darling-xnu/osfmk/arm64/locore.s
2023-05-16 21:41:14 -07:00

1563 lines
42 KiB
ArmAsm

/*
* Copyright (c) 2011-2013 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <machine/asm.h>
#include <arm64/machine_machdep.h>
#include <arm64/machine_routines_asm.h>
#include <arm64/proc_reg.h>
#include <pexpert/arm64/board_config.h>
#include <mach/exception_types.h>
#include <mach_kdp.h>
#include <config_dtrace.h>
#include "assym.s"
#include <arm64/exception_asm.h>
#include "dwarf_unwind.h"
#if __ARM_KERNEL_PROTECT__
#include <arm/pmap.h>
#endif
#if XNU_MONITOR
/*
* CHECK_EXCEPTION_RETURN_DISPATCH_PPL
*
* Checks if an exception was taken from the PPL, and if so, trampolines back
* into the PPL.
* x26 - 0 if the exception was taken while in the kernel, 1 if the
* exception was taken while in the PPL.
*/
.macro CHECK_EXCEPTION_RETURN_DISPATCH_PPL
cmp x26, xzr
b.eq 1f
/* Return to the PPL. */
mov x15, #0
mov w10, #PPL_STATE_EXCEPTION
#error "XPRR configuration error"
1:
.endmacro
#endif /* XNU_MONITOR */
#define CBF_DISABLE 0
#define CBF_ENABLE 1
.macro COMPARE_BRANCH_FUSION
#if defined(APPLE_ARM64_ARCH_FAMILY)
mrs $1, HID1
.if $0 == CBF_DISABLE
orr $1, $1, ARM64_REG_HID1_disCmpBrFusion
.else
mov $2, ARM64_REG_HID1_disCmpBrFusion
bic $1, $1, $2
.endif
msr HID1, $1
.if $0 == CBF_DISABLE
isb sy
.endif
#endif
.endmacro
/*
* MAP_KERNEL
*
* Restores the kernel EL1 mappings, if necessary.
*
* This may mutate x18.
*/
.macro MAP_KERNEL
#if __ARM_KERNEL_PROTECT__
/* Switch to the kernel ASID (low bit set) for the task. */
mrs x18, TTBR0_EL1
orr x18, x18, #(1 << TTBR_ASID_SHIFT)
msr TTBR0_EL1, x18
/*
* We eschew some barriers on Apple CPUs, as relative ordering of writes
* to the TTBRs and writes to the TCR should be ensured by the
* microarchitecture.
*/
#if !defined(APPLE_ARM64_ARCH_FAMILY)
isb sy
#endif
/*
* Update the TCR to map the kernel now that we are using the kernel
* ASID.
*/
MOV64 x18, TCR_EL1_BOOT
msr TCR_EL1, x18
isb sy
#endif /* __ARM_KERNEL_PROTECT__ */
.endmacro
/*
* BRANCH_TO_KVA_VECTOR
*
* Branches to the requested long exception vector in the kernelcache.
* arg0 - The label to branch to
* arg1 - The index of the label in exc_vectors_tables
*
* This may mutate x18.
*/
.macro BRANCH_TO_KVA_VECTOR
#if __ARM_KERNEL_PROTECT__
/*
* Find the kernelcache table for the exception vectors by accessing
* the per-CPU data.
*/
mrs x18, TPIDR_EL1
ldr x18, [x18, ACT_CPUDATAP]
ldr x18, [x18, CPU_EXC_VECTORS]
/*
* Get the handler for this exception and jump to it.
*/
ldr x18, [x18, #($1 << 3)]
br x18
#else
b $0
#endif /* __ARM_KERNEL_PROTECT__ */
.endmacro
/*
* CHECK_KERNEL_STACK
*
* Verifies that the kernel stack is aligned and mapped within an expected
* stack address range. Note: happens before saving registers (in case we can't
* save to kernel stack).
*
* Expects:
* {x0, x1} - saved
* x1 - Exception syndrome
* sp - Saved state
*
* Seems like we need an unused argument to the macro for the \@ syntax to work
*
*/
.macro CHECK_KERNEL_STACK unused
stp x2, x3, [sp, #-16]! // Save {x2-x3}
and x1, x1, #ESR_EC_MASK // Mask the exception class
mov x2, #(ESR_EC_SP_ALIGN << ESR_EC_SHIFT)
cmp x1, x2 // If we have a stack alignment exception
b.eq Lcorrupt_stack_\@ // ...the stack is definitely corrupted
mov x2, #(ESR_EC_DABORT_EL1 << ESR_EC_SHIFT)
cmp x1, x2 // If we have a data abort, we need to
b.ne Lvalid_stack_\@ // ...validate the stack pointer
mrs x0, SP_EL0 // Get SP_EL0
mrs x1, TPIDR_EL1 // Get thread pointer
Ltest_kstack_\@:
ldr x2, [x1, TH_KSTACKPTR] // Get top of kernel stack
sub x3, x2, KERNEL_STACK_SIZE // Find bottom of kernel stack
cmp x0, x2 // if (SP_EL0 >= kstack top)
b.ge Ltest_istack_\@ // jump to istack test
cmp x0, x3 // if (SP_EL0 > kstack bottom)
b.gt Lvalid_stack_\@ // stack pointer valid
Ltest_istack_\@:
ldr x1, [x1, ACT_CPUDATAP] // Load the cpu data ptr
ldr x2, [x1, CPU_INTSTACK_TOP] // Get top of istack
sub x3, x2, INTSTACK_SIZE_NUM // Find bottom of istack
cmp x0, x2 // if (SP_EL0 >= istack top)
b.ge Lcorrupt_stack_\@ // corrupt stack pointer
cmp x0, x3 // if (SP_EL0 > istack bottom)
b.gt Lvalid_stack_\@ // stack pointer valid
Lcorrupt_stack_\@:
ldp x2, x3, [sp], #16
ldp x0, x1, [sp], #16
sub sp, sp, ARM_CONTEXT_SIZE // Allocate exception frame
stp x0, x1, [sp, SS64_X0] // Save x0, x1 to the exception frame
stp x2, x3, [sp, SS64_X2] // Save x2, x3 to the exception frame
mrs x0, SP_EL0 // Get SP_EL0
str x0, [sp, SS64_SP] // Save sp to the exception frame
INIT_SAVED_STATE_FLAVORS sp, w0, w1
mov x0, sp // Copy exception frame pointer to x0
adrp x1, fleh_invalid_stack@page // Load address for fleh
add x1, x1, fleh_invalid_stack@pageoff // fleh_dispatch64 will save register state before we get there
b fleh_dispatch64
Lvalid_stack_\@:
ldp x2, x3, [sp], #16 // Restore {x2-x3}
.endmacro
#if __ARM_KERNEL_PROTECT__
.section __DATA_CONST,__const
.align 3
.globl EXT(exc_vectors_table)
LEXT(exc_vectors_table)
/* Table of exception handlers.
