{ dispatch_semaphore_signal(child_ready_sem); });
dispatch_activate(child_sig_src);
int sp_ret = posix_spawn(&pid, args[0], NULL, NULL, args, NULL);
T_QUIET; T_ASSERT_POSIX_ZERO(sp_ret, "spawned process '%s' with PID %d", args[0], pid);
dispatch_semaphore_wait(child_ready_sem, DISPATCH_TIME_FOREVER);
uint64_t start_time = mach_absolute_time();
struct proc_uniqidentifierinfo proc_info_data = { };
int retval = proc_pidinfo(getpid(), PROC_PIDUNIQIDENTIFIERINFO, 0, &proc_info_data, sizeof(proc_info_data));
T_QUIET; T_EXPECT_POSIX_SUCCESS(retval, "proc_pidinfo PROC_PIDUNIQIDENTIFIERINFO");
T_QUIET; T_ASSERT_EQ_INT(retval, (int) sizeof(proc_info_data), "proc_pidinfo PROC_PIDUNIQIDENTIFIERINFO returned data");
uint64_t unique_pid = proc_info_data.p_uniqueid;
T_LOG("received signal from pre-exec child, unique_pid is %llu, timestamp is %llu", unique_pid, start_time);
T_ASSERT_POSIX_SUCCESS(kill(pid, SIGUSR1), "signaled pre-exec child to exec");
dispatch_semaphore_wait(child_ready_sem, DISPATCH_TIME_FOREVER);
T_LOG("received signal from post-exec child, capturing stackshot");
struct scenario scenario = {
.name = "exec",
.flags = (STACKSHOT_SAVE_LOADINFO | STACKSHOT_GET_GLOBAL_MEM_STATS
| STACKSHOT_SAVE_IMP_DONATION_PIDS | STACKSHOT_KCDATA_FORMAT
| STACKSHOT_COLLECT_DELTA_SNAPSHOT),
.since_timestamp = start_time
};
take_stackshot(&scenario, false, ^( void *ssbuf, size_t sslen) {
// Kill the child
int status;
T_ASSERT_POSIX_SUCCESS(kill(pid, SIGKILL), "kill post-exec child %d", pid);
T_ASSERT_POSIX_SUCCESS(waitpid(pid, &status, 0), "waitpid on post-exec child");
parse_stackshot(PARSE_STACKSHOT_POSTEXEC | PARSE_STACKSHOT_DELTA, ssbuf, sslen, @{postexec_child_unique_pid_key: @(unique_pid)});
});
}
T_DECL(exec_inprogress, "test stackshots of processes in the middle of exec")
{
pid_t pid;
/* a BASH quine which execs itself as long as the parent doesn't exit */
char *bash_prog = "[[ $PPID -ne 1 ]] && exec /bin/bash -c \"$0\" \"$0\"";
char *args[] = { "/bin/bash", "-c", bash_prog, bash_prog, NULL };
posix_spawnattr_t sattr;
T_ASSERT_POSIX_ZERO(posix_spawnattr_init(&sattr), "posix_spawnattr_init");
T_ASSERT_POSIX_ZERO(posix_spawn(&pid, args[0], NULL, &sattr, args, NULL), "spawn exec_inprogress_child");
struct scenario scenario = {
.name = "exec_inprogress",
.flags = (STACKSHOT_KCDATA_FORMAT),
.target_pid = pid,
};
int tries = 0;
int tries_limit = 30;
__block bool found = false;
__block uint64_t cid1 = 0, cid2 = 0;
for (tries = 0; !found && tries < tries_limit; tries++) {
take_stackshot(&scenario, false,
^( void *ssbuf, size_t sslen) {
parse_stackshot(PARSE_STACKSHOT_EXEC_INPROGRESS,
ssbuf, sslen, @{
exec_inprogress_pid_key: @(pid),
exec_inprogress_found_key: ^(uint64_t id1, uint64_t id2) { found = true; cid1 = id1; cid2 = id2; }});
});
}
T_QUIET; T_ASSERT_POSIX_SUCCESS(kill(pid, SIGKILL), "killing exec loop");
T_ASSERT_TRUE(found, "able to find our execing process mid-exec in %d tries", tries);
T_ASSERT_NE(cid1, cid2, "container IDs for in-progress exec are unique");
T_PASS("found mid-exec process in %d tries", tries);
}
static uint32_t
get_user_promotion_basepri(void)
{
mach_msg_type_number_t count = THREAD_POLICY_STATE_COUNT;
struct thread_policy_state thread_policy;
boolean_t get_default = FALSE;
mach_port_t thread_port = pthread_mach_thread_np(pthread_self());
kern_return_t kr = thread_policy_get(thread_port, THREAD_POLICY_STATE,
(thread_policy_t)&thread_policy, &count, &get_default);
T_QUIET; T_ASSERT_MACH_SUCCESS(kr, "thread_policy_get");
return thread_policy.thps_user_promotion_basepri;
}
static int
get_pri(thread_t thread_port)
{
kern_return_t kr;
thread_extended_info_data_t extended_info;
mach_msg_type_number_t count = THREAD_EXTENDED_INFO_COUNT;
kr = thread_info(thread_port, THREAD_EXTENDED_INFO,
(thread_info_t)&extended_info, &count);
T_QUIET; T_ASSERT_MACH_SUCCESS(kr, "thread_info");
return extended_info.pth_curpri;
}
T_DECL(turnstile_singlehop, "turnstile single hop test")
{
dispatch_queue_t dq1, dq2;
dispatch_semaphore_t sema_x;
dispatch_queue_attr_t dq1_attr, dq2_attr;
__block qos_class_t main_qos = 0;
__block int main_relpri = 0, main_relpri2 = 0, main_afterpri = 0;
struct scenario scenario = {
.name = "turnstile_singlehop",
.flags = (STACKSHOT_THREAD_WAITINFO | STACKSHOT_KCDATA_FORMAT),
};
dq1_attr = dispatch_queue_attr_make_with_qos_class(DISPATCH_QUEUE_SERIAL, QOS_CLASS_UTILITY, 0);
dq2_attr = dispatch_queue_attr_make_with_qos_class(DISPATCH_QUEUE_SERIAL, QOS_CLASS_USER_INITIATED, 0);
pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t lock_b = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t *lockap = &lock_a, *lockbp = &lock_b;
dq1 = dispatch_queue_create("q1", dq1_attr);
dq2 = dispatch_queue_create("q2", dq2_attr);
sema_x = dispatch_semaphore_create(0);
pthread_mutex_lock(lockap);
dispatch_async(dq1, ^{
pthread_mutex_lock(lockbp);
T_ASSERT_POSIX_SUCCESS(pthread_get_qos_class_np(pthread_self(), &main_qos, &main_relpri), "get qos class");
T_LOG("The priority of q1 is %d\n", get_pri(mach_thread_self()));
dispatch_semaphore_signal(sema_x);
pthread_mutex_lock(lockap);
});
dispatch_semaphore_wait(sema_x, DISPATCH_TIME_FOREVER);
T_LOG("Async1 completed");
pthread_set_qos_class_self_np(QOS_CLASS_UTILITY, 0);
T_ASSERT_POSIX_SUCCESS(pthread_get_qos_class_np(pthread_self(), &main_qos, &main_relpri), "get qos class");
T_LOG("The priority of main is %d\n", get_pri(mach_thread_self()));
main_relpri = get_pri(mach_thread_self());
dispatch_async(dq2, ^{
T_ASSERT_POSIX_SUCCESS(pthread_get_qos_class_np(pthread_self(), &main_qos, &main_relpri2), "get qos class");
T_LOG("The priority of q2 is %d\n", get_pri(mach_thread_self()));
dispatch_semaphore_signal(sema_x);
pthread_mutex_lock(lockbp);
});
dispatch_semaphore_wait(sema_x, DISPATCH_TIME_FOREVER);
T_LOG("Async2 completed");
while (1) {
main_afterpri = (int) get_user_promotion_basepri();
if (main_relpri != main_afterpri) {
T_LOG("Success with promotion pri is %d", main_afterpri);
break;
}
usleep(100);
}
take_stackshot(&scenario, true, ^( void *ssbuf, size_t sslen) {
parse_stackshot(PARSE_STACKSHOT_TURNSTILEINFO, ssbuf, sslen, nil);
});
}
static void
expect_instrs_cycles_in_stackshot(void *ssbuf, size_t sslen)
{
kcdata_iter_t iter = kcdata_iter(ssbuf, sslen);
bool in_task = false;
bool in_thread = false;
bool saw_instrs_cycles = false;
iter = kcdata_iter_next(iter);
KCDATA_ITER_FOREACH(iter) {
switch (kcdata_iter_type(iter)) {
case KCDATA_TYPE_CONTAINER_BEGIN:
switch (kcdata_iter_container_type(iter)) {
case STACKSHOT_KCCONTAINER_TASK:
in_task = true;
saw_instrs_cycles = false;
break;
case STACKSHOT_KCCONTAINER_THREAD:
in_thread = true;
saw_instrs_cycles = false;
break;
default:
break;
}
break;
case STACKSHOT_KCTYPE_INSTRS_CYCLES:
saw_instrs_cycles = true;
break;
case KCDATA_TYPE_CONTAINER_END:
if (in_thread) {
T_QUIET; T_EXPECT_TRUE(saw_instrs_cycles,
"saw instructions and cycles in thread");
in_thread = false;
} else if (in_task) {
T_QUIET; T_EXPECT_TRUE(saw_instrs_cycles,
"saw instructions and cycles in task");
in_task = false;
}
default:
break;
}
}
}
static void
skip_if_monotonic_unsupported(void)
{
int supported = 0;
size_t supported_size = sizeof(supported);
int ret = sysctlbyname("kern.monotonic.supported", &supported,
&supported_size, 0, 0);
if (ret < 0 || !supported) {
T_SKIP("monotonic is unsupported");
}
}
T_DECL(instrs_cycles, "test a getting instructions and cycles in stackshot")
{
skip_if_monotonic_unsupported();
struct scenario scenario = {
.name = "instrs-cycles",
.flags = (STACKSHOT_SAVE_LOADINFO | STACKSHOT_INSTRS_CYCLES
| STACKSHOT_KCDATA_FORMAT),
};
T_LOG("attempting to take stackshot with instructions and cycles");
take_stackshot(&scenario, false, ^(void *ssbuf, size_t sslen) {
parse_stackshot(0, ssbuf, sslen, nil);
expect_instrs_cycles_in_stackshot(ssbuf, sslen);
});
}
T_DECL(delta_instrs_cycles,
"test delta stackshots with instructions and cycles")
{
skip_if_monotonic_unsupported();
struct scenario scenario = {
.name = "delta-instrs-cycles",
.flags = (STACKSHOT_SAVE_LOADINFO | STACKSHOT_INSTRS_CYCLES
| STACKSHOT_KCDATA_FORMAT),
};
T_LOG("taking full stackshot");
take_stackshot(&scenario, false, ^(void *ssbuf, size_t sslen) {
uint64_t stackshot_time = stackshot_timestamp(ssbuf, sslen);
