darling-xnu/tests/kqueue_timer_tests.c
2023-05-16 21:41:14 -07:00

450 lines
10 KiB
C

#include <sys/types.h>
#include <sys/event.h>
#include <sys/time.h>
#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <mach/mach.h>
#include <mach/task.h>
#include <TargetConditionals.h>
#include <darwintest.h>
#ifndef NOTE_MACHTIME
#define NOTE_MACHTIME 0x00000100
#endif
static mach_timebase_info_data_t timebase_info;
static uint64_t
nanos_to_abs(uint64_t nanos)
{
return nanos * timebase_info.denom / timebase_info.numer;
}
static uint64_t
abs_to_nanos(uint64_t abs)
{
return abs * timebase_info.numer / timebase_info.denom;
}
static int kq, passed, failed;
static struct timespec failure_timeout = { .tv_sec = 10, .tv_nsec = 0 };
/*
* Wait for given kevent, which should return in 'expected' usecs.
*/
static int
do_simple_kevent(struct kevent64_s *kev, uint64_t expected)
{
int ret;
int64_t elapsed_usecs;
uint64_t delta_usecs;
struct timespec timeout;
struct timeval before, after;
/* time out after 1 sec extra delay */
timeout.tv_sec = (expected / USEC_PER_SEC) + 1;
timeout.tv_nsec = (expected % USEC_PER_SEC) * 1000;
T_SETUPBEGIN;
/* measure time for the kevent */
gettimeofday(&before, NULL);
ret = kevent64(kq, kev, 1, kev, 1, 0, &timeout);
gettimeofday(&after, NULL);
if (ret < 1 || (kev->flags & EV_ERROR)) {
T_LOG("%s() failure: kevent returned %d, error %d\n", __func__, ret,
(ret == -1 ? errno : (int) kev->data));
return 0;
}
T_SETUPEND;
/* did it work? */
elapsed_usecs = (after.tv_sec - before.tv_sec) * (int64_t)USEC_PER_SEC +
(after.tv_usec - before.tv_usec);
delta_usecs = (uint64_t)llabs(elapsed_usecs - ((int64_t)expected));
/* failure if we're 30% off, or 50 mics late */
if (delta_usecs > (30 * expected / 100.0) && delta_usecs > 50) {
T_LOG("\tfailure: expected %lld usec, measured %lld usec.\n",
expected, elapsed_usecs);
return 0;
} else {
T_LOG("\tsuccess, measured %lld usec.\n", elapsed_usecs);
return 1;
}
}
static void
test_absolute_kevent(int time, int scale)
{
struct timeval tv;
struct kevent64_s kev;
uint64_t nowus, expected, timescale = 0;
int ret;
int64_t deadline;
gettimeofday(&tv, NULL);
nowus = (uint64_t)tv.tv_sec * USEC_PER_SEC + (uint64_t)tv.tv_usec;
T_SETUPBEGIN;
switch (scale) {
case NOTE_MACHTIME:
T_LOG("Testing %d MATUs absolute timer...\n", time);
break;
case NOTE_SECONDS:
T_LOG("Testing %d sec absolute timer...\n", time);
timescale = USEC_PER_SEC;
break;
case NOTE_USECONDS:
T_LOG("Testing %d usec absolute timer...\n", time);
timescale = 1;
break;
case 0:
T_LOG("Testing %d msec absolute timer...\n", time);
timescale = 1000;
break;
default:
T_FAIL("Failure: scale 0x%x not recognized.\n", scale);
return;
}
T_SETUPEND;
if (scale == NOTE_MACHTIME) {
expected = abs_to_nanos((uint64_t)time) / NSEC_PER_USEC;
deadline = (int64_t)mach_absolute_time() + time;
} else {
expected = (uint64_t)time * timescale;
deadline = (int64_t)(nowus / timescale) + time;
}
/* deadlines in the past should fire immediately */
if (time < 0) {
expected = 0;
}
EV_SET64(&kev, 1, EVFILT_TIMER, EV_ADD,
NOTE_ABSOLUTE | scale, deadline, 0, 0, 0);
ret = do_simple_kevent(&kev, expected);
if (ret) {
passed++;
T_PASS("%s time:%d, scale:0x%x", __func__, time, scale);
} else {
failed++;
T_FAIL("%s time:%d, scale:0x%x", __func__, time, scale);
}
}
static void
test_oneshot_kevent(int time, int scale)
{
int ret;
uint64_t expected = 0;
struct kevent64_s kev;
T_SETUPBEGIN;
switch (scale) {