* These handlers sometimes contain deadloops.
* It's nice to have symbols for them when debugging. */
.quad el1_sp0_synchronous_vector_long
.quad el1_sp0_irq_vector_long
.quad el1_sp0_fiq_vector_long
.quad el1_sp0_serror_vector_long
.quad el1_sp1_synchronous_vector_long
.quad el1_sp1_irq_vector_long
.quad el1_sp1_fiq_vector_long
.quad el1_sp1_serror_vector_long
.quad el0_synchronous_vector_64_long
.quad el0_irq_vector_64_long
.quad el0_fiq_vector_64_long
.quad el0_serror_vector_64_long
#endif /* __ARM_KERNEL_PROTECT__ */
.text
#if __ARM_KERNEL_PROTECT__
/*
* We need this to be on a page boundary so that we may avoiding mapping
* other text along with it. As this must be on the VM page boundary
* (due to how the coredumping code currently works), this will be a
* 16KB page boundary.
*/
.align 14
#else
.align 12
#endif /* __ARM_KERNEL_PROTECT__ */
.globl EXT(ExceptionVectorsBase)
LEXT(ExceptionVectorsBase)
Lel1_sp0_synchronous_vector:
BRANCH_TO_KVA_VECTOR el1_sp0_synchronous_vector_long, 0
.text
.align 7
Lel1_sp0_irq_vector:
BRANCH_TO_KVA_VECTOR el1_sp0_irq_vector_long, 1
.text
.align 7
Lel1_sp0_fiq_vector:
BRANCH_TO_KVA_VECTOR el1_sp0_fiq_vector_long, 2
.text
.align 7
Lel1_sp0_serror_vector:
BRANCH_TO_KVA_VECTOR el1_sp0_serror_vector_long, 3
.text
.align 7
Lel1_sp1_synchronous_vector:
BRANCH_TO_KVA_VECTOR el1_sp1_synchronous_vector_long, 4
.text
.align 7
Lel1_sp1_irq_vector:
BRANCH_TO_KVA_VECTOR el1_sp1_irq_vector_long, 5
.text
.align 7
Lel1_sp1_fiq_vector:
BRANCH_TO_KVA_VECTOR el1_sp1_fiq_vector_long, 6
.text
.align 7
Lel1_sp1_serror_vector:
BRANCH_TO_KVA_VECTOR el1_sp1_serror_vector_long, 7
.text
.align 7
Lel0_synchronous_vector_64:
MAP_KERNEL
BRANCH_TO_KVA_VECTOR el0_synchronous_vector_64_long, 8
.text
.align 7
Lel0_irq_vector_64:
MAP_KERNEL
BRANCH_TO_KVA_VECTOR el0_irq_vector_64_long, 9
.text
.align 7
Lel0_fiq_vector_64:
MAP_KERNEL
BRANCH_TO_KVA_VECTOR el0_fiq_vector_64_long, 10
.text
.align 7
Lel0_serror_vector_64:
MAP_KERNEL
BRANCH_TO_KVA_VECTOR el0_serror_vector_64_long, 11
/* Fill out the rest of the page */
.align 12
/*********************************
* END OF EXCEPTION VECTORS PAGE *
*********************************/
.macro EL1_SP0_VECTOR
msr SPSel, #0 // Switch to SP0
sub sp, sp, ARM_CONTEXT_SIZE // Create exception frame
stp x0, x1, [sp, SS64_X0] // Save x0, x1 to exception frame
add x0, sp, ARM_CONTEXT_SIZE // Calculate the original stack pointer
str x0, [sp, SS64_SP] // Save stack pointer to exception frame
INIT_SAVED_STATE_FLAVORS sp, w0, w1
mov x0, sp // Copy saved state pointer to x0
.endmacro
el1_sp0_synchronous_vector_long:
stp x0, x1, [sp, #-16]! // Save x0 and x1 to the exception stack
mrs x1, ESR_EL1 // Get the exception syndrome
/* If the stack pointer is corrupt, it will manifest either as a data abort
* (syndrome 0x25) or a misaligned pointer (syndrome 0x26). We can check
* these quickly by testing bit 5 of the exception class.