T_LOG("taking delta stackshot since time %" PRIu64, stackshot_time);
parse_stackshot(0, ssbuf, sslen, nil);
expect_instrs_cycles_in_stackshot(ssbuf, sslen);
struct scenario delta_scenario = {
.name = "delta-instrs-cycles-next",
.flags = (STACKSHOT_SAVE_LOADINFO | STACKSHOT_INSTRS_CYCLES
| STACKSHOT_KCDATA_FORMAT
| STACKSHOT_COLLECT_DELTA_SNAPSHOT),
.since_timestamp = stackshot_time,
};
take_stackshot(&delta_scenario, false, ^(void *dssbuf, size_t dsslen) {
parse_stackshot(PARSE_STACKSHOT_DELTA, dssbuf, dsslen, nil);
expect_instrs_cycles_in_stackshot(dssbuf, dsslen);
});
});
}
static void
check_thread_groups_supported()
{
int err;
int supported = 0;
size_t supported_size = sizeof(supported);
err = sysctlbyname("kern.thread_groups_supported", &supported, &supported_size, NULL, 0);
if (err || !supported)
T_SKIP("thread groups not supported on this system");
}
T_DECL(thread_groups, "test getting thread groups in stackshot")
{
check_thread_groups_supported();
struct scenario scenario = {
.name = "thread-groups",
.flags = (STACKSHOT_SAVE_LOADINFO | STACKSHOT_THREAD_GROUP
| STACKSHOT_KCDATA_FORMAT),
};
T_LOG("attempting to take stackshot with thread group flag");
take_stackshot(&scenario, false, ^(void *ssbuf, size_t sslen) {
parse_thread_group_stackshot(ssbuf, sslen);
});
}
static void
parse_page_table_asid_stackshot(void **ssbuf, size_t sslen)
{
bool seen_asid = false;
bool seen_page_table_snapshot = false;
kcdata_iter_t iter = kcdata_iter(ssbuf, sslen);
T_ASSERT_EQ(kcdata_iter_type(iter), KCDATA_BUFFER_BEGIN_STACKSHOT,
"buffer provided is a stackshot");
iter = kcdata_iter_next(iter);
KCDATA_ITER_FOREACH(iter) {
switch (kcdata_iter_type(iter)) {
case KCDATA_TYPE_ARRAY: {
T_QUIET;
T_ASSERT_TRUE(kcdata_iter_array_valid(iter),
"checked that array is valid");
if (kcdata_iter_array_elem_type(iter) != STACKSHOT_KCTYPE_PAGE_TABLES) {
continue;
}
T_ASSERT_FALSE(seen_page_table_snapshot, "check that we haven't yet seen a page table snapshot");
seen_page_table_snapshot = true;
T_ASSERT_EQ((size_t) kcdata_iter_array_elem_size(iter), sizeof(uint64_t),
"check that each element of the pagetable dump is the expected size");
uint64_t *pt_array = kcdata_iter_payload(iter);
uint32_t elem_count = kcdata_iter_array_elem_count(iter);
uint32_t j;
bool nonzero_tte = false;
for (j = 0; j < elem_count;) {
T_QUIET; T_ASSERT_LE(j + 4, elem_count, "check for valid page table segment header");
uint64_t pa = pt_array[j];
uint64_t num_entries = pt_array[j + 1];
uint64_t start_va = pt_array[j + 2];
uint64_t end_va = pt_array[j + 3];
T_QUIET; T_ASSERT_NE(pa, (uint64_t) 0, "check that the pagetable physical address is non-zero");
T_QUIET; T_ASSERT_EQ(pa % (num_entries * sizeof(uint64_t)), (uint64_t) 0, "check that the pagetable physical address is correctly aligned");
T_QUIET; T_ASSERT_NE(num_entries, (uint64_t) 0, "check that a pagetable region has more than 0 entries");
T_QUIET; T_ASSERT_LE(j + 4 + num_entries, (uint64_t) elem_count, "check for sufficient space in page table array");
T_QUIET; T_ASSERT_GT(end_va, start_va, "check for valid VA bounds in page table segment header");
for (uint32_t k = j + 4; k < (j + 4 + num_entries); ++k) {
if (pt_array[k] != 0) {
nonzero_tte = true;
T_QUIET; T_ASSERT_EQ((pt_array[k] >> 48) & 0xf, (uint64_t) 0, "check that bits[48:51] of arm64 TTE are clear");
// L0-L2 table and non-compressed L3 block entries should always have bit 1 set; assumes L0-L2 blocks will not be used outside the kernel
bool table = ((pt_array[k] & 0x2) != 0);
if (table) {
T_QUIET; T_ASSERT_NE(pt_array[k] & ((1ULL << 48) - 1) & ~((1ULL << 12) - 1), (uint64_t) 0, "check that arm64 TTE physical address is non-zero");
} else { // should be a compressed PTE
T_QUIET; T_ASSERT_NE(pt_array[k] & 0xC000000000000000ULL, (uint64_t) 0, "check that compressed PTE has at least one of bits [63:62] set");
T_QUIET; T_ASSERT_EQ(pt_array[k] & ~0xC000000000000000ULL, (uint64_t) 0, "check that compressed PTE has no other bits besides [63:62] set");
}
}
}
j += (4 + num_entries);
}
T_ASSERT_TRUE(nonzero_tte, "check that we saw at least one non-empty TTE");
T_ASSERT_EQ(j, elem_count, "check that page table dump size matches extent of last header");
break;
}
case STACKSHOT_KCTYPE_ASID: {
T_ASSERT_FALSE(seen_asid, "check that we haven't yet seen an ASID");
seen_asid = true;
}
}
}
T_ASSERT_TRUE(seen_page_table_snapshot, "check that we have seen a page table snapshot");
T_ASSERT_TRUE(seen_asid, "check that we have seen an ASID");
}
T_DECL(dump_page_tables, "test stackshot page table dumping support")
{
struct scenario scenario = {
.name = "asid-page-tables",
.flags = (STACKSHOT_KCDATA_FORMAT | STACKSHOT_ASID | STACKSHOT_PAGE_TABLES),
.size_hint = (1ULL << 23), // 8 MB
.target_pid = getpid(),
.maybe_unsupported = true,
};
T_LOG("attempting to take stackshot with ASID and page table flags");
take_stackshot(&scenario, false, ^(void *ssbuf, size_t sslen) {
parse_page_table_asid_stackshot(ssbuf, sslen);
});
}
static void stackshot_verify_current_proc_uuid_info(void **ssbuf, size_t sslen, uint64_t expected_offset, const struct proc_uniqidentifierinfo *proc_info_data)
{
const uuid_t *current_uuid = (const uuid_t *)(&proc_info_data->p_uuid);
kcdata_iter_t iter = kcdata_iter(ssbuf, sslen);
T_ASSERT_EQ(kcdata_iter_type(iter), KCDATA_BUFFER_BEGIN_STACKSHOT, "buffer provided is a stackshot");
iter = kcdata_iter_next(iter);
KCDATA_ITER_FOREACH(iter) {
switch (kcdata_iter_type(iter)) {
case KCDATA_TYPE_ARRAY: {
T_QUIET; T_ASSERT_TRUE(kcdata_iter_array_valid(iter), "checked that array is valid");
if (kcdata_iter_array_elem_type(iter) == KCDATA_TYPE_LIBRARY_LOADINFO64) {
struct user64_dyld_uuid_info *info = (struct user64_dyld_uuid_info *) kcdata_iter_payload(iter);
if (uuid_compare(*current_uuid, info->imageUUID) == 0) {
T_ASSERT_EQ(expected_offset, info->imageLoadAddress, "found matching UUID with matching binary offset");
return;
}
} else if (kcdata_iter_array_elem_type(iter) == KCDATA_TYPE_LIBRARY_LOADINFO) {
struct user32_dyld_uuid_info *info = (struct user32_dyld_uuid_info *) kcdata_iter_payload(iter);
if (uuid_compare(*current_uuid, info->imageUUID) == 0) {
T_ASSERT_EQ(expected_offset, ((uint64_t) info->imageLoadAddress), "found matching UUID with matching binary offset");
return;
}
}
break;
}
default:
break;
}
}
T_FAIL("failed to find matching UUID in stackshot data");
}
T_DECL(translated, "tests translated bit is set correctly")
{
#if !(TARGET_OS_OSX && TARGET_CPU_ARM64)
T_SKIP("Only valid on Apple silicon Macs")
#endif
// Get path of stackshot_translated_child helper binary
char path[PATH_MAX];
uint32_t path_size = sizeof(path);
T_QUIET; T_ASSERT_POSIX_ZERO(_NSGetExecutablePath(path, &path_size), "_NSGetExecutablePath");
char* binary_name = strrchr(path, '/');
if (binary_name) binary_name++;
T_QUIET; T_ASSERT_NOTNULL(binary_name, "Find basename in path '%s'", path);
strlcpy(binary_name, "stackshot_translated_child", path_size - (binary_name - path));
char *args[] = { path, NULL };
dispatch_source_t child_sig_src;
dispatch_semaphore_t child_ready_sem = dispatch_semaphore_create(0);
T_QUIET; T_ASSERT_NOTNULL(child_ready_sem, "exec child semaphore");
dispatch_queue_t signal_processing_q = dispatch_queue_create("signal processing queue", NULL);
T_QUIET; T_ASSERT_NOTNULL(signal_processing_q, "signal processing queue");
signal(SIGUSR1, SIG_IGN);
child_sig_src = dispatch_source_create(DISPATCH_SOURCE_TYPE_SIGNAL, SIGUSR1, 0, signal_processing_q);
T_QUIET; T_ASSERT_NOTNULL(child_sig_src, "dispatch_source_create (child_sig_src)");
dispatch_source_set_event_handler(child_sig_src, ^{ dispatch_semaphore_signal(child_ready_sem); });
dispatch_activate(child_sig_src);
// Spawn child
pid_t pid;
T_LOG("spawning translated child");
T_QUIET; T_ASSERT_POSIX_ZERO(posix_spawn(&pid, args[0], NULL, NULL, args, NULL), "spawned process '%s' with PID %d", args[0], pid);
// Wait for the the child to spawn up
dispatch_semaphore_wait(child_ready_sem, DISPATCH_TIME_FOREVER);
// Make sure the child is running and is translated
int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, pid };
struct kinfo_proc process_info;
size_t bufsize = sizeof(process_info);
T_QUIET; T_ASSERT_POSIX_SUCCESS(sysctl(mib, (unsigned)(sizeof(mib)/sizeof(int)), &process_info, &bufsize, NULL, 0), "get translated child process info");