case NOTE_MACHTIME:
T_LOG("Testing %d MATUs interval timer...\n", time);
expected = abs_to_nanos((uint64_t)time) / NSEC_PER_USEC;
break;
case NOTE_SECONDS:
T_LOG("Testing %d sec interval timer...\n", time);
expected = (uint64_t)time * USEC_PER_SEC;
break;
case NOTE_USECONDS:
T_LOG("Testing %d usec interval timer...\n", time);
expected = (uint64_t)time;
break;
case NOTE_NSECONDS:
T_LOG("Testing %d nsec interval timer...\n", time);
expected = (uint64_t)time / 1000;
break;
case 0:
T_LOG("Testing %d msec interval timer...\n", time);
expected = (uint64_t)time * 1000;
break;
default:
T_FAIL("Failure: scale 0x%x not recognized.\n", scale);
return;
}
T_SETUPEND;
/* deadlines in the past should fire immediately */
if (time < 0) {
expected = 0;
}
EV_SET64(&kev, 2, EVFILT_TIMER, EV_ADD | EV_ONESHOT, scale, time,
0, 0, 0);
ret = do_simple_kevent(&kev, expected);
if (ret) {
passed++;
T_PASS("%s time:%d, scale:0x%x", __func__, time, scale);
} else {
failed++;
T_FAIL("%s time:%d, scale:0x%x", __func__, time, scale);
}
}
/* Test that the timer goes ding multiple times */
static void
test_interval_kevent(int usec)
{
struct kevent64_s kev;
int ret;
T_SETUPBEGIN;
uint64_t test_duration_us = USEC_PER_SEC; /* 1 second */
uint64_t expected_pops;
if (usec < 0) {
expected_pops = 1; /* TODO: test 'and only once' */
} else {
expected_pops = test_duration_us / (uint64_t)usec;
}
T_LOG("Testing interval kevent at %d usec intervals (%lld pops/second)...\n",
usec, expected_pops);
EV_SET64(&kev, 3, EVFILT_TIMER, EV_ADD, NOTE_USECONDS, usec, 0, 0, 0);
ret = kevent64(kq, &kev, 1, NULL, 0, 0, NULL);
if (ret != 0 || (kev.flags & EV_ERROR)) {
T_FAIL("%s() setup failure: kevent64 returned %d\n", __func__, ret);
failed++;
return;
}
T_SETUPEND;
struct timeval before, after;
uint64_t elapsed_usecs;
gettimeofday(&before, NULL);
uint64_t pops = 0;
for (uint32_t i = 0; i < expected_pops; i++) {
ret = kevent64(kq, NULL, 0, &kev, 1, 0, &failure_timeout);
if (ret != 1) {
T_FAIL("%s() failure: kevent64 returned %d\n", __func__, ret);
failed++;
return;
}
//T_LOG("\t ding: %lld\n", kev.data);
pops += (uint64_t)kev.data;
gettimeofday(&after, NULL);
elapsed_usecs = (uint64_t)((after.tv_sec - before.tv_sec) * (int64_t)USEC_PER_SEC +
(after.tv_usec - before.tv_usec));
if (elapsed_usecs > test_duration_us) {
break;
}
}
/* check how many times the timer fired: within 5%? */
if (pops > expected_pops + (expected_pops / 20) ||
pops < expected_pops - (expected_pops / 20)) {
T_FAIL("%s() usec:%d (saw %lld of %lld expected pops)", __func__, usec, pops, expected_pops);
failed++;
} else {
T_PASS("%s() usec:%d (saw %lld pops)", __func__, usec, pops);
passed++;
}
EV_SET64(&kev, 3, EVFILT_TIMER, EV_DELETE, 0, 0, 0, 0, 0);
ret = kevent64(kq, &kev, 1, NULL, 0, 0, NULL);
if (ret != 0) {
T_LOG("\tfailed to stop repeating timer: %d\n", ret);
}
}
/* Test that the repeating timer repeats even while not polling in kqueue */
static void
test_repeating_kevent(int usec)
{
struct kevent64_s kev;
int ret;
T_SETUPBEGIN;
uint64_t test_duration_us = USEC_PER_SEC; /* 1 second */
uint64_t expected_pops = test_duration_us / (uint64_t)usec;
T_LOG("Testing repeating kevent at %d usec intervals (%lld pops/second)...\n",
usec, expected_pops);
EV_SET64(&kev, 4, EVFILT_TIMER, EV_ADD, NOTE_USECONDS, usec, 0, 0, 0);
ret = kevent64(kq, &kev, 1, NULL, 0, 0, NULL);
if (ret != 0) {
T_FAIL("%s() setup failure: kevent64 returned %d\n", __func__, ret);
failed++;