*/
tbz x1, #(5 + ESR_EC_SHIFT), Lkernel_stack_valid
CHECK_KERNEL_STACK
Lkernel_stack_valid:
ldp x0, x1, [sp], #16 // Restore x0 and x1 from the exception stack
EL1_SP0_VECTOR
adrp x1, EXT(fleh_synchronous)@page // Load address for fleh
add x1, x1, EXT(fleh_synchronous)@pageoff
b fleh_dispatch64
el1_sp0_irq_vector_long:
EL1_SP0_VECTOR
SWITCH_TO_INT_STACK
adrp x1, EXT(fleh_irq)@page // Load address for fleh
add x1, x1, EXT(fleh_irq)@pageoff
b fleh_dispatch64
el1_sp0_fiq_vector_long:
// ARM64_TODO write optimized decrementer
EL1_SP0_VECTOR
SWITCH_TO_INT_STACK
adrp x1, EXT(fleh_fiq)@page // Load address for fleh
add x1, x1, EXT(fleh_fiq)@pageoff
b fleh_dispatch64
el1_sp0_serror_vector_long:
EL1_SP0_VECTOR
adrp x1, EXT(fleh_serror)@page // Load address for fleh
add x1, x1, EXT(fleh_serror)@pageoff
b fleh_dispatch64
.macro EL1_SP1_VECTOR
sub sp, sp, ARM_CONTEXT_SIZE // Create exception frame
stp x0, x1, [sp, SS64_X0] // Save x0, x1 to exception frame
add x0, sp, ARM_CONTEXT_SIZE // Calculate the original stack pointer
str x0, [sp, SS64_SP] // Save stack pointer to exception frame
INIT_SAVED_STATE_FLAVORS sp, w0, w1
mov x0, sp // Copy saved state pointer to x0
.endmacro
el1_sp1_synchronous_vector_long:
b check_exception_stack
Lel1_sp1_synchronous_valid_stack:
#if defined(KERNEL_INTEGRITY_KTRR)
b check_ktrr_sctlr_trap
Lel1_sp1_synchronous_vector_continue:
#endif
EL1_SP1_VECTOR
adrp x1, fleh_synchronous_sp1@page
add x1, x1, fleh_synchronous_sp1@pageoff
b fleh_dispatch64
el1_sp1_irq_vector_long:
EL1_SP1_VECTOR
adrp x1, fleh_irq_sp1@page
add x1, x1, fleh_irq_sp1@pageoff
b fleh_dispatch64
el1_sp1_fiq_vector_long:
EL1_SP1_VECTOR
adrp x1, fleh_fiq_sp1@page
add x1, x1, fleh_fiq_sp1@pageoff
b fleh_dispatch64
el1_sp1_serror_vector_long:
EL1_SP1_VECTOR
adrp x1, fleh_serror_sp1@page
add x1, x1, fleh_serror_sp1@pageoff
b fleh_dispatch64
.macro EL0_64_VECTOR
stp x0, x1, [sp, #-16]! // Save x0 and x1 to the exception stack
#if __ARM_KERNEL_PROTECT__
mov x18, #0 // Zero x18 to avoid leaking data to user SS
#endif
mrs x0, TPIDR_EL1 // Load the thread register
mrs x1, SP_EL0 // Load the user stack pointer
add x0, x0, ACT_CONTEXT // Calculate where we store the user context pointer
ldr x0, [x0] // Load the user context pointer
str x1, [x0, SS64_SP] // Store the user stack pointer in the user PCB
msr SP_EL0, x0 // Copy the user PCB pointer to SP0
ldp x0, x1, [sp], #16 // Restore x0 and x1 from the exception stack
msr SPSel, #0 // Switch to SP0
stp x0, x1, [sp, SS64_X0] // Save x0, x1 to the user PCB
mrs x1, TPIDR_EL1 // Load the thread register
mov x0, sp // Copy the user PCB pointer to x0
// x1 contains thread register
.endmacro
el0_synchronous_vector_64_long:
EL0_64_VECTOR sync
SWITCH_TO_KERN_STACK
adrp x1, EXT(fleh_synchronous)@page // Load address for fleh
add x1, x1, EXT(fleh_synchronous)@pageoff
b fleh_dispatch64
el0_irq_vector_64_long:
EL0_64_VECTOR irq
SWITCH_TO_INT_STACK
adrp x1, EXT(fleh_irq)@page // load address for fleh
add x1, x1, EXT(fleh_irq)@pageoff
b fleh_dispatch64
el0_fiq_vector_64_long:
EL0_64_VECTOR fiq
SWITCH_TO_INT_STACK
adrp x1, EXT(fleh_fiq)@page // load address for fleh
add x1, x1, EXT(fleh_fiq)@pageoff
b fleh_dispatch64
el0_serror_vector_64_long:
EL0_64_VECTOR serror
SWITCH_TO_KERN_STACK
adrp x1, EXT(fleh_serror)@page // load address for fleh
add x1, x1, EXT(fleh_serror)@pageoff
b fleh_dispatch64
/*
* check_exception_stack
*
* Verifies that stack pointer at SP1 is within exception stack
* If not, will simply hang as we have no more stack to fall back on.