T_QUIET; T_ASSERT_GT(bufsize, (size_t)0, "process info is not empty");
T_QUIET; T_ASSERT_TRUE((process_info.kp_proc.p_flag & P_TRANSLATED), "KERN_PROC_PID reports child is translated");
T_LOG("capturing stackshot");
struct scenario scenario = {
.name = "translated",
.flags = (STACKSHOT_SAVE_LOADINFO | STACKSHOT_GET_GLOBAL_MEM_STATS
| STACKSHOT_SAVE_IMP_DONATION_PIDS | STACKSHOT_KCDATA_FORMAT),
};
take_stackshot(&scenario, true, ^( void *ssbuf, size_t sslen) {
parse_stackshot(PARSE_STACKSHOT_TRANSLATED, ssbuf, sslen, @{translated_child_pid_key: @(pid)});
});
// Kill the child
int status;
T_QUIET; T_ASSERT_POSIX_SUCCESS(kill(pid, SIGTERM), "kill translated child");
T_QUIET; T_ASSERT_POSIX_SUCCESS(waitpid(pid, &status, 0), "waitpid on translated child");
}
T_DECL(proc_uuid_info, "tests that the main binary UUID for a proc is always populated")
{
struct proc_uniqidentifierinfo proc_info_data = { };
mach_msg_type_number_t count;
kern_return_t kernel_status;
task_dyld_info_data_t task_dyld_info;
struct dyld_all_image_infos *target_infos;
int retval;
bool found_image_in_image_infos = false;
uint64_t expected_mach_header_offset = 0;
/* Find the UUID of our main binary */
retval = proc_pidinfo(getpid(), PROC_PIDUNIQIDENTIFIERINFO, 0, &proc_info_data, sizeof(proc_info_data));
T_QUIET; T_EXPECT_POSIX_SUCCESS(retval, "proc_pidinfo PROC_PIDUNIQIDENTIFIERINFO");
T_QUIET; T_ASSERT_EQ_INT(retval, (int) sizeof(proc_info_data), "proc_pidinfo PROC_PIDUNIQIDENTIFIERINFO returned data");
uuid_string_t str = {};
uuid_unparse(*(uuid_t*)&proc_info_data.p_uuid, str);
T_LOG("Found current UUID is %s", str);
/* Find the location of the dyld image info metadata */
count = TASK_DYLD_INFO_COUNT;
kernel_status = task_info(mach_task_self(), TASK_DYLD_INFO, (task_info_t)&task_dyld_info, &count);
T_QUIET; T_ASSERT_EQ(kernel_status, KERN_SUCCESS, "retrieve task_info for TASK_DYLD_INFO");
target_infos = (struct dyld_all_image_infos *)task_dyld_info.all_image_info_addr;
/* Find our binary in the dyld image info array */
for (int i = 0; i < (int) target_infos->uuidArrayCount; i++) {
if (uuid_compare(target_infos->uuidArray[i].imageUUID, *(uuid_t*)&proc_info_data.p_uuid) == 0) {
expected_mach_header_offset = (uint64_t) target_infos->uuidArray[i].imageLoadAddress;
found_image_in_image_infos = true;
}
}
T_ASSERT_TRUE(found_image_in_image_infos, "found binary image in dyld image info list");
/* Overwrite the dyld image info data so the kernel has to fallback to the UUID stored in the proc structure */
target_infos->uuidArrayCount = 0;
struct scenario scenario = {
.name = "proc_uuid_info",
.flags = (STACKSHOT_SAVE_LOADINFO | STACKSHOT_KCDATA_FORMAT),
.target_pid = getpid(),
};
T_LOG("attempting to take stackshot for current PID");
take_stackshot(&scenario, false, ^(void *ssbuf, size_t sslen) {
stackshot_verify_current_proc_uuid_info(ssbuf, sslen, expected_mach_header_offset, &proc_info_data);
});
}
T_DECL(cseg_waitinfo, "test that threads stuck in the compressor report correct waitinfo")
{
struct scenario scenario = {
.name = "cseg_waitinfo",
.quiet = false,
.flags = (STACKSHOT_THREAD_WAITINFO | STACKSHOT_KCDATA_FORMAT),
};
__block uint64_t thread_id = 0;
dispatch_queue_t dq = dispatch_queue_create("com.apple.stackshot.cseg_waitinfo", NULL);
dispatch_semaphore_t child_ok = dispatch_semaphore_create(0);
dispatch_async(dq, ^{
pthread_threadid_np(NULL, &thread_id);
dispatch_semaphore_signal(child_ok);
int val = 1;
T_ASSERT_POSIX_SUCCESS(sysctlbyname("kern.cseg_wedge_thread", NULL, NULL, &val, sizeof(val)), "wedge child thread");
});
dispatch_semaphore_wait(child_ok, DISPATCH_TIME_FOREVER);
sleep(1);
T_LOG("taking stackshot");
take_stackshot(&scenario, false, ^(void *ssbuf, size_t sslen) {
int val = 1;
T_ASSERT_POSIX_SUCCESS(sysctlbyname("kern.cseg_unwedge_thread", NULL, NULL, &val, sizeof(val)), "unwedge child thread");
parse_stackshot(PARSE_STACKSHOT_WAITINFO_CSEG, ssbuf, sslen, @{cseg_expected_threadid_key: @(thread_id)});
});
}
static void
srp_send(
mach_port_t send_port,
mach_port_t reply_port,
mach_port_t msg_port)
{
kern_return_t ret = 0;
struct test_msg {
mach_msg_header_t header;
mach_msg_body_t body;
mach_msg_port_descriptor_t port_descriptor;
};
struct test_msg send_msg = {
.header = {
.msgh_remote_port = send_port,
.msgh_local_port = reply_port,
.msgh_bits = MACH_MSGH_BITS_SET(MACH_MSG_TYPE_COPY_SEND,
reply_port ? MACH_MSG_TYPE_MAKE_SEND_ONCE : 0,
MACH_MSG_TYPE_MOVE_SEND,
MACH_MSGH_BITS_COMPLEX),
.msgh_id = 0x100,
.msgh_size = sizeof(send_msg),
},
.body = {
.msgh_descriptor_count = 1,
},
.port_descriptor = {
.name = msg_port,
.disposition = MACH_MSG_TYPE_MOVE_RECEIVE,
.type = MACH_MSG_PORT_DESCRIPTOR,
},
};
if (msg_port == MACH_PORT_NULL) {
send_msg.body.msgh_descriptor_count = 0;
}
ret = mach_msg(&(send_msg.header),
MACH_SEND_MSG |
MACH_SEND_TIMEOUT |
MACH_SEND_OVERRIDE |
(reply_port ? MACH_SEND_SYNC_OVERRIDE : 0),
send_msg.header.msgh_size,
0,
MACH_PORT_NULL,
10000,
0);
T_ASSERT_MACH_SUCCESS(ret, "client mach_msg");
}
T_HELPER_DECL(srp_client,
"Client used for the special_reply_port test")
{
pid_t ppid = getppid();
dispatch_semaphore_t can_continue = dispatch_semaphore_create(0);
dispatch_queue_t dq = dispatch_queue_create("client_signalqueue", NULL);
dispatch_source_t sig_src;
mach_msg_return_t mr;
mach_port_t service_port;
mach_port_t conn_port;
mach_port_t special_reply_port;
mach_port_options_t opts = {
.flags = MPO_INSERT_SEND_RIGHT,
};
signal(SIGUSR1, SIG_IGN);
sig_src = dispatch_source_create(DISPATCH_SOURCE_TYPE_SIGNAL, SIGUSR1, 0, dq);
dispatch_source_set_event_handler(sig_src, ^{
dispatch_semaphore_signal(can_continue);
});
dispatch_activate(sig_src);
/* lookup the mach service port for the parent */
kern_return_t kr = bootstrap_look_up(bootstrap_port,
SRP_SERVICE_NAME, &service_port);
T_QUIET; T_ASSERT_MACH_SUCCESS(kr, "client bootstrap_look_up");
/* create the send-once right (special reply port) and message to send to the server */
kr = mach_port_construct(mach_task_self(), &opts, 0ull, &conn_port);
T_QUIET; T_ASSERT_MACH_SUCCESS(kr, "mach_port_construct");
special_reply_port = thread_get_special_reply_port();
T_QUIET; T_ASSERT_TRUE(MACH_PORT_VALID(special_reply_port), "get_thread_special_reply_port");
/* send the message with the special reply port */
srp_send(service_port, special_reply_port, conn_port);
/* signal the parent to continue */
kill(ppid, SIGUSR1);
struct {
mach_msg_header_t header;
mach_msg_body_t body;
mach_msg_port_descriptor_t port_descriptor;
} rcv_msg = {
.header =
{
.msgh_remote_port = MACH_PORT_NULL,
.msgh_local_port = special_reply_port,
.msgh_size = sizeof(rcv_msg),
},
};
/* wait on the reply from the parent (that we will never receive) */
mr = mach_msg(&(rcv_msg.header),
(MACH_RCV_MSG | MACH_RCV_SYNC_WAIT),
0,
rcv_msg.header.msgh_size,
special_reply_port,
MACH_MSG_TIMEOUT_NONE,
service_port);
/* not expected to execute as parent will SIGKILL client... */
T_LOG("client process exiting after sending message to parent (server)");
}
enum srp_test_type {
SRP_TEST_THREAD, /* expect waiter on current thread */
SRP_TEST_PID, /* expect waiter on current PID */
SRP_TEST_EITHER, /* waiter could be on either */
};
static void
check_srp_test(const char *name, enum srp_test_type ty)
{
struct scenario scenario = {
.name = name,
.quiet = false,
.flags = (STACKSHOT_THREAD_WAITINFO | STACKSHOT_KCDATA_FORMAT),
};
uint64_t thread_id = 0;
pthread_threadid_np(NULL, &thread_id);
if (ty == SRP_TEST_THREAD) {
take_stackshot(&scenario, false, ^(void *ssbuf, size_t sslen) {
parse_stackshot(PARSE_STACKSHOT_WAITINFO_SRP, ssbuf, sslen,
@{srp_expected_threadid_key: @(thread_id)});
});
} else if (ty == SRP_TEST_PID) {
take_stackshot(&scenario, false, ^(void *ssbuf, size_t sslen) {
parse_stackshot(PARSE_STACKSHOT_WAITINFO_SRP, ssbuf, sslen,
@{srp_expected_pid_key: @(getpid())});
});
} else {
take_stackshot(&scenario, false, ^(void *ssbuf, size_t sslen) {
parse_stackshot(PARSE_STACKSHOT_WAITINFO_SRP, ssbuf, sslen,
@{srp_expected_pid_key: @(getpid()), srp_expected_threadid_key: @(thread_id)});
});
}
}
/*
* Tests the stackshot wait info plumbing for synchronous IPC that doesn't use kevent on the server.