return;
}
usleep((useconds_t)test_duration_us);
ret = kevent64(kq, NULL, 0, &kev, 1, 0, &failure_timeout);
if (ret != 1 || (kev.flags & EV_ERROR)) {
T_FAIL("%s() setup failure: kevent64 returned %d\n", __func__, ret);
failed++;
return;
}
T_SETUPEND;
uint64_t pops = (uint64_t) kev.data;
/* check how many times the timer fired: within 5%? */
if (pops > expected_pops + (expected_pops / 20) ||
pops < expected_pops - (expected_pops / 20)) {
T_FAIL("%s() usec:%d (saw %lld of %lld expected pops)", __func__, usec, pops, expected_pops);
failed++;
} else {
T_PASS("%s() usec:%d (saw %lld pops)", __func__, usec, pops);
passed++;
}
EV_SET64(&kev, 4, EVFILT_TIMER, EV_DELETE, 0, 0, 0, 0, 0);
ret = kevent64(kq, &kev, 1, NULL, 0, 0, NULL);
if (ret != 0) {
T_LOG("\tfailed to stop repeating timer: %d\n", ret);
}
}
static void
test_updated_kevent(int first, int second)
{
struct kevent64_s kev;
int ret;
T_LOG("Testing update from %d to %d msecs...\n", first, second);
T_SETUPBEGIN;
EV_SET64(&kev, 4, EVFILT_TIMER, EV_ADD | EV_ONESHOT, 0, first, 0, 0, 0);
ret = kevent64(kq, &kev, 1, NULL, 0, 0, NULL);
if (ret != 0) {
T_FAIL("%s() failure: initial kevent returned %d\n", __func__, ret);
failed++;
return;
}
T_SETUPEND;
EV_SET64(&kev, 4, EVFILT_TIMER, EV_ONESHOT, 0, second, 0, 0, 0);
uint64_t expected_us = (uint64_t)second * 1000;
if (second < 0) {
expected_us = 0;
}
ret = do_simple_kevent(&kev, expected_us);
if (ret) {
passed++;
T_PASS("%s() %d, %d", __func__, first, second);
} else {
failed++;
T_FAIL("%s() %d, %d", __func__, first, second);
}
}
static void
disable_timer_coalescing(void)
{
struct task_qos_policy qosinfo;
kern_return_t kr;
T_SETUPBEGIN;
qosinfo.task_latency_qos_tier = LATENCY_QOS_TIER_0;
qosinfo.task_throughput_qos_tier = THROUGHPUT_QOS_TIER_0;
kr = task_policy_set(mach_task_self(), TASK_OVERRIDE_QOS_POLICY, (task_policy_t)&qosinfo,
TASK_QOS_POLICY_COUNT);
if (kr != KERN_SUCCESS) {
T_FAIL("task_policy_set(... TASK_OVERRIDE_QOS_POLICY ...) failed: %d (%s)", kr, mach_error_string(kr));
}
T_SETUPEND;
}
T_DECL(kqueue_timer_tests,
"Tests assorted kqueue operations for timer-related events")
{
/*
* Since we're trying to test timers here, disable timer coalescing
* to improve the accuracy of timer fires for this process.
*/
disable_timer_coalescing();
mach_timebase_info(&timebase_info);
kq = kqueue();
assert(kq > 0);
passed = 0;
failed = 0;
test_absolute_kevent(100, 0);
test_absolute_kevent(200, 0);
test_absolute_kevent(300, 0);
test_absolute_kevent(1000, 0);
T_MAYFAIL;
test_absolute_kevent(500, NOTE_USECONDS);
T_MAYFAIL;
test_absolute_kevent(100, NOTE_USECONDS);
T_MAYFAIL;
test_absolute_kevent(2, NOTE_SECONDS);
T_MAYFAIL;
test_absolute_kevent(-1000, 0);
T_MAYFAIL;
test_absolute_kevent((int)nanos_to_abs(10 * NSEC_PER_MSEC), NOTE_MACHTIME);
test_oneshot_kevent(1, NOTE_SECONDS);
T_MAYFAIL;
test_oneshot_kevent(10, 0);
T_MAYFAIL;
test_oneshot_kevent(200, NOTE_USECONDS);
T_MAYFAIL;
test_oneshot_kevent(300000, NOTE_NSECONDS);
T_MAYFAIL;
test_oneshot_kevent(-1, NOTE_SECONDS);
T_MAYFAIL;
test_oneshot_kevent((int)nanos_to_abs(10 * NSEC_PER_MSEC), NOTE_MACHTIME);
test_interval_kevent(250 * 1000);
T_MAYFAIL;
test_interval_kevent(5 * 1000);
T_MAYFAIL;
test_interval_kevent(200);
T_MAYFAIL;
test_interval_kevent(50);
test_interval_kevent(-1000);
test_repeating_kevent(10000); /* 10ms */
test_updated_kevent(1000, 2000);
test_updated_kevent(2000, 1000);
test_updated_kevent(1000, -1);
}