darling-xnu/tests/mach_continuous_time.c
2023-05-16 21:41:14 -07:00

373 lines
10 KiB
C

#include <mach/mach.h>
#include <mach/mach_time.h>
#include <mach/clock_types.h>
#include <sys/time.h>
#include <spawn.h>
#include <sys/wait.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <time.h>
#include <errno.h>
#include <darwintest.h>
#if (defined(__arm__) || defined(__arm64__))
#define HAS_KERNEL_TIME_TRAPS
extern uint64_t mach_absolute_time_kernel(void);
extern uint64_t mach_continuous_time_kernel(void);
#endif
extern char **environ;
static const int64_t one_mil = 1000 * 1000;
#define to_ns(ticks) (((ticks) * tb_info.numer) / (tb_info.denom))
#define to_ms(ticks) (to_ns(ticks)/one_mil)
static mach_timebase_info_data_t tb_info;
static void
update(uint64_t *a, uint64_t *c)
{
mach_get_times(a, c, NULL);
}
T_DECL(mct_monotonic, "Testing mach_continuous_time returns sane, monotonic values",
T_META_ALL_VALID_ARCHS(true), T_META_RUN_CONCURRENTLY(true))
{
mach_timebase_info(&tb_info);
#ifdef HAS_KERNEL_TIME_TRAPS
bool kernel = false;
#endif
volatile uint64_t multiple_test = to_ms(mach_continuous_time());
for (int i = 0; i < 20; i++) {
uint64_t tmp;
const char *test_type = "user";
#ifdef HAS_KERNEL_TIME_TRAPS
if (kernel) {
test_type = "kernel";
tmp = mach_continuous_time_kernel();
} else {
tmp = mach_continuous_time();
}
kernel = !kernel;
#else
tmp = mach_continuous_time();
#endif
tmp = to_ms(tmp);
T_ASSERT_GE(tmp, multiple_test, "mach_continuous_time (%s) must be monotonic", test_type);
// each successive call shouldn't be more than 100ms in the future
T_ASSERT_LE(tmp - multiple_test, 100ULL, "mach_continuous_time (%s) should not jump forward too fast", test_type);
multiple_test = tmp;
}
}
T_DECL(mat_monotonic, "Testing mach_absolute_time returns sane, monotonic values",
T_META_ALL_VALID_ARCHS(true), T_META_RUN_CONCURRENTLY(true))
{
mach_timebase_info(&tb_info);
#ifdef HAS_KERNEL_TIME_TRAPS
bool kernel = false;
#endif
volatile uint64_t multiple_test = to_ms(mach_absolute_time());
for (int i = 0; i < 20; i++) {
uint64_t tmp;
const char *test_type = "user";
#ifdef HAS_KERNEL_TIME_TRAPS
if (kernel) {
test_type = "kernel";
tmp = mach_absolute_time_kernel();
} else {
tmp = mach_absolute_time();
}
kernel = !kernel;
#endif
tmp = mach_absolute_time();
tmp = to_ms(tmp);
T_ASSERT_GE(tmp, multiple_test, "mach_absolute_time (%s) must be monotonic", test_type);
// each successive call shouldn't be more than 100ms in the future
T_ASSERT_LE(tmp - multiple_test, 100ULL, "mach_absolute_time (%s) should not jump forward too fast", test_type);
multiple_test = tmp;
}
}
T_DECL(mct_pause, "Testing mach_continuous_time and mach_absolute_time don't diverge",
T_META_RUN_CONCURRENTLY(true))
{
mach_timebase_info(&tb_info);
uint64_t abs_now;
uint64_t cnt_now;
int before_diff, after_diff;
update(&abs_now, &cnt_now);
before_diff = (int)(to_ms(cnt_now) - to_ms(abs_now));
sleep(1);
update(&abs_now, &cnt_now);
after_diff = (int)(to_ms(cnt_now) - to_ms(abs_now));
T_ASSERT_LE(abs(after_diff - before_diff), 1, "mach_continuous_time and mach_absolute_time should not diverge");
}
#ifdef HAS_KERNEL_TIME_TRAPS
static void
update_kern(uint64_t *abs, uint64_t *cont)
{
uint64_t abs1, abs2, cont1, cont2;
do {
abs1 = mach_absolute_time_kernel();
cont1 = mach_continuous_time_kernel();
abs2 = mach_absolute_time_kernel();
cont2 = mach_continuous_time_kernel();
} while (to_ms(abs2 - abs1) || to_ms(cont2 - cont1));
*abs = abs2;
*cont = cont2;
}