*
* (part 1): tests the scenario where a client sends a request that includes a special reply port
* to a server that doesn't receive the message and doesn't copy the send-once right
* into its address space as a result. for this case the special reply port is enqueued
* in a port and we check which task has that receive right and use that info. (rdar://60440338)
* (part 2): tests the scenario where a client sends a request that includes a special reply port
* to a server that receives the message and copies in the send-once right, but doesn't
* reply to the client. for this case the special reply port is copied out and the kernel
* stashes the info about which task copied out the send once right. (rdar://60440592)
* (part 3): tests the same as part 2, but uses kevents, which allow for
* priority inheritance
*/
T_DECL(special_reply_port, "test that tasks using special reply ports have correct waitinfo")
{
dispatch_semaphore_t can_continue = dispatch_semaphore_create(0);
dispatch_queue_t dq = dispatch_queue_create("signalqueue", NULL);
dispatch_queue_t machdq = dispatch_queue_create("machqueue", NULL);
dispatch_source_t sig_src;
char path[PATH_MAX];
uint32_t path_size = sizeof(path);
T_ASSERT_POSIX_ZERO(_NSGetExecutablePath(path, &path_size), "_NSGetExecutablePath");
char *client_args[] = { path, "-n", "srp_client", NULL };
pid_t client_pid;
int sp_ret;
kern_return_t kr;
mach_port_t port;
/* setup the signal handler in the parent (server) */
T_LOG("setup sig handlers");
signal(SIGUSR1, SIG_IGN);
sig_src = dispatch_source_create(DISPATCH_SOURCE_TYPE_SIGNAL, SIGUSR1, 0, dq);
dispatch_source_set_event_handler(sig_src, ^{
dispatch_semaphore_signal(can_continue);
});
dispatch_activate(sig_src);
/* register with the mach service name so the client can lookup and send a message to the parent (server) */
T_LOG("Server about to check in");
kr = bootstrap_check_in(bootstrap_port, SRP_SERVICE_NAME, &port);
T_ASSERT_MACH_SUCCESS(kr, "server bootstrap_check_in");
T_LOG("Launching client");
sp_ret = posix_spawn(&client_pid, client_args[0], NULL, NULL, client_args, NULL);
T_QUIET; T_ASSERT_POSIX_ZERO(sp_ret, "spawned process '%s' with PID %d", client_args[0], client_pid);
T_LOG("Spawned client as PID %d", client_pid);
dispatch_semaphore_wait(can_continue, DISPATCH_TIME_FOREVER);
T_LOG("Ready to take stackshot, but waiting 1s for the coast to clear");
/*
* can_continue indicates the client has signaled us, but we want to make
* sure they've actually blocked sending their mach message. It's cheesy, but
* sleep() works for this.
*/
sleep(1);
/*
* take the stackshot without calling receive to verify that the stackshot wait
* info shows our (the server) thread for the scenario where the server has yet to
* receive the message.
*/
T_LOG("Taking stackshot for part 1 coverage");
check_srp_test("srp", SRP_TEST_THREAD);
/*
* receive the message from the client (which should copy the send once right into
* our address space).
*/
struct {
mach_msg_header_t header;
mach_msg_body_t body;
mach_msg_port_descriptor_t port_descriptor;
} rcv_msg = {
.header =
{
.msgh_remote_port = MACH_PORT_NULL,
.msgh_local_port = port,
.msgh_size = sizeof(rcv_msg),
},
};
T_LOG("server: starting sync receive\n");
mach_msg_return_t mr;
mr = mach_msg(&(rcv_msg.header),
(MACH_RCV_MSG | MACH_RCV_TIMEOUT),
0,
4096,
port,
10000,
MACH_PORT_NULL);
T_QUIET; T_ASSERT_MACH_SUCCESS(mr, "mach_msg() recieve of message from client");
/*
* take the stackshot to verify that the stackshot wait info shows our (the server) PID
* for the scenario where the server has received the message and copied in the send-once right.
*/
T_LOG("Taking stackshot for part 2 coverage");
check_srp_test("srp", SRP_TEST_PID);
/* cleanup - kill the client */
T_ASSERT_POSIX_SUCCESS(kill(client_pid, SIGKILL), "killing client");
T_ASSERT_POSIX_SUCCESS(waitpid(client_pid, NULL, 0), "waiting for the client to exit");
// do it again, but using kevents
T_LOG("Launching client");
sp_ret = posix_spawn(&client_pid, client_args[0], NULL, NULL, client_args, NULL);
T_QUIET; T_ASSERT_POSIX_ZERO(sp_ret, "spawned process '%s' with PID %d", client_args[0], client_pid);
T_LOG("Spawned client as PID %d", client_pid);
dispatch_semaphore_wait(can_continue, DISPATCH_TIME_FOREVER);
T_LOG("Ready to take stackshot, but waiting 1s for the coast to clear");
/*
* can_continue indicates the client has signaled us, but we want to make
* sure they've actually blocked sending their mach message. It's cheesy, but
* sleep() works for this.
*/
sleep(1);
dispatch_mach_t dispatch_mach = dispatch_mach_create(SRP_SERVICE_NAME, machdq,
^(dispatch_mach_reason_t reason,
dispatch_mach_msg_t message,
mach_error_t error __unused) {
switch (reason) {
case DISPATCH_MACH_MESSAGE_RECEIVED: {
size_t size = 0;
mach_msg_header_t *msg __unused = dispatch_mach_msg_get_msg(message, &size);
T_LOG("server: recieved %ld byte message", size);
check_srp_test("turnstile_port_thread", SRP_TEST_THREAD);
T_LOG("server: letting client go");
// drop the message on the ground, we'll kill the client later
dispatch_semaphore_signal(can_continue);
break;
}
default:
break;
}
});
dispatch_mach_connect(dispatch_mach, port, MACH_PORT_NULL, NULL);
dispatch_semaphore_wait(can_continue, DISPATCH_TIME_FOREVER);
/* cleanup - kill the client */
T_ASSERT_POSIX_SUCCESS(kill(client_pid, SIGKILL), "killing client");
T_ASSERT_POSIX_SUCCESS(waitpid(client_pid, NULL, 0), "waiting for the client to exit");
}
#pragma mark performance tests
#define SHOULD_REUSE_SIZE_HINT 0x01
#define SHOULD_USE_DELTA 0x02
#define SHOULD_TARGET_SELF 0x04
static void
stackshot_perf(unsigned int options)
{
struct scenario scenario = {
.flags = (STACKSHOT_SAVE_LOADINFO | STACKSHOT_GET_GLOBAL_MEM_STATS
| STACKSHOT_SAVE_IMP_DONATION_PIDS | STACKSHOT_KCDATA_FORMAT),
};
dt_stat_t size = dt_stat_create("bytes", "size");
dt_stat_time_t duration = dt_stat_time_create("duration");
scenario.timer = duration;
if (options & SHOULD_TARGET_SELF) {
scenario.target_pid = getpid();
}
while (!dt_stat_stable(duration) || !dt_stat_stable(size)) {
__block uint64_t last_time = 0;
__block uint32_t size_hint = 0;
take_stackshot(&scenario, false, ^(void *ssbuf, size_t sslen) {
dt_stat_add(size, (double)sslen);
last_time = stackshot_timestamp(ssbuf, sslen);
size_hint = (uint32_t)sslen;
});
if (options & SHOULD_USE_DELTA) {
scenario.since_timestamp = last_time;
scenario.flags |= STACKSHOT_COLLECT_DELTA_SNAPSHOT;
}
if (options & SHOULD_REUSE_SIZE_HINT) {
scenario.size_hint = size_hint;
}
}
dt_stat_finalize(duration);
dt_stat_finalize(size);
}
static void
stackshot_flag_perf_noclobber(uint64_t flag, char *flagname)
{
struct scenario scenario = {
.quiet = true,
.flags = (flag | STACKSHOT_KCDATA_FORMAT),
};
dt_stat_t duration = dt_stat_create("nanoseconds per thread", "%s_duration", flagname);
dt_stat_t size = dt_stat_create("bytes per thread", "%s_size", flagname);
T_LOG("Testing \"%s\" = 0x%" PRIx64, flagname, flag);
while (!dt_stat_stable(duration) || !dt_stat_stable(size)) {
take_stackshot(&scenario, false, ^(void *ssbuf, size_t sslen) {
kcdata_iter_t iter = kcdata_iter(ssbuf, sslen);
unsigned long no_threads = 0;
mach_timebase_info_data_t timebase = {0, 0};
uint64_t stackshot_duration = 0;
int found = 0;
T_QUIET; T_ASSERT_EQ(kcdata_iter_type(iter), KCDATA_BUFFER_BEGIN_STACKSHOT, "stackshot buffer");
KCDATA_ITER_FOREACH(iter) {
switch(kcdata_iter_type(iter)) {
case STACKSHOT_KCTYPE_THREAD_SNAPSHOT: {
found |= 1;
no_threads ++;
break;
}
case STACKSHOT_KCTYPE_STACKSHOT_DURATION: {
struct stackshot_duration *ssd = kcdata_iter_payload(iter);
stackshot_duration = ssd->stackshot_duration;
found |= 2;
break;
}
case KCDATA_TYPE_TIMEBASE: {
found |= 4;
mach_timebase_info_data_t *tb = kcdata_iter_payload(iter);
memcpy(&timebase, tb, sizeof(timebase));
break;
}
}
}
T_QUIET; T_ASSERT_EQ(found, 0x7, "found everything needed");
uint64_t ns = (stackshot_duration * timebase.numer) / timebase.denom;
uint64_t per_thread_ns = ns / no_threads;
uint64_t per_thread_size = sslen / no_threads;
dt_stat_add(duration, per_thread_ns);
dt_stat_add(size, per_thread_size);
});
}
dt_stat_finalize(duration);
dt_stat_finalize(size);
}
static void
stackshot_flag_perf(uint64_t flag, char *flagname)
{
/*
* STACKSHOT_NO_IO_STATS disables data collection, so set it for
* more accurate perfdata collection.