*/
.text
.align 2
check_exception_stack:
mrs x18, TPIDR_EL1 // Get thread pointer
cbz x18, Lvalid_exception_stack // Thread context may not be set early in boot
ldr x18, [x18, ACT_CPUDATAP]
cbz x18, . // If thread context is set, cpu data should be too
ldr x18, [x18, CPU_EXCEPSTACK_TOP]
cmp sp, x18
b.gt . // Hang if above exception stack top
sub x18, x18, EXCEPSTACK_SIZE_NUM // Find bottom of exception stack
cmp sp, x18
b.lt . // Hang if below exception stack bottom
Lvalid_exception_stack:
mov x18, #0
b Lel1_sp1_synchronous_valid_stack
#if defined(KERNEL_INTEGRITY_KTRR)
.text
.align 2
check_ktrr_sctlr_trap:
/* We may abort on an instruction fetch on reset when enabling the MMU by
* writing SCTLR_EL1 because the page containing the privileged instruction is
* not executable at EL1 (due to KTRR). The abort happens only on SP1 which
* would otherwise panic unconditionally. Check for the condition and return
* safe execution to the caller on behalf of the faulting function.
*
* Expected register state:
* x22 - Kernel virtual base
* x23 - Kernel physical base
*/
sub sp, sp, ARM_CONTEXT_SIZE // Make some space on the stack
stp x0, x1, [sp, SS64_X0] // Stash x0, x1
mrs x0, ESR_EL1 // Check ESR for instr. fetch abort
and x0, x0, #0xffffffffffffffc0 // Mask off ESR.ISS.IFSC
movz w1, #0x8600, lsl #16
movk w1, #0x0000
cmp x0, x1
mrs x0, ELR_EL1 // Check for expected abort address
adrp x1, _pinst_set_sctlr_trap_addr@page
add x1, x1, _pinst_set_sctlr_trap_addr@pageoff
sub x1, x1, x22 // Convert to physical address
add x1, x1, x23
ccmp x0, x1, #0, eq
ldp x0, x1, [sp, SS64_X0] // Restore x0, x1
add sp, sp, ARM_CONTEXT_SIZE // Clean up stack
b.ne Lel1_sp1_synchronous_vector_continue
msr ELR_EL1, lr // Return to caller
ERET_CONTEXT_SYNCHRONIZING
#endif /* defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR) */
/* 64-bit first level exception handler dispatcher.
* Completes register context saving and branches to FLEH.
* Expects:
* {x0, x1, sp} - saved
* x0 - arm_context_t
* x1 - address of FLEH
* fp - previous stack frame if EL1
* lr - unused
* sp - kernel stack
*/
.text
.align 2
fleh_dispatch64:
/* Save arm_saved_state64 */
SPILL_REGISTERS KERNEL_MODE
/* If exception is from userspace, zero unused registers */
and x23, x23, #(PSR64_MODE_EL_MASK)
cmp x23, #(PSR64_MODE_EL0)
bne 1f
SANITIZE_FPCR x25, x2, 2 // x25 is set to current FPCR by SPILL_REGISTERS
2:
mov x2, #0
mov x3, #0
mov x4, #0
mov x5, #0
mov x6, #0
mov x7, #0
mov x8, #0
mov x9, #0
mov x10, #0
mov x11, #0
mov x12, #0
mov x13, #0
mov x14, #0
mov x15, #0
mov x16, #0
mov x17, #0
mov x18, #0
mov x19, #0
mov x20, #0
/* x21, x22 cleared in common case below */
mov x23, #0
mov x24, #0
mov x25, #0
#if !XNU_MONITOR
mov x26, #0
#endif
mov x27, #0
mov x28, #0
mov fp, #0
mov lr, #0
1:
mov x21, x0 // Copy arm_context_t pointer to x21
mov x22, x1 // Copy handler routine to x22
#if XNU_MONITOR
/* Zero x26 to indicate that this should not return to the PPL. */
mov x26, #0
#endif
#if !CONFIG_SKIP_PRECISE_USER_KERNEL_TIME || HAS_FAST_CNTVCT
tst x23, PSR64_MODE_EL_MASK // If any EL MODE bits are set, we're coming from
b.ne 1f // kernel mode, so skip precise time update
PUSH_FRAME
bl EXT(timer_state_event_user_to_kernel)
POP_FRAME
mov x0, x21 // Reload arm_context_t pointer
1:
#endif /* !CONFIG_SKIP_PRECISE_USER_KERNEL_TIME || HAS_FAST_CNTVCT */
/* Dispatch to FLEH */
br x22
.text
.align 2
.global EXT(fleh_synchronous)
LEXT(fleh_synchronous)
UNWIND_PROLOGUE
UNWIND_DIRECTIVES
mrs x1, ESR_EL1 // Load exception syndrome
mrs x2, FAR_EL1 // Load fault address
/* At this point, the LR contains the value of ELR_EL1. In the case of an
* instruction prefetch abort, this will be the faulting pc, which we know
* to be invalid. This will prevent us from backtracing through the
* exception if we put it in our stack frame, so we load the LR from the
* exception saved state instead.
*/
and w3, w1, #(ESR_EC_MASK)
lsr w3, w3, #(ESR_EC_SHIFT)
mov w4, #(ESR_EC_IABORT_EL1)
cmp w3, w4
b.eq Lfleh_sync_load_lr
Lvalid_link_register:
PUSH_FRAME
bl EXT(sleh_synchronous)
POP_FRAME
#if XNU_MONITOR
CHECK_EXCEPTION_RETURN_DISPATCH_PPL
#endif
mov x28, xzr // Don't need to check PFZ if there are ASTs
b exception_return_dispatch
Lfleh_sync_load_lr:
ldr lr, [x0, SS64_LR]
b Lvalid_link_register
UNWIND_EPILOGUE
/* Shared prologue code for fleh_irq and fleh_fiq.
* Does any interrupt booking we may want to do
* before invoking the handler proper.