#endif
#ifdef HAS_KERNEL_TIME_TRAPS
T_DECL(mct_pause_kern, "Testing kernel mach_continuous_time and mach_absolute_time don't diverge",
T_META_RUN_CONCURRENTLY(true))
{
mach_timebase_info(&tb_info);
uint64_t abs_now;
uint64_t cnt_now;
int before_diff, after_diff;
update_kern(&abs_now, &cnt_now);
before_diff = (int)(to_ms(cnt_now) - to_ms(abs_now));
sleep(1);
update_kern(&abs_now, &cnt_now);
after_diff = (int)(to_ms(cnt_now) - to_ms(abs_now));
T_ASSERT_LE(abs(after_diff - before_diff), 1, "mach_continuous_time_kernel and mach_absolute_time_kernel should not diverge");
}
#endif
T_DECL(mct_sleep, "Testing mach_continuous_time behavior over system sleep"){
#ifndef MCT_SLEEP_TEST
T_SKIP("Skipping test that sleeps the device; compile with MCT_SLEEP_TEST define to enable.");
#endif
mach_timebase_info(&tb_info);
uint64_t abs_now;
uint64_t cnt_now;
int before_diff, after_diff = 0;
T_LOG("Testing mach_continuous_time is ~5 seconds ahead of mach_absolute_time after 5 second sleep");
update(&abs_now, &cnt_now);
before_diff = (int)(to_ms(cnt_now) - to_ms(abs_now));
// performs:
// pmset relative wake 5
// pmset sleepnow
pid_t pid;
int spawn_ret = 0;
time_t before_sleep = time(NULL);
int ct_ms_before_sleep = (int)to_ms(cnt_now);
int ab_ms_before_sleep = (int)to_ms(abs_now);
char *const pmset1_args[] = {"/usr/bin/pmset", "relative", "wake", "5", NULL};
T_ASSERT_POSIX_ZERO((spawn_ret = posix_spawn(&pid, pmset1_args[0], NULL, NULL, pmset1_args, environ)), NULL);
T_ASSERT_EQ(waitpid(pid, &spawn_ret, 0), pid, "waitpid failed");
T_ASSERT_EQ(spawn_ret, 0, "pmset relative wait 5 failed");
char *const pmset2_args[] = {"/usr/bin/pmset", "sleepnow", NULL};
T_ASSERT_POSIX_ZERO((spawn_ret = posix_spawn(&pid, pmset2_args[0], NULL, NULL, pmset2_args, environ)), NULL);
T_ASSERT_EQ(waitpid(pid, &spawn_ret, 0), pid, "waitpid failed");
T_ASSERT_EQ(spawn_ret, 0, "pmset relative wait 5 failed");
// wait for device to sleep (up to 30 seconds)
for (int i = 0; i < 30; i++) {
update(&abs_now, &cnt_now);
after_diff = (int)(to_ms(cnt_now) - to_ms(abs_now));
// on OSX, there's enough latency between calls to MCT and MAT
// when the system is going down for sleep for values to diverge a few ms
if (abs(before_diff - after_diff) > 2) {
break;
}
sleep(1);
T_LOG("waited %d seconds for sleep...", i + 1);
}
if ((after_diff - before_diff) < 4000) {
T_LOG("Device slept for less than 4 seconds, did it really sleep? (%d ms change between abs and cont)",
after_diff - before_diff);
}
time_t after_sleep = time(NULL);
int cal_sleep_diff = (int)(double)difftime(after_sleep, before_sleep);
int ct_sleep_diff = ((int)to_ms(cnt_now) - ct_ms_before_sleep) / 1000;
int ab_sleep_diff = ((int)to_ms(abs_now) - ab_ms_before_sleep) / 1000;
T_LOG("Calendar progressed: %d sec; continuous time progressed: %d sec; absolute time progressed %d sec",
cal_sleep_diff, ct_sleep_diff, ab_sleep_diff);
T_ASSERT_LE(abs(ct_sleep_diff - cal_sleep_diff), 2,
"continuous time should progress at ~ same rate as calendar");
}
T_DECL(mct_settimeofday, "Testing mach_continuous_time behavior over settimeofday"){
if (geteuid() != 0) {
T_SKIP("The settimeofday() test requires root privileges to run.");
}
mach_timebase_info(&tb_info);
struct timeval saved_tv;
struct timezone saved_tz;
int before, after;
T_ASSERT_POSIX_ZERO(gettimeofday(&saved_tv, &saved_tz), NULL);
struct timeval forward_tv = saved_tv;
// move time forward by two minutes, ensure mach_continuous_time keeps