*/
flag |= STACKSHOT_NO_IO_STATS;
stackshot_flag_perf_noclobber(flag, flagname);
}
T_DECL(flag_perf, "test stackshot performance with different flags set", T_META_TAG_PERF)
{
stackshot_flag_perf_noclobber(STACKSHOT_NO_IO_STATS, "baseline");
stackshot_flag_perf_noclobber(0, "io_stats");
stackshot_flag_perf(STACKSHOT_THREAD_WAITINFO, "thread_waitinfo");
stackshot_flag_perf(STACKSHOT_GET_DQ, "get_dq");
stackshot_flag_perf(STACKSHOT_SAVE_LOADINFO, "save_loadinfo");
stackshot_flag_perf(STACKSHOT_GET_GLOBAL_MEM_STATS, "get_global_mem_stats");
stackshot_flag_perf(STACKSHOT_SAVE_KEXT_LOADINFO, "save_kext_loadinfo");
stackshot_flag_perf(STACKSHOT_SAVE_IMP_DONATION_PIDS, "save_imp_donation_pids");
stackshot_flag_perf(STACKSHOT_ENABLE_BT_FAULTING, "enable_bt_faulting");
stackshot_flag_perf(STACKSHOT_COLLECT_SHAREDCACHE_LAYOUT, "collect_sharedcache_layout");
stackshot_flag_perf(STACKSHOT_ENABLE_UUID_FAULTING, "enable_uuid_faulting");
stackshot_flag_perf(STACKSHOT_THREAD_GROUP, "thread_group");
stackshot_flag_perf(STACKSHOT_SAVE_JETSAM_COALITIONS, "save_jetsam_coalitions");
stackshot_flag_perf(STACKSHOT_INSTRS_CYCLES, "instrs_cycles");
stackshot_flag_perf(STACKSHOT_ASID, "asid");
}
T_DECL(perf_no_size_hint, "test stackshot performance with no size hint",
T_META_TAG_PERF)
{
stackshot_perf(0);
}
T_DECL(perf_size_hint, "test stackshot performance with size hint",
T_META_TAG_PERF)
{
stackshot_perf(SHOULD_REUSE_SIZE_HINT);
}
T_DECL(perf_process, "test stackshot performance targeted at process",
T_META_TAG_PERF)
{
stackshot_perf(SHOULD_REUSE_SIZE_HINT | SHOULD_TARGET_SELF);
}
T_DECL(perf_delta, "test delta stackshot performance",
T_META_TAG_PERF)
{
stackshot_perf(SHOULD_REUSE_SIZE_HINT | SHOULD_USE_DELTA);
}
T_DECL(perf_delta_process, "test delta stackshot performance targeted at a process",
T_META_TAG_PERF)
{
stackshot_perf(SHOULD_REUSE_SIZE_HINT | SHOULD_USE_DELTA | SHOULD_TARGET_SELF);
}
static uint64_t
stackshot_timestamp(void *ssbuf, size_t sslen)
{
kcdata_iter_t iter = kcdata_iter(ssbuf, sslen);
uint32_t type = kcdata_iter_type(iter);
if (type != KCDATA_BUFFER_BEGIN_STACKSHOT && type != KCDATA_BUFFER_BEGIN_DELTA_STACKSHOT) {
T_ASSERT_FAIL("invalid kcdata type %u", kcdata_iter_type(iter));
}
iter = kcdata_iter_find_type(iter, KCDATA_TYPE_MACH_ABSOLUTE_TIME);
T_QUIET;
T_ASSERT_TRUE(kcdata_iter_valid(iter), "timestamp found in stackshot");
return *(uint64_t *)kcdata_iter_payload(iter);
}
#define TEST_THREAD_NAME "stackshot_test_thread"
static void
parse_thread_group_stackshot(void **ssbuf, size_t sslen)
{
bool seen_thread_group_snapshot = false;
kcdata_iter_t iter = kcdata_iter(ssbuf, sslen);
T_ASSERT_EQ(kcdata_iter_type(iter), KCDATA_BUFFER_BEGIN_STACKSHOT,
"buffer provided is a stackshot");
NSMutableSet *thread_groups = [[NSMutableSet alloc] init];
iter = kcdata_iter_next(iter);
KCDATA_ITER_FOREACH(iter) {
switch (kcdata_iter_type(iter)) {
case KCDATA_TYPE_ARRAY: {
T_QUIET;
T_ASSERT_TRUE(kcdata_iter_array_valid(iter),
"checked that array is valid");
if (kcdata_iter_array_elem_type(iter) != STACKSHOT_KCTYPE_THREAD_GROUP_SNAPSHOT) {
continue;
}
seen_thread_group_snapshot = true;
if (kcdata_iter_array_elem_size(iter) >= sizeof(struct thread_group_snapshot_v2)) {
struct thread_group_snapshot_v2 *tgs_array = kcdata_iter_payload(iter);
for (uint32_t j = 0; j < kcdata_iter_array_elem_count(iter); j++) {
struct thread_group_snapshot_v2 *tgs = tgs_array + j;
[thread_groups addObject:@(tgs->tgs_id)];
}
}
else {
struct thread_group_snapshot *tgs_array = kcdata_iter_payload(iter);
for (uint32_t j = 0; j < kcdata_iter_array_elem_count(iter); j++) {
struct thread_group_snapshot *tgs = tgs_array + j;
[thread_groups addObject:@(tgs->tgs_id)];
}
}
break;
}
}
}
KCDATA_ITER_FOREACH(iter) {
NSError *error = nil;
switch (kcdata_iter_type(iter)) {
case KCDATA_TYPE_CONTAINER_BEGIN: {
T_QUIET;
T_ASSERT_TRUE(kcdata_iter_container_valid(iter),
"checked that container is valid");
if (kcdata_iter_container_type(iter) != STACKSHOT_KCCONTAINER_THREAD) {
break;
}
NSDictionary *container = parseKCDataContainer(&iter, &error);
T_QUIET; T_ASSERT_NOTNULL(container, "parsed container from stackshot");
T_QUIET; T_ASSERT_NULL(error, "error unset after parsing container");
int tg = [container[@"thread_snapshots"][@"thread_group"] intValue];
T_ASSERT_TRUE([thread_groups containsObject:@(tg)], "check that the thread group the thread is in exists");
break;
};
}
}
T_ASSERT_TRUE(seen_thread_group_snapshot, "check that we have seen a thread group snapshot");
}
static void
verify_stackshot_sharedcache_layout(struct dyld_uuid_info_64 *uuids, uint32_t uuid_count)
{
uuid_t cur_shared_cache_uuid;
__block uint32_t lib_index = 0, libs_found = 0;
_dyld_get_shared_cache_uuid(cur_shared_cache_uuid);
int result = dyld_shared_cache_iterate_text(cur_shared_cache_uuid, ^(const dyld_shared_cache_dylib_text_info* info) {
T_QUIET; T_ASSERT_LT(lib_index, uuid_count, "dyld_shared_cache_iterate_text exceeded number of libraries returned by kernel");
libs_found++;
struct dyld_uuid_info_64 *cur_stackshot_uuid_entry = &uuids[lib_index];
T_QUIET; T_ASSERT_EQ(memcmp(info->dylibUuid, cur_stackshot_uuid_entry->imageUUID, sizeof(info->dylibUuid)), 0,
"dyld returned UUID doesn't match kernel returned UUID");
T_QUIET; T_ASSERT_EQ(info->loadAddressUnslid, cur_stackshot_uuid_entry->imageLoadAddress,
"dyld returned load address doesn't match kernel returned load address");
lib_index++;
});
T_ASSERT_EQ(result, 0, "iterate shared cache layout");
T_ASSERT_EQ(libs_found, uuid_count, "dyld iterator returned same number of libraries as kernel");
T_LOG("verified %d libraries from dyld shared cache", libs_found);
}
static void
check_shared_cache_uuid(uuid_t imageUUID)
{
static uuid_t shared_cache_uuid;
static dispatch_once_t read_shared_cache_uuid;
dispatch_once(&read_shared_cache_uuid, ^{
T_QUIET;
T_ASSERT_TRUE(_dyld_get_shared_cache_uuid(shared_cache_uuid), "retrieve current shared cache UUID");
});
T_QUIET; T_ASSERT_EQ(uuid_compare(shared_cache_uuid, imageUUID), 0,
"dyld returned UUID doesn't match kernel returned UUID for system shared cache");
}
/*
* extra dictionary contains data relevant for the given flags:
* PARSE_STACKSHOT_ZOMBIE: zombie_child_pid_key -> @(pid)
* PARSE_STACKSHOT_POSTEXEC: postexec_child_unique_pid_key -> @(unique_pid)
*/
static void
parse_stackshot(uint64_t stackshot_parsing_flags, void *ssbuf, size_t sslen, NSDictionary *extra)
{
bool delta = (stackshot_parsing_flags & PARSE_STACKSHOT_DELTA);
bool expect_sharedcache_child = (stackshot_parsing_flags & PARSE_STACKSHOT_SHAREDCACHE_FLAGS);
bool expect_zombie_child = (stackshot_parsing_flags & PARSE_STACKSHOT_ZOMBIE);
bool expect_postexec_child = (stackshot_parsing_flags & PARSE_STACKSHOT_POSTEXEC);
bool expect_cseg_waitinfo = (stackshot_parsing_flags & PARSE_STACKSHOT_WAITINFO_CSEG);
bool expect_translated_child = (stackshot_parsing_flags & PARSE_STACKSHOT_TRANSLATED);
bool expect_shared_cache_layout = false;
bool expect_shared_cache_uuid = !delta;
bool expect_dispatch_queue_label = (stackshot_parsing_flags & PARSE_STACKSHOT_DISPATCH_QUEUE_LABEL);
bool expect_turnstile_lock = (stackshot_parsing_flags & PARSE_STACKSHOT_TURNSTILEINFO);
bool expect_srp_waitinfo = (stackshot_parsing_flags & PARSE_STACKSHOT_WAITINFO_SRP);
bool expect_exec_inprogress = (stackshot_parsing_flags & PARSE_STACKSHOT_EXEC_INPROGRESS);