* Expects:
* x0 - arm_context_t
* x23 - CPSR
* fp - Undefined live value (we may push a frame)
* lr - Undefined live value (we may push a frame)
* sp - Interrupt stack for the current CPU
*/
.macro BEGIN_INTERRUPT_HANDLER
mrs x22, TPIDR_EL1
ldr x23, [x22, ACT_CPUDATAP] // Get current cpu
/* Update IRQ count */
ldr w1, [x23, CPU_STAT_IRQ]
add w1, w1, #1 // Increment count
str w1, [x23, CPU_STAT_IRQ] // Update IRQ count
ldr w1, [x23, CPU_STAT_IRQ_WAKE]
add w1, w1, #1 // Increment count
str w1, [x23, CPU_STAT_IRQ_WAKE] // Update post-wake IRQ count
/* Increment preempt count */
ldr w1, [x22, ACT_PREEMPT_CNT]
add w1, w1, #1
str w1, [x22, ACT_PREEMPT_CNT]
/* Store context in int state */
str x0, [x23, CPU_INT_STATE] // Saved context in cpu_int_state
.endmacro
/* Shared epilogue code for fleh_irq and fleh_fiq.
* Cleans up after the prologue, and may do a bit more
* bookkeeping (kdebug related).
* Expects:
* x22 - Live TPIDR_EL1 value (thread address)
* x23 - Address of the current CPU data structure
* w24 - 0 if kdebug is disbled, nonzero otherwise
* fp - Undefined live value (we may push a frame)
* lr - Undefined live value (we may push a frame)
* sp - Interrupt stack for the current CPU
*/
.macro END_INTERRUPT_HANDLER
/* Clear int context */
str xzr, [x23, CPU_INT_STATE]
/* Decrement preempt count */
ldr w0, [x22, ACT_PREEMPT_CNT]
cbnz w0, 1f // Detect underflow
b preempt_underflow
1:
sub w0, w0, #1
str w0, [x22, ACT_PREEMPT_CNT]
/* Switch back to kernel stack */
ldr x0, [x22, TH_KSTACKPTR]
mov sp, x0
.endmacro
.text
.align 2
.global EXT(fleh_irq)
LEXT(fleh_irq)
BEGIN_INTERRUPT_HANDLER
PUSH_FRAME
bl EXT(sleh_irq)
POP_FRAME
END_INTERRUPT_HANDLER
#if XNU_MONITOR
CHECK_EXCEPTION_RETURN_DISPATCH_PPL
#endif
mov x28, #1 // Set a bit to check PFZ if there are ASTs
b exception_return_dispatch
.text
.align 2
.global EXT(fleh_fiq_generic)
LEXT(fleh_fiq_generic)
PANIC_UNIMPLEMENTED
.text
.align 2
.global EXT(fleh_fiq)
LEXT(fleh_fiq)
BEGIN_INTERRUPT_HANDLER
PUSH_FRAME
bl EXT(sleh_fiq)
POP_FRAME
END_INTERRUPT_HANDLER
#if XNU_MONITOR
CHECK_EXCEPTION_RETURN_DISPATCH_PPL
#endif
mov x28, #1 // Set a bit to check PFZ if there are ASTs
b exception_return_dispatch
.text
.align 2
.global EXT(fleh_serror)
LEXT(fleh_serror)
mrs x1, ESR_EL1 // Load exception syndrome
mrs x2, FAR_EL1 // Load fault address
PUSH_FRAME
bl EXT(sleh_serror)
POP_FRAME
#if XNU_MONITOR
CHECK_EXCEPTION_RETURN_DISPATCH_PPL
#endif
mov x28, xzr // Don't need to check PFZ If there are ASTs
b exception_return_dispatch
/*
* Register state saved before we get here.
*/
.text
.align 2
fleh_invalid_stack:
mrs x1, ESR_EL1 // Load exception syndrome
str x1, [x0, SS64_ESR]
mrs x2, FAR_EL1 // Load fault address
str x2, [x0, SS64_FAR]
PUSH_FRAME
bl EXT(sleh_invalid_stack) // Shouldn't return!
b .
.text
.align 2
fleh_synchronous_sp1:
mrs x1, ESR_EL1 // Load exception syndrome
str x1, [x0, SS64_ESR]
mrs x2, FAR_EL1 // Load fault address
str x2, [x0, SS64_FAR]
PUSH_FRAME
bl EXT(sleh_synchronous_sp1)
b .
