darling-xnu/tests/ioperf.c
2023-05-16 21:41:14 -07:00

255 lines
7.1 KiB
C

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <pthread.h>
#include <errno.h>
#include <err.h>
#include <string.h>
#include <assert.h>
#include <sysexits.h>
#include <getopt.h>
#include <spawn.h>
#include <stdbool.h>
#include <sys/sysctl.h>
#include <mach/mach_time.h>
#include <mach/mach.h>
#include <mach/semaphore.h>
#include <TargetConditionals.h>
#ifdef T_NAMESPACE
#undef T_NAMESPACE
#endif
#include <darwintest.h>
#include <stdatomic.h>
#define MAX_THREADS 32
#define SPIN_SECS 6
#define THR_SPINNER_PRI 63
#define THR_MANAGER_PRI 62
#define WARMUP_ITERATIONS 100
#define FILE_SIZE (16384 * 4096)
#define IO_SIZE 4096
#define IO_COUNT 2500
static mach_timebase_info_data_t timebase_info;
static semaphore_t semaphore;
static semaphore_t worker_sem;
static uint32_t g_numcpus;
static _Atomic uint32_t keep_going = 1;
int test_file_fd = 0;
char *data_buf = NULL;
extern char **environ;
static struct {
pthread_t thread;
} threads[MAX_THREADS];
static uint64_t
nanos_to_abs(uint64_t nanos)
{
return nanos * timebase_info.denom / timebase_info.numer;
}
static void
io_perf_test_io_init(void)
{
int spawn_ret, pid;
char *const mount_args[] = {"/usr/local/sbin/mount_nand.sh", NULL};
spawn_ret = posix_spawn(&pid, mount_args[0], NULL, NULL, mount_args, environ);
if (spawn_ret < 0) {
T_SKIP("NAND mounting in LTE not possible on this device. Skipping test!");
}
waitpid(pid, &spawn_ret, 0);
if (WIFEXITED(spawn_ret) && !WEXITSTATUS(spawn_ret)) {
T_PASS("NAND mounted successfully");
} else {
T_SKIP("Unable to mount NAND. Skipping test!");
}
/* Mark the main thread as fixed priority */
struct sched_param param = {.sched_priority = THR_MANAGER_PRI};
T_ASSERT_POSIX_ZERO(pthread_setschedparam(pthread_self(), SCHED_FIFO, &param),
"pthread_setschedparam");
/* Set I/O Policy to Tier 0 */
T_ASSERT_POSIX_ZERO(setiopolicy_np(IOPOL_TYPE_DISK, IOPOL_SCOPE_PROCESS,
IOPOL_IMPORTANT), "setiopolicy");
/* Create data buffer */
data_buf = malloc(IO_SIZE * 16);
T_ASSERT_NOTNULL(data_buf, "Data buffer allocation");
int rndfd = open("/dev/urandom", O_RDONLY, S_IRUSR);
T_ASSERT_POSIX_SUCCESS(rndfd, "Open /dev/urandom");
T_ASSERT_GE_INT((int)read(rndfd, data_buf, IO_SIZE * 16), 0, "read /dev/urandom");
close(rndfd);
/* Create test file */
int fd = open("/mnt2/test", O_CREAT | O_WRONLY, S_IRUSR);
T_ASSERT_POSIX_SUCCESS(fd, 0, "Open /mnt2/test for writing!");
T_ASSERT_POSIX_ZERO(fcntl(fd, F_NOCACHE, 1), "fcntl F_NOCACHE enable");
for (int size = 0; size < FILE_SIZE;) {
T_QUIET;
T_ASSERT_GE_INT((int)write(fd, data_buf, IO_SIZE * 16), 0, "write test file");
size += (IO_SIZE * 16);
}
close(fd);
sync();
}
static pthread_t
create_thread(uint32_t thread_id, uint32_t priority, bool fixpri,
void *(*start_routine)(void *))
{
int rv;
pthread_t new_thread;
struct sched_param param = { .sched_priority = (int)priority };
pthread_attr_t attr;
T_ASSERT_POSIX_ZERO(pthread_attr_init(&attr), "pthread_attr_init");
T_ASSERT_POSIX_ZERO(pthread_attr_setschedparam(&attr, &param),
"pthread_attr_setschedparam");
if (fixpri) {
T_ASSERT_POSIX_ZERO(pthread_attr_setschedpolicy(&attr, SCHED_RR),
"pthread_attr_setschedpolicy");
}
T_ASSERT_POSIX_ZERO(pthread_create(&new_thread, &attr, start_routine,
(void*)(uintptr_t)thread_id), "pthread_create");
T_ASSERT_POSIX_ZERO(pthread_attr_destroy(&attr), "pthread_attr_destroy");
threads[thread_id].thread = new_thread;
return new_thread;
}
/* Spin until a specified number of seconds elapses */