bool found_zombie_child = false, found_postexec_child = false, found_shared_cache_layout = false, found_shared_cache_uuid = false;
bool found_translated_child = false;
bool found_dispatch_queue_label = false, found_turnstile_lock = false;
bool found_cseg_waitinfo = false, found_srp_waitinfo = false;
bool found_sharedcache_child = false, found_sharedcache_badflags = false, found_sharedcache_self = false;
uint64_t srp_expected_threadid = 0;
pid_t zombie_child_pid = -1, srp_expected_pid = -1, sharedcache_child_pid = -1;
pid_t translated_child_pid = -1;
bool sharedcache_child_sameaddr = false;
uint64_t postexec_child_unique_pid = 0, cseg_expected_threadid = 0;
uint64_t sharedcache_child_flags = 0, sharedcache_self_flags = 0;
char *inflatedBufferBase = NULL;
pid_t exec_inprogress_pid = -1;
void (^exec_inprogress_cb)(uint64_t, uint64_t) = NULL;
int exec_inprogress_found = 0;
uint64_t exec_inprogress_containerid = 0;
if (expect_shared_cache_uuid) {
uuid_t shared_cache_uuid;
if (!_dyld_get_shared_cache_uuid(shared_cache_uuid)) {
T_LOG("Skipping verifying shared cache UUID in stackshot data because not running with a shared cache");
expect_shared_cache_uuid = false;
}
}
if (stackshot_parsing_flags & PARSE_STACKSHOT_SHAREDCACHE_LAYOUT) {
size_t shared_cache_length = 0;
const void *cache_header = _dyld_get_shared_cache_range(&shared_cache_length);
T_QUIET; T_ASSERT_NOTNULL(cache_header, "current process running with shared cache");
T_QUIET; T_ASSERT_GT(shared_cache_length, sizeof(struct _dyld_cache_header), "valid shared cache length populated by _dyld_get_shared_cache_range");
if (_dyld_shared_cache_is_locally_built()) {
T_LOG("device running with locally built shared cache, expect shared cache layout");
expect_shared_cache_layout = true;
} else {
T_LOG("device running with B&I built shared-cache, no shared cache layout expected");
}
}
if (expect_sharedcache_child) {
NSNumber* pid_num = extra[sharedcache_child_pid_key];
NSNumber* sameaddr_num = extra[sharedcache_child_sameaddr_key];
T_QUIET; T_ASSERT_NOTNULL(pid_num, "sharedcache child pid provided");
T_QUIET; T_ASSERT_NOTNULL(sameaddr_num, "sharedcache child addrsame provided");
sharedcache_child_pid = [pid_num intValue];
T_QUIET; T_ASSERT_GT(sharedcache_child_pid, 0, "sharedcache child pid greater than zero");
sharedcache_child_sameaddr = [sameaddr_num intValue];
T_QUIET; T_ASSERT_GE([sameaddr_num intValue], 0, "sharedcache child sameaddr is boolean (0 or 1)");
T_QUIET; T_ASSERT_LE([sameaddr_num intValue], 1, "sharedcache child sameaddr is boolean (0 or 1)");
}
if (expect_zombie_child) {
NSNumber* pid_num = extra[zombie_child_pid_key];
T_QUIET; T_ASSERT_NOTNULL(pid_num, "zombie child pid provided");
zombie_child_pid = [pid_num intValue];
T_QUIET; T_ASSERT_GT(zombie_child_pid, 0, "zombie child pid greater than zero");
}
if (expect_postexec_child) {
NSNumber* unique_pid_num = extra[postexec_child_unique_pid_key];
T_QUIET; T_ASSERT_NOTNULL(unique_pid_num, "postexec child unique pid provided");
postexec_child_unique_pid = [unique_pid_num unsignedLongLongValue];
T_QUIET; T_ASSERT_GT(postexec_child_unique_pid, 0ull, "postexec child unique pid greater than zero");
}
if (expect_cseg_waitinfo) {
NSNumber* tid_num = extra[cseg_expected_threadid_key];
T_QUIET; T_ASSERT_NOTNULL(tid_num, "cseg's expected thread id provided");
cseg_expected_threadid = tid_num.unsignedLongValue;
T_QUIET; T_ASSERT_GT(cseg_expected_threadid, UINT64_C(0), "compressor segment thread is present");
}
if (expect_srp_waitinfo) {
NSNumber* threadid_num = extra[srp_expected_threadid_key];
NSNumber* pid_num = extra[srp_expected_pid_key];
T_QUIET; T_ASSERT_TRUE(threadid_num != nil || pid_num != nil, "expected SRP threadid or pid");
if (threadid_num != nil) {
srp_expected_threadid = [threadid_num unsignedLongLongValue];
T_QUIET; T_ASSERT_GT(srp_expected_threadid, 0ull, "srp_expected_threadid greater than zero");
}
if (pid_num != nil) {
srp_expected_pid = [pid_num intValue];
T_QUIET; T_ASSERT_GT(srp_expected_pid, 0, "srp_expected_pid greater than zero");
}
T_LOG("looking for SRP pid: %d threadid: %llu", srp_expected_pid, srp_expected_threadid);
}
if (expect_translated_child) {
NSNumber* pid_num = extra[translated_child_pid_key];
T_QUIET; T_ASSERT_NOTNULL(pid_num, "translated child pid provided");
translated_child_pid = [pid_num intValue];
T_QUIET; T_ASSERT_GT(translated_child_pid, 0, "translated child pid greater than zero");
}
if (expect_exec_inprogress) {
NSNumber* pid_num = extra[exec_inprogress_pid_key];
T_QUIET; T_ASSERT_NOTNULL(pid_num, "exec inprogress pid provided");
exec_inprogress_pid = [pid_num intValue];
T_QUIET; T_ASSERT_GT(exec_inprogress_pid, 0, "exec inprogress pid greater than zero");
exec_inprogress_cb = extra[exec_inprogress_found_key];
T_QUIET; T_ASSERT_NOTNULL(exec_inprogress_cb, "exec inprogress found callback provided");
}
kcdata_iter_t iter = kcdata_iter(ssbuf, sslen);
if (delta) {
T_ASSERT_EQ(kcdata_iter_type(iter), KCDATA_BUFFER_BEGIN_DELTA_STACKSHOT,
"buffer provided is a delta stackshot");
iter = kcdata_iter_next(iter);
} else {
if (kcdata_iter_type(iter) != KCDATA_BUFFER_BEGIN_COMPRESSED) {
T_ASSERT_EQ(kcdata_iter_type(iter), KCDATA_BUFFER_BEGIN_STACKSHOT,
"buffer provided is a stackshot");
iter = kcdata_iter_next(iter);
} else {
/* we are dealing with a compressed buffer */
iter = kcdata_iter_next(iter);
uint64_t compression_type = 0, totalout = 0, totalin = 0;
uint64_t *data;
char *desc;
for (int i = 0; i < 3; i ++) {
kcdata_iter_get_data_with_desc(iter, &desc, (void **)&data, NULL);
if (strcmp(desc, "kcd_c_type") == 0) {
compression_type = *data;
} else if (strcmp(desc, "kcd_c_totalout") == 0){
totalout = *data;
} else if (strcmp(desc, "kcd_c_totalin") == 0){
totalin = *data;
}
iter = kcdata_iter_next(iter);
}
T_ASSERT_EQ(compression_type, UINT64_C(1), "zlib compression is used");
T_ASSERT_GT(totalout, UINT64_C(0), "successfully gathered how long the compressed buffer is");
T_ASSERT_GT(totalin, UINT64_C(0), "successfully gathered how long the uncompressed buffer will be at least");
/* progress to the next kcdata item */
T_ASSERT_EQ(kcdata_iter_type(iter), KCDATA_BUFFER_BEGIN_STACKSHOT, "compressed stackshot found");
char *bufferBase = kcdata_iter_payload(iter);
/*
* zlib is used, allocate a buffer based on the metadata, plus
* extra scratch space (+12.5%) in case totalin was inconsistent
*/
size_t inflatedBufferSize = totalin + (totalin >> 3);
inflatedBufferBase = malloc(inflatedBufferSize);
T_QUIET; T_WITH_ERRNO; T_ASSERT_NOTNULL(inflatedBufferBase, "allocated temporary output buffer");
z_stream zs;
memset(&zs, 0, sizeof(zs));
T_QUIET; T_ASSERT_EQ(inflateInit(&zs), Z_OK, "inflateInit OK");
zs.next_in = (unsigned char *)bufferBase;
T_QUIET; T_ASSERT_LE(totalout, (uint64_t)UINT_MAX, "stackshot is not too large");
zs.avail_in = (uInt)totalout;
zs.next_out = (unsigned char *)inflatedBufferBase;
T_QUIET; T_ASSERT_LE(inflatedBufferSize, (size_t)UINT_MAX, "output region is not too large");
zs.avail_out = (uInt)inflatedBufferSize;
T_ASSERT_EQ(inflate(&zs, Z_FINISH), Z_STREAM_END, "inflated buffer");
inflateEnd(&zs);
T_ASSERT_EQ((uint64_t)zs.total_out, totalin, "expected number of bytes inflated");
/* copy the data after the compressed area */
T_QUIET; T_ASSERT_GE((void *)bufferBase, ssbuf,
"base of compressed stackshot is after the returned stackshot buffer");
size_t header_size = (size_t)(bufferBase - (char *)ssbuf);
size_t data_after_compressed_size = sslen - totalout - header_size;
T_QUIET; T_ASSERT_LE(data_after_compressed_size,
inflatedBufferSize - zs.total_out,
"footer fits in the buffer");
memcpy(inflatedBufferBase + zs.total_out,
bufferBase + totalout,
data_after_compressed_size);
iter = kcdata_iter(inflatedBufferBase, inflatedBufferSize);
}
}
KCDATA_ITER_FOREACH(iter) {
NSError *error = nil;
switch (kcdata_iter_type(iter)) {
case KCDATA_TYPE_ARRAY: {
T_QUIET;
T_ASSERT_TRUE(kcdata_iter_array_valid(iter),
"checked that array is valid");
NSMutableDictionary *array = parseKCDataArray(iter, &error);
T_QUIET; T_ASSERT_NOTNULL(array, "parsed array from stackshot");
T_QUIET; T_ASSERT_NULL(error, "error unset after parsing array");
if (kcdata_iter_array_elem_type(iter) == STACKSHOT_KCTYPE_SYS_SHAREDCACHE_LAYOUT) {
struct dyld_uuid_info_64 *shared_cache_uuids = kcdata_iter_payload(iter);
uint32_t uuid_count = kcdata_iter_array_elem_count(iter);
T_ASSERT_NOTNULL(shared_cache_uuids, "parsed shared cache layout array");
T_ASSERT_GT(uuid_count, 0, "returned valid number of UUIDs from shared cache");
verify_stackshot_sharedcache_layout(shared_cache_uuids, uuid_count);
found_shared_cache_layout = true;
}
break;
}
case KCDATA_TYPE_CONTAINER_BEGIN: {
T_QUIET;
T_ASSERT_TRUE(kcdata_iter_container_valid(iter),
"checked that container is valid");
if (kcdata_iter_container_type(iter) != STACKSHOT_KCCONTAINER_TASK) {
break;
}
uint64_t containerid = kcdata_iter_container_id(iter);
NSDictionary *container = parseKCDataContainer(&iter, &error);
T_QUIET; T_ASSERT_NOTNULL(container, "parsed container from stackshot");
T_QUIET; T_ASSERT_NULL(error, "error unset after parsing container");
NSDictionary* task_snapshot = container[@"task_snapshots"][@"task_snapshot"];
NSDictionary* task_delta_snapshot = container[@"task_snapshots"][@"task_delta_snapshot"];
T_QUIET; T_ASSERT_TRUE(!!task_snapshot != !!task_delta_snapshot, "Either task_snapshot xor task_delta_snapshot provided");
if (expect_dispatch_queue_label && !found_dispatch_queue_label) {
for (id thread_key in container[@"task_snapshots"][@"thread_snapshots"]) {
NSMutableDictionary *thread = container[@"task_snapshots"][@"thread_snapshots"][thread_key];
NSString *dql = thread[@"dispatch_queue_label"];
if ([dql isEqualToString:@TEST_STACKSHOT_QUEUE_LABEL]) {
found_dispatch_queue_label = true;
break;
}
}
}
if (expect_postexec_child && !found_postexec_child) {
if (task_snapshot) {
uint64_t unique_pid = [task_snapshot[@"ts_unique_pid"] unsignedLongLongValue];
if (unique_pid == postexec_child_unique_pid) {
found_postexec_child = true;
T_PASS("post-exec child %llu has a task snapshot", postexec_child_unique_pid);
break;
}
}
if (task_delta_snapshot) {
uint64_t unique_pid = [task_delta_snapshot[@"tds_unique_pid"] unsignedLongLongValue];
if (unique_pid == postexec_child_unique_pid) {
found_postexec_child = true;
T_FAIL("post-exec child %llu shouldn't have a delta task snapshot", postexec_child_unique_pid);
break;
}
}
}
if (!task_snapshot) {
break;
}
int pid = [task_snapshot[@"ts_pid"] intValue];
if (pid && expect_shared_cache_uuid && !found_shared_cache_uuid) {
id ptr = container[@"task_snapshots"][@"shared_cache_dyld_load_info"];
if (ptr) {
id uuid = ptr[@"imageUUID"];
uint8_t uuid_p[16];
for (unsigned int i = 0; i < 16; i ++) {
NSNumber *uuidByte = uuid[i];
uuid_p[i] = (uint8_t)uuidByte.charValue;
}
check_shared_cache_uuid(uuid_p);
uint64_t baseAddress = (uint64_t)((NSNumber *)ptr[@"imageSlidBaseAddress"]).longLongValue;
uint64_t firstMapping = (uint64_t)((NSNumber *)ptr[@"sharedCacheSlidFirstMapping"]).longLongValue;
T_ASSERT_LE(baseAddress, firstMapping,
"in per-task shared_cache_dyld_load_info, "
"baseAddress <= firstMapping");
T_ASSERT_GE(baseAddress + (1ull << 29), firstMapping,
"in per-task shared_cache_dyld_load_info, "
"baseAddress + 512meg >= firstMapping");
size_t shared_cache_len;
const void *addr = _dyld_get_shared_cache_range(&shared_cache_len);
T_ASSERT_EQ((uint64_t)addr, firstMapping,
"SlidFirstMapping should match shared_cache_range");
/*
* check_shared_cache_uuid() will assert on failure, so if
* we get here, then we have found the shared cache UUID
* and it's correct
*/
found_shared_cache_uuid = true;
}
}
if (expect_sharedcache_child) {
uint64_t task_flags = [task_snapshot[@"ts_ss_flags"] unsignedLongLongValue];
uint64_t sharedregion_flags = (task_flags & (kTaskSharedRegionNone | kTaskSharedRegionSystem | kTaskSharedRegionOther));
id sharedregion_info = container[@"task_snapshots"][@"shared_cache_dyld_load_info"];
if (!found_sharedcache_badflags) {
T_QUIET; T_ASSERT_NE(sharedregion_flags, 0ll, "one of the kTaskSharedRegion flags should be set on all tasks");
bool multiple = (sharedregion_flags & (sharedregion_flags - 1)) != 0;
T_QUIET; T_ASSERT_FALSE(multiple, "only one kTaskSharedRegion flag should be set on each task");
found_sharedcache_badflags = (sharedregion_flags == 0 || multiple);
}
if (pid == 0) {
T_ASSERT_EQ(sharedregion_flags, (uint64_t)kTaskSharedRegionNone, "Kernel proc (pid 0) should have no shared region");
} else if (pid == sharedcache_child_pid) {
found_sharedcache_child = true;
sharedcache_child_flags = sharedregion_flags;
} else if (pid == getpid()) {
found_sharedcache_self = true;
sharedcache_self_flags = sharedregion_flags;
}
if (sharedregion_flags == kTaskSharedRegionOther && !(task_flags & kTaskSharedRegionInfoUnavailable)) {
T_QUIET; T_ASSERT_NOTNULL(sharedregion_info, "kTaskSharedRegionOther should have a shared_cache_dyld_load_info struct");
} else {
T_QUIET; T_ASSERT_NULL(sharedregion_info, "expect no shared_cache_dyld_load_info struct");
}
}
if (expect_zombie_child && (pid == zombie_child_pid)) {
found_zombie_child = true;
uint64_t task_flags = [task_snapshot[@"ts_ss_flags"] unsignedLongLongValue];
T_ASSERT_TRUE((task_flags & kTerminatedSnapshot) == kTerminatedSnapshot, "child zombie marked as terminated");
continue;
}
if (expect_translated_child && (pid == translated_child_pid)) {
found_translated_child = true;
uint64_t task_flags = [task_snapshot[@"ts_ss_flags"] unsignedLongLongValue];
T_EXPECT_BITS_SET(task_flags, kTaskIsTranslated, "child marked as translated");
continue;
}
if (expect_exec_inprogress && (pid == exec_inprogress_pid || pid == -exec_inprogress_pid)) {
exec_inprogress_found++;
T_LOG("found exec task with pid %d, instance %d", pid, exec_inprogress_found);
T_QUIET; T_ASSERT_LE(exec_inprogress_found, 2, "no more than two with the expected pid");
if (exec_inprogress_found == 2) {
T_LOG("found 2 tasks with pid %d", exec_inprogress_pid);
exec_inprogress_cb(containerid, exec_inprogress_containerid);
} else {
exec_inprogress_containerid = containerid;
}
}
if (expect_cseg_waitinfo) {
NSArray *winfos = container[@"task_snapshots"][@"thread_waitinfo"];
for (id i in winfos) {
NSNumber *waitType = i[@"wait_type"];
NSNumber *owner = i[@"owner"];
if (waitType.intValue == kThreadWaitCompressor &&
owner.unsignedLongValue == cseg_expected_threadid) {
found_cseg_waitinfo = true;
break;
}
}
}
if (expect_srp_waitinfo) {
NSArray *tinfos = container[@"task_snapshots"][@"thread_turnstileinfo"];
NSArray *winfos = container[@"task_snapshots"][@"thread_waitinfo"];
for (id i in tinfos) {
if (!found_srp_waitinfo) {
bool found_thread = false;
bool found_pid = false;
if (([i[@"turnstile_flags"] intValue] & STACKSHOT_TURNSTILE_STATUS_THREAD) &&
[i[@"turnstile_context"] unsignedLongLongValue] == srp_expected_threadid &&
srp_expected_threadid != 0) {
found_thread = true;
}
if (([i[@"turnstile_flags"] intValue] & STACKSHOT_TURNSTILE_STATUS_BLOCKED_ON_TASK) &&
[i[@"turnstile_context"] intValue] == srp_expected_pid &&
srp_expected_pid != -1) {
found_pid = true;
}
if (found_pid || found_thread) {
T_LOG("found SRP %s %lld waiter: %d", (found_thread ? "thread" : "pid"),
[i[@"turnstile_context"] unsignedLongLongValue], [i[@"waiter"] intValue]);
/* we found something that is blocking the correct threadid */
for (id j in winfos) {
if ([j[@"waiter"] intValue] == [i[@"waiter"] intValue] &&
[j[@"wait_type"] intValue] == kThreadWaitPortReceive) {
found_srp_waitinfo = true;
break;
}
}
if (found_srp_waitinfo) {
break;
}
}
}
}
}
if (pid != getpid()) {
break;
}
T_EXPECT_EQ_STR(current_process_name(),
[task_snapshot[@"ts_p_comm"] UTF8String],
"current process name matches in stackshot");
uint64_t task_flags = [task_snapshot[@"ts_ss_flags"] unsignedLongLongValue];
T_ASSERT_BITS_NOTSET(task_flags, kTerminatedSnapshot, "current process not marked as terminated");
T_ASSERT_BITS_NOTSET(task_flags, kTaskIsTranslated, "current process not marked as translated");
T_QUIET;
T_EXPECT_LE(pid, [task_snapshot[@"ts_unique_pid"] intValue],
"unique pid is greater than pid");
NSDictionary* task_cpu_architecture = container[@"task_snapshots"][@"task_cpu_architecture"];
T_QUIET; T_ASSERT_NOTNULL(task_cpu_architecture[@"cputype"], "have cputype");
T_QUIET; T_ASSERT_NOTNULL(task_cpu_architecture[@"cpusubtype"], "have cputype");
int cputype = [task_cpu_architecture[@"cputype"] intValue];
int cpusubtype = [task_cpu_architecture[@"cpusubtype"] intValue];
struct proc_archinfo archinfo;
int retval = proc_pidinfo(pid, PROC_PIDARCHINFO, 0, &archinfo, sizeof(archinfo));
T_QUIET; T_WITH_ERRNO; T_ASSERT_GT(retval, 0, "proc_pidinfo(PROC_PIDARCHINFO) returned a value > 0");
T_QUIET; T_ASSERT_EQ(retval, (int)sizeof(struct proc_archinfo), "proc_pidinfo call for PROC_PIDARCHINFO returned expected size");
T_QUIET; T_EXPECT_EQ(cputype, archinfo.p_cputype, "cpu type is correct");
T_QUIET; T_EXPECT_EQ(cpusubtype, archinfo.p_cpusubtype, "cpu subtype is correct");
bool found_main_thread = false;
uint64_t main_thread_id = -1ULL;
bool found_null_kernel_frame = false;
for (id thread_key in container[@"task_snapshots"][@"thread_snapshots"]) {
NSMutableDictionary *thread = container[@"task_snapshots"][@"thread_snapshots"][thread_key];
NSDictionary *thread_snap = thread[@"thread_snapshot"];
T_QUIET; T_EXPECT_GT([thread_snap[@"ths_thread_id"] intValue], 0,
"thread ID of thread in current task is valid");
T_QUIET; T_EXPECT_GT([thread_snap[@"ths_base_priority"] intValue], 0,
"base priority of thread in current task is valid");
T_QUIET; T_EXPECT_GT([thread_snap[@"ths_sched_priority"] intValue], 0,
"scheduling priority of thread in current task is valid");
NSString *pth_name = thread[@"pth_name"];
if (pth_name != nil && [pth_name isEqualToString:@TEST_THREAD_NAME]) {
found_main_thread = true;
main_thread_id = [thread_snap[@"ths_thread_id"] unsignedLongLongValue];
T_QUIET; T_EXPECT_GT([thread_snap[@"ths_total_syscalls"] intValue], 0,
"total syscalls of current thread is valid");
NSDictionary *cpu_times = thread[@"cpu_times"];
T_EXPECT_GE([cpu_times[@"runnable_time"] intValue],
[cpu_times[@"system_time"] intValue] +
[cpu_times[@"user_time"] intValue],
"runnable time of current thread is valid");
}
if (!found_null_kernel_frame) {
for (NSNumber *frame in thread[@"kernel_frames"]) {
if (frame.unsignedLongValue == 0) {
found_null_kernel_frame = true;
break;
}
}
}
}
T_EXPECT_TRUE(found_main_thread, "found main thread for current task in stackshot");
T_EXPECT_FALSE(found_null_kernel_frame, "should not see any NULL kernel frames");
if (expect_turnstile_lock && !found_turnstile_lock) {
NSArray *tsinfos = container[@"task_snapshots"][@"thread_turnstileinfo"];
for (id i in tsinfos) {
if ([i[@"turnstile_context"] unsignedLongLongValue] == main_thread_id) {
found_turnstile_lock = true;
break;
}
}
}
break;
}
case STACKSHOT_KCTYPE_SHAREDCACHE_LOADINFO: {
struct dyld_shared_cache_loadinfo *payload = kcdata_iter_payload(iter);
T_ASSERT_EQ((size_t)kcdata_iter_size(iter), sizeof(*payload), "valid dyld_shared_cache_loadinfo struct");
check_shared_cache_uuid(payload->sharedCacheUUID);
T_ASSERT_LE(payload->sharedCacheUnreliableSlidBaseAddress,
payload->sharedCacheSlidFirstMapping,
"SlidBaseAddress <= SlidFirstMapping");
T_ASSERT_GE(payload->sharedCacheUnreliableSlidBaseAddress + (1ull << 29),
payload->sharedCacheSlidFirstMapping,
"SlidFirstMapping should be within 512megs of SlidBaseAddress");
size_t shared_cache_len;
const void *addr = _dyld_get_shared_cache_range(&shared_cache_len);
T_ASSERT_EQ((uint64_t)addr, payload->sharedCacheSlidFirstMapping,
"SlidFirstMapping should match shared_cache_range");
/*
* check_shared_cache_uuid() asserts on failure, so we must have
* found the shared cache UUID to be correct.
*/
found_shared_cache_uuid = true;
break;
}
}
}
if (expect_sharedcache_child) {
T_QUIET; T_ASSERT_TRUE(found_sharedcache_child, "found sharedcache child in kcdata");
T_QUIET; T_ASSERT_TRUE(found_sharedcache_self, "found self in kcdata");
if (found_sharedcache_child && found_sharedcache_self) {
T_QUIET; T_ASSERT_NE(sharedcache_child_flags, (uint64_t)kTaskSharedRegionNone, "sharedcache child should have shared region");
T_QUIET; T_ASSERT_NE(sharedcache_self_flags, (uint64_t)kTaskSharedRegionNone, "sharedcache: self should have shared region");
if (sharedcache_self_flags == kTaskSharedRegionSystem && !sharedcache_child_sameaddr) {
/* If we're in the system shared region, and the child has a different address, child must have an Other shared region */
T_ASSERT_EQ(sharedcache_child_flags, (uint64_t)kTaskSharedRegionOther,
"sharedcache child should have Other shared region");
}
}
}
if (expect_exec_inprogress) {
T_QUIET; T_ASSERT_GT(exec_inprogress_found, 0, "found at least 1 task for execing process");
}
if (expect_zombie_child) {
T_QUIET; T_ASSERT_TRUE(found_zombie_child, "found zombie child in kcdata");
}
if (expect_postexec_child) {
T_QUIET; T_ASSERT_TRUE(found_postexec_child, "found post-exec child in kcdata");
}
if (expect_translated_child) {
T_QUIET; T_ASSERT_TRUE(found_translated_child, "found translated child in kcdata");
}
if (expect_shared_cache_layout) {
T_QUIET; T_ASSERT_TRUE(found_shared_cache_layout, "shared cache layout found in kcdata");
}
if (expect_shared_cache_uuid) {
T_QUIET; T_ASSERT_TRUE(found_shared_cache_uuid, "shared cache UUID found in kcdata");
}
if (expect_dispatch_queue_label) {
T_QUIET; T_ASSERT_TRUE(found_dispatch_queue_label, "dispatch queue label found in kcdata");
}
if (expect_turnstile_lock) {
T_QUIET; T_ASSERT_TRUE(found_turnstile_lock, "found expected deadlock");
}
if (expect_cseg_waitinfo) {
T_QUIET; T_ASSERT_TRUE(found_cseg_waitinfo, "found c_seg waitinfo");
}
if (expect_srp_waitinfo) {
T_QUIET; T_ASSERT_TRUE(found_srp_waitinfo, "found special reply port waitinfo");
}
T_ASSERT_FALSE(KCDATA_ITER_FOREACH_FAILED(iter), "successfully iterated kcdata");
free(inflatedBufferBase);
}
static const char *
current_process_name(void)
{
static char name[64];
if (!name[0]) {
int ret = proc_name(getpid(), name, sizeof(name));
T_QUIET;
T_ASSERT_POSIX_SUCCESS(ret, "proc_name failed for current process");
}
return name;
}
static void
initialize_thread(void)
{
int ret = pthread_setname_np(TEST_THREAD_NAME);
T_QUIET;
T_ASSERT_POSIX_ZERO(ret, "set thread name to %s", TEST_THREAD_NAME);
}