.text
.align 2
fleh_irq_sp1:
mov x1, x0
adr x0, Lsp1_irq_str
b EXT(panic_with_thread_kernel_state)
Lsp1_irq_str:
.asciz "IRQ exception taken while SP1 selected"
.text
.align 2
fleh_fiq_sp1:
mov x1, x0
adr x0, Lsp1_fiq_str
b EXT(panic_with_thread_kernel_state)
Lsp1_fiq_str:
.asciz "FIQ exception taken while SP1 selected"
.text
.align 2
fleh_serror_sp1:
mov x1, x0
adr x0, Lsp1_serror_str
b EXT(panic_with_thread_kernel_state)
Lsp1_serror_str:
.asciz "Asynchronous exception taken while SP1 selected"
.text
.align 2
exception_return_dispatch:
ldr w0, [x21, SS64_CPSR]
tst w0, PSR64_MODE_EL_MASK
b.ne EXT(return_to_kernel) // return to kernel if M[3:2] > 0
b return_to_user
.text
.align 2
.global EXT(return_to_kernel)
LEXT(return_to_kernel)
tbnz w0, #DAIF_IRQF_SHIFT, exception_return // Skip AST check if IRQ disabled
mrs x3, TPIDR_EL1 // Load thread pointer
ldr w1, [x3, ACT_PREEMPT_CNT] // Load preemption count
msr DAIFSet, #DAIFSC_ALL // Disable exceptions
cbnz x1, exception_return_unint_tpidr_x3 // If preemption disabled, skip AST check
ldr x1, [x3, ACT_CPUDATAP] // Get current CPU data pointer
ldr x2, [x1, CPU_PENDING_AST] // Get ASTs
tst x2, AST_URGENT // If no urgent ASTs, skip ast_taken
b.eq exception_return_unint_tpidr_x3
mov sp, x21 // Switch to thread stack for preemption
PUSH_FRAME
bl EXT(ast_taken_kernel) // Handle AST_URGENT
POP_FRAME
b exception_return
.text
.globl EXT(thread_bootstrap_return)
LEXT(thread_bootstrap_return)
#if CONFIG_DTRACE
bl EXT(dtrace_thread_bootstrap)
#endif
b EXT(arm64_thread_exception_return)
.text
.globl EXT(arm64_thread_exception_return)
LEXT(arm64_thread_exception_return)
mrs x0, TPIDR_EL1
add x21, x0, ACT_CONTEXT
ldr x21, [x21]
mov x28, xzr
//
// Fall Through to return_to_user from arm64_thread_exception_return.
// Note that if we move return_to_user or insert a new routine
// below arm64_thread_exception_return, the latter will need to change.
//
.text
/* x21 is always the machine context pointer when we get here
* x28 is a bit indicating whether or not we should check if pc is in pfz */
return_to_user:
check_user_asts:
mrs x3, TPIDR_EL1 // Load thread pointer
movn w2, #0
str w2, [x3, TH_IOTIER_OVERRIDE] // Reset IO tier override to -1 before returning to user
#if MACH_ASSERT
ldr w0, [x3, TH_RWLOCK_CNT]
cbnz w0, rwlock_count_notzero // Detect unbalanced RW lock/unlock
ldr w0, [x3, ACT_PREEMPT_CNT]
cbnz w0, preempt_count_notzero // Detect unbalanced enable/disable preemption
#endif
ldr w0, [x3, TH_TMP_ALLOC_CNT]
cbnz w0, tmp_alloc_count_nozero // Detect KHEAP_TEMP leaks
msr DAIFSet, #DAIFSC_ALL // Disable exceptions
ldr x4, [x3, ACT_CPUDATAP] // Get current CPU data pointer
ldr x0, [x4, CPU_PENDING_AST] // Get ASTs
cbz x0, no_asts // If no asts, skip ahead
cbz x28, user_take_ast // If we don't need to check PFZ, just handle asts
/* At this point, we have ASTs and we need to check whether we are running in the
* preemption free zone (PFZ) or not. No ASTs are handled if we are running in
* the PFZ since we don't want to handle getting a signal or getting suspended
* while holding a spinlock in userspace.
*
* If userspace was in the PFZ, we know (via coordination with the PFZ code
* in commpage_asm.s) that it will not be using x15 and it is therefore safe
* to use it to indicate to userspace to come back to take a delayed
* preemption, at which point the ASTs will be handled. */
mov x28, xzr // Clear the "check PFZ" bit so that we don't do this again
mov x19, x0 // Save x0 since it will be clobbered by commpage_is_in_pfz64
ldr x0, [x21, SS64_PC] // Load pc from machine state
bl EXT(commpage_is_in_pfz64) // pc in pfz?
cbz x0, restore_and_check_ast // No, deal with other asts
mov x0, #1
str x0, [x21, SS64_X15] // Mark x15 for userspace to take delayed preemption
mov x0, x19 // restore x0 to asts
b no_asts // pretend we have no asts
restore_and_check_ast:
mov x0, x19 // restore x0
b user_take_ast // Service pending asts
no_asts:
#if !CONFIG_SKIP_PRECISE_USER_KERNEL_TIME || HAS_FAST_CNTVCT
mov x19, x3 // Preserve thread pointer across function call
PUSH_FRAME
bl EXT(timer_state_event_kernel_to_user)
POP_FRAME
mov x3, x19
#endif /* !CONFIG_SKIP_PRECISE_USER_KERNEL_TIME || HAS_FAST_CNTVCT */
#if (CONFIG_KERNEL_INTEGRITY && KERNEL_INTEGRITY_WT)
/* Watchtower
*
* Here we attempt to enable NEON access for EL0. If the last entry into the
* kernel from user-space was due to an IRQ, the monitor will have disabled
* NEON for EL0 _and_ access to CPACR_EL1 from EL1 (1). This forces xnu to
* check in with the monitor in order to reenable NEON for EL0 in exchange
* for routing IRQs through the monitor (2). This way the monitor will
* always 'own' either IRQs or EL0 NEON.
*
* If Watchtower is disabled or we did not enter the kernel through an IRQ
* (e.g. FIQ or syscall) this is a no-op, otherwise we will trap to EL3
* here.
*
* EL0 user ________ IRQ ______
* EL1 xnu \ ______________________ CPACR_EL1 __/
* EL3 monitor \_/ \___/
*
* (1) (2)
*/
mov x0, #(CPACR_FPEN_ENABLE)
msr CPACR_EL1, x0
#endif
/* Establish this thread's debug state as the live state on the selected CPU. */
ldr x4, [x3, ACT_CPUDATAP] // Get current CPU data pointer
ldr x1, [x4, CPU_USER_DEBUG] // Get Debug context
ldr x0, [x3, ACT_DEBUGDATA]
cmp x0, x1
beq L_skip_user_set_debug_state // If active CPU debug state does not match thread debug state, apply thread state
#if defined(APPLELIGHTNING)
/* rdar://53177964 ([Cebu Errata SW WA][v8Debug] MDR NEX L3 clock turns OFF during restoreCheckpoint due to SWStep getting masked) */
ARM64_IS_PCORE x12 // if we're not a pCORE, also do nothing
cbz x12, 1f
mrs x12, HID1 // if any debug session ever existed, set forceNexL3ClkOn
orr x12, x12, ARM64_REG_HID1_forceNexL3ClkOn
msr HID1, x12
1:
#endif
PUSH_FRAME
bl EXT(arm_debug_set) // Establish thread debug state in live regs
POP_FRAME
mrs x3, TPIDR_EL1 // Reload thread pointer
L_skip_user_set_debug_state:
b exception_return_unint_tpidr_x3
//
// Fall through from return_to_user to exception_return.
// Note that if we move exception_return or add a new routine below
// return_to_user, the latter will have to change.
//
exception_return:
msr DAIFSet, #DAIFSC_ALL // Disable exceptions
exception_return_unint:
mrs x3, TPIDR_EL1 // Load thread pointer
exception_return_unint_tpidr_x3:
mov sp, x21 // Reload the pcb pointer
exception_return_unint_tpidr_x3_dont_trash_x18:
#if __ARM_KERNEL_PROTECT__
/*
* If we are going to eret to userspace, we must return through the EL0
* eret mapping.
*/
ldr w1, [sp, SS64_CPSR] // Load CPSR
tbnz w1, PSR64_MODE_EL_SHIFT, Lskip_el0_eret_mapping // Skip if returning to EL1
/* We need to switch to the EL0 mapping of this code to eret to EL0. */
adrp x0, EXT(ExceptionVectorsBase)@page // Load vector base
adrp x1, Lexception_return_restore_registers@page // Load target PC
add x1, x1, Lexception_return_restore_registers@pageoff
MOV64 x2, ARM_KERNEL_PROTECT_EXCEPTION_START // Load EL0 vector address
sub x1, x1, x0 // Calculate delta
add x0, x2, x1 // Convert KVA to EL0 vector address
br x0
Lskip_el0_eret_mapping:
#endif /* __ARM_KERNEL_PROTECT__ */
Lexception_return_restore_registers:
mov x0, sp // x0 = &pcb
// Loads authed $x0->ss_64.pc into x1 and $x0->ss_64.cpsr into w2
AUTH_THREAD_STATE_IN_X0 x20, x21, x22, x23, x24, el0_state_allowed=1
/* Restore special register state */
ldr w3, [sp, NS64_FPSR]
ldr w4, [sp, NS64_FPCR]
msr ELR_EL1, x1 // Load the return address into ELR
msr SPSR_EL1, x2 // Load the return CPSR into SPSR
msr FPSR, x3
mrs x5, FPCR
CMSR FPCR, x5, x4, 1
1:
/* Restore arm_neon_saved_state64 */
ldp q0, q1, [x0, NS64_Q0]
ldp q2, q3, [x0, NS64_Q2]
ldp q4, q5, [x0, NS64_Q4]
ldp q6, q7, [x0, NS64_Q6]
ldp q8, q9, [x0, NS64_Q8]
ldp q10, q11, [x0, NS64_Q10]
ldp q12, q13, [x0, NS64_Q12]
ldp q14, q15, [x0, NS64_Q14]
ldp q16, q17, [x0, NS64_Q16]
ldp q18, q19, [x0, NS64_Q18]
ldp q20, q21, [x0, NS64_Q20]
ldp q22, q23, [x0, NS64_Q22]
ldp q24, q25, [x0, NS64_Q24]
ldp q26, q27, [x0, NS64_Q26]
ldp q28, q29, [x0, NS64_Q28]
ldp q30, q31, [x0, NS64_Q30]
/* Restore arm_saved_state64 */
// Skip x0, x1 - we're using them
ldp x2, x3, [x0, SS64_X2]
ldp x4, x5, [x0, SS64_X4]
ldp x6, x7, [x0, SS64_X6]
ldp x8, x9, [x0, SS64_X8]
ldp x10, x11, [x0, SS64_X10]
ldp x12, x13, [x0, SS64_X12]
ldp x14, x15, [x0, SS64_X14]
// Skip x16, x17 - already loaded + authed by AUTH_THREAD_STATE_IN_X0
ldp x18, x19, [x0, SS64_X18]
ldp x20, x21, [x0, SS64_X20]
ldp x22, x23, [x0, SS64_X22]
ldp x24, x25, [x0, SS64_X24]
ldp x26, x27, [x0, SS64_X26]
ldr x28, [x0, SS64_X28]
ldr fp, [x0, SS64_FP]
// Skip lr - already loaded + authed by AUTH_THREAD_STATE_IN_X0
// Restore stack pointer and our last two GPRs
ldr x1, [x0, SS64_SP]
mov sp, x1
#if __ARM_KERNEL_PROTECT__
ldr w18, [x0, SS64_CPSR] // Stash CPSR
#endif /* __ARM_KERNEL_PROTECT__ */
ldp x0, x1, [x0, SS64_X0] // Restore the GPRs
#if __ARM_KERNEL_PROTECT__
/* If we are going to eret to userspace, we must unmap the kernel. */
tbnz w18, PSR64_MODE_EL_SHIFT, Lskip_ttbr1_switch
/* Update TCR to unmap the kernel. */
MOV64 x18, TCR_EL1_USER
msr TCR_EL1, x18
/*
* On Apple CPUs, TCR writes and TTBR writes should be ordered relative to
* each other due to the microarchitecture.
*/
#if !defined(APPLE_ARM64_ARCH_FAMILY)
isb sy
#endif
/* Switch to the user ASID (low bit clear) for the task. */
mrs x18, TTBR0_EL1
bic x18, x18, #(1 << TTBR_ASID_SHIFT)
msr TTBR0_EL1, x18
mov x18, #0
/* We don't need an ISB here, as the eret is synchronizing. */
Lskip_ttbr1_switch:
#endif /* __ARM_KERNEL_PROTECT__ */
ERET_CONTEXT_SYNCHRONIZING
user_take_ast:
PUSH_FRAME
bl EXT(ast_taken_user) // Handle all ASTs, may return via continuation
POP_FRAME
b check_user_asts // Now try again
.text
.align 2
preempt_underflow:
mrs x0, TPIDR_EL1
str x0, [sp, #-16]! // We'll print thread pointer
adr x0, L_underflow_str // Format string
CALL_EXTERN panic // Game over
L_underflow_str:
.asciz "Preemption count negative on thread %p"
.align 2
#if MACH_ASSERT
.text
.align 2
rwlock_count_notzero:
mrs x0, TPIDR_EL1
str x0, [sp, #-16]! // We'll print thread pointer
ldr w0, [x0, TH_RWLOCK_CNT]
str w0, [sp, #8]
adr x0, L_rwlock_count_notzero_str // Format string
CALL_EXTERN panic // Game over
L_rwlock_count_notzero_str:
.asciz "RW lock count not 0 on thread %p (%u)"
.text
.align 2
preempt_count_notzero:
mrs x0, TPIDR_EL1
str x0, [sp, #-16]! // We'll print thread pointer
ldr w0, [x0, ACT_PREEMPT_CNT]
str w0, [sp, #8]
adr x0, L_preempt_count_notzero_str // Format string
CALL_EXTERN panic // Game over
L_preempt_count_notzero_str:
.asciz "preemption count not 0 on thread %p (%u)"
#endif /* MACH_ASSERT */
.text
.align 2
tmp_alloc_count_nozero:
mrs x0, TPIDR_EL1
CALL_EXTERN kheap_temp_leak_panic
#if __ARM_KERNEL_PROTECT__
/*
* This symbol denotes the end of the exception vector/eret range; we page
* align it so that we can avoid mapping other text in the EL0 exception
* vector mapping.
*/
.text
.align 14
.globl EXT(ExceptionVectorsEnd)
LEXT(ExceptionVectorsEnd)
#endif /* __ARM_KERNEL_PROTECT__ */
#if XNU_MONITOR
/*
* Functions to preflight the fleh handlers when the PPL has taken an exception;
* mostly concerned with setting up state for the normal fleh code.
*/
fleh_synchronous_from_ppl:
/* Save x0. */
mov x15, x0
/* Grab the ESR. */
mrs x1, ESR_EL1 // Get the exception syndrome
/* If the stack pointer is corrupt, it will manifest either as a data abort
* (syndrome 0x25) or a misaligned pointer (syndrome 0x26). We can check
* these quickly by testing bit 5 of the exception class.
*/
tbz x1, #(5 + ESR_EC_SHIFT), Lvalid_ppl_stack
mrs x0, SP_EL0 // Get SP_EL0
/* Perform high level checks for stack corruption. */
and x1, x1, #ESR_EC_MASK // Mask the exception class
mov x2, #(ESR_EC_SP_ALIGN << ESR_EC_SHIFT)
cmp x1, x2 // If we have a stack alignment exception
b.eq Lcorrupt_ppl_stack // ...the stack is definitely corrupted
mov x2, #(ESR_EC_DABORT_EL1 << ESR_EC_SHIFT)
cmp x1, x2 // If we have a data abort, we need to
b.ne Lvalid_ppl_stack // ...validate the stack pointer
Ltest_pstack:
/* Bounds check the PPL stack. */
adrp x10, EXT(pmap_stacks_start)@page
ldr x10, [x10, #EXT(pmap_stacks_start)@pageoff]
adrp x11, EXT(pmap_stacks_end)@page
ldr x11, [x11, #EXT(pmap_stacks_end)@pageoff]
cmp x0, x10
b.lo Lcorrupt_ppl_stack
cmp x0, x11
b.hi Lcorrupt_ppl_stack
Lvalid_ppl_stack:
/* Restore x0. */
mov x0, x15
/* Switch back to the kernel stack. */
msr SPSel, #0
GET_PMAP_CPU_DATA x5, x6, x7
ldr x6, [x5, PMAP_CPU_DATA_KERN_SAVED_SP]
mov sp, x6
/* Hand off to the synch handler. */
b EXT(fleh_synchronous)
Lcorrupt_ppl_stack:
/* Restore x0. */
mov x0, x15
/* Hand off to the invalid stack handler. */
b fleh_invalid_stack
fleh_fiq_from_ppl:
SWITCH_TO_INT_STACK
b EXT(fleh_fiq)
fleh_irq_from_ppl:
SWITCH_TO_INT_STACK
b EXT(fleh_irq)
fleh_serror_from_ppl:
GET_PMAP_CPU_DATA x5, x6, x7
ldr x6, [x5, PMAP_CPU_DATA_KERN_SAVED_SP]
mov sp, x6
b EXT(fleh_serror)
// x15: ppl call number
// w10: ppl_state
// x20: gxf_enter caller's DAIF
.globl EXT(ppl_trampoline_start)
LEXT(