// chugging along with mach_absolute_time
forward_tv.tv_sec += 2 * 60;
before = (int)to_ms(mach_continuous_time());
T_ASSERT_POSIX_ZERO(settimeofday(&forward_tv, &saved_tz), NULL);
after = (int)to_ms(mach_continuous_time());
T_ASSERT_POSIX_ZERO(settimeofday(&saved_tv, &saved_tz), NULL);
T_ASSERT_LT(abs(before - after), 1000, "mach_continuous_time should not jump more than 1s");
}
#ifdef HAS_KERNEL_TIME_TRAPS
T_DECL(mct_settimeofday_kern, "Testing kernel mach_continuous_time behavior over settimeofday"){
if (geteuid() != 0) {
T_SKIP("The settimeofday() test requires root privileges to run.");
}
mach_timebase_info(&tb_info);
struct timeval saved_tv;
struct timezone saved_tz;
int before, after;
T_ASSERT_POSIX_ZERO(gettimeofday(&saved_tv, &saved_tz), NULL);
struct timeval forward_tv = saved_tv;
// move time forward by two minutes, ensure mach_continuous_time keeps
// chugging along with mach_absolute_time
forward_tv.tv_sec += 2 * 60;
before = (int)to_ms(mach_continuous_time_kernel());
T_ASSERT_POSIX_ZERO(settimeofday(&forward_tv, &saved_tz), NULL);
after = (int)to_ms(mach_continuous_time_kernel());
T_ASSERT_POSIX_ZERO(settimeofday(&saved_tv, &saved_tz), NULL);
T_ASSERT_LT(abs(before - after), 1000, "mach_continuous_time_kernel should not jump more than 1s");
}
#endif
T_DECL(mct_aproximate, "Testing mach_continuous_approximate_time()",
T_META_ALL_VALID_ARCHS(true), T_META_RUN_CONCURRENTLY(true))
{
mach_timebase_info(&tb_info);
uint64_t absolute = to_ns(mach_continuous_time());
uint64_t approximate = to_ns(mach_continuous_approximate_time());
T_EXPECT_LE(llabs((long long)absolute - (long long)approximate), (long long)(25 * NSEC_PER_MSEC), NULL);
}
T_DECL(mach_time_perf, "mach_time performance") {
{
dt_stat_time_t s = dt_stat_time_create("mach_absolute_time");
T_STAT_MEASURE_LOOP(s) {
uint64_t t;
t = mach_absolute_time();
}
dt_stat_finalize(s);
}
{
dt_stat_time_t s = dt_stat_time_create("mach_continuous_time");
T_STAT_MEASURE_LOOP(s) {
uint64_t t;
t = mach_continuous_time();
}
dt_stat_finalize(s);
}
}
T_DECL(mach_time_perf_instructions, "instructions retired for mach_time", T_META_TYPE_PERF, T_META_ASROOT(YES)) {
{
dt_stat_thread_instructions_t s = dt_stat_thread_instructions_create("mach_absolute_time");
T_STAT_MEASURE_LOOP(s) {
uint64_t t;
t = mach_absolute_time();
}
dt_stat_finalize(s);
}
{
dt_stat_thread_instructions_t s = dt_stat_thread_instructions_create("mach_continuous_time");
T_STAT_MEASURE_LOOP(s) {
uint64_t t;
t = mach_continuous_time();
}
dt_stat_finalize(s);
}
}
#ifdef HAS_KERNEL_TIME_TRAPS
T_DECL(mach_time_perf_kern, "kernel mach_time performance") {
{
dt_stat_time_t s = dt_stat_time_create("mach_absolute_time_kernel");
T_STAT_MEASURE_LOOP(s) {
uint64_t t;
t = mach_absolute_time_kernel();
}
dt_stat_finalize(s);
}
{
dt_stat_time_t s = dt_stat_time_create("mach_continuous_time_kernel");
T_STAT_MEASURE_LOOP(s) {
uint64_t t;
t = mach_continuous_time_kernel();
}
dt_stat_finalize(s);
}
}
T_DECL(mach_time_perf_instructions_kern, "instructions retired for kernel mach_time", T_META_TYPE_PERF, T_META_ASROOT(YES)) {
{
dt_stat_thread_instructions_t s = dt_stat_thread_instructions_create("mach_absolute_time_kernel");
T_STAT_MEASURE_LOOP(s) {
uint64_t t;
t = mach_absolute_time_kernel();
}
dt_stat_finalize(s);
}
{
dt_stat_thread_instructions_t s = dt_stat_thread_instructions_create("mach_continuous_time_kernel");
T_STAT_MEASURE_LOOP(s) {
uint64_t t;
t = mach_continuous_time_kernel();
}
dt_stat_finalize(s);
}
}
#endif