static void
spin_for_duration(uint32_t seconds)
{
uint64_t duration = nanos_to_abs((uint64_t)seconds * NSEC_PER_SEC);
uint64_t current_time = mach_absolute_time();
uint64_t timeout = duration + current_time;
uint64_t spin_count = 0;
while (mach_absolute_time() < timeout && atomic_load_explicit(&keep_going,
memory_order_relaxed)) {
spin_count++;
}
}
static void *
spin_thread(void *arg)
{
uint32_t thread_id = (uint32_t) arg;
char name[30] = "";
snprintf(name, sizeof(name), "spin thread %2d", thread_id);
pthread_setname_np(name);
T_ASSERT_MACH_SUCCESS(semaphore_wait_signal(semaphore, worker_sem),
"semaphore_wait_signal");
spin_for_duration(SPIN_SECS);
return NULL;
}
void
perform_io(dt_stat_time_t stat)
{
/* Open the test data file */
int test_file_fd = open("/mnt2/test", O_RDONLY);
T_WITH_ERRNO;
T_ASSERT_POSIX_SUCCESS(test_file_fd, "Open test data file");
/* Disable caching and read-ahead for the file */
T_ASSERT_POSIX_ZERO(fcntl(test_file_fd, F_NOCACHE, 1), "fcntl F_NOCACHE enable");
T_ASSERT_POSIX_ZERO(fcntl(test_file_fd, F_RDAHEAD, 0), "fcntl F_RDAHEAD disable");
uint32_t count = 0;
int ret;
for (int i = 0; i < WARMUP_ITERATIONS; i++) {
/* Warmup loop */
read(test_file_fd, data_buf, IO_SIZE);
}
do {
T_STAT_MEASURE(stat) {
ret = read(test_file_fd, data_buf, IO_SIZE);
}
if (ret == 0) {
T_QUIET;
T_ASSERT_POSIX_SUCCESS(lseek(test_file_fd, 0, SEEK_SET), "lseek begin");
} else if (ret < 0) {
T_FAIL("read failure");
T_END;
}
count++;
} while (count < IO_COUNT);
close(test_file_fd);
}
T_GLOBAL_META(T_META_NAMESPACE("xnu.io"), T_META_TAG_PERF);
/* Disable the test on MacOS for now */
T_DECL(read_perf, "Sequential Uncached Read Performance", T_META_TYPE_PERF, T_META_CHECK_LEAKS(NO), T_META_ASROOT(YES), T_META_LTEPHASE(LTE_POSTINIT))
{
#if !CONFIG_EMBEDDED
T_SKIP("Not supported on MacOS");
#endif /* !CONFIG_EMBEDDED */
io_perf_test_io_init();
pthread_setname_np("main thread");
T_ASSERT_MACH_SUCCESS(mach_timebase_info(&timebase_info), "mach_timebase_info");
dt_stat_time_t seq_noload = dt_stat_time_create("sequential read latency (CPU idle)");
perform_io(seq_noload);
dt_stat_finalize(seq_noload);
/*
* We create spinner threads for this test so that all other cores are
* busy. That way the I/O issue thread has to context switch to the
* IOWorkLoop thread and back for the I/O.
*/
T_ASSERT_MACH_SUCCESS(semaphore_create(mach_task_self(), &semaphore,
SYNC_POLICY_FIFO, 0), "semaphore_create");
T_ASSERT_MACH_SUCCESS(semaphore_create(mach_task_self(), &worker_sem,
SYNC_POLICY_FIFO, 0), "semaphore_create");
size_t ncpu_size = sizeof(g_numcpus);
T_ASSERT_POSIX_SUCCESS(sysctlbyname("hw.ncpu", &g_numcpus, &ncpu_size, NULL, 0),
"sysctlbyname(hw.ncpu)");
T_LOG("hw.ncpu: %d\n", g_numcpus);
uint32_t n_spinners = g_numcpus - 1;
for (uint32_t thread_id = 0; thread_id < n_spinners; thread_id++) {
threads[thread_id].thread = create_thread(thread_id, THR_SPINNER_PRI,
true, &spin_thread);
}
for (uint32_t thread_id = 0; thread_id < n_spinners; thread_id++) {
T_ASSERT_MACH_SUCCESS(semaphore_wait(worker_sem), "semaphore_wait");
}
T_ASSERT_MACH_SUCCESS(semaphore_signal_all(semaphore), "semaphore_signal");
dt_stat_time_t seq_load = dt_stat_time_create("sequential read latency (Single CPU)");
perform_io(seq_load);
dt_stat_finalize(seq_load);
atomic_store_explicit(&keep_going, 0, memory_order_relaxed);
for (uint32_t thread_id = 0; thread_id < n_spinners; thread_id++) {
T_ASSERT_POSIX_ZERO(pthread_join(threads[thread_id].thread, NULL),
"pthread_join %d", thread_id);
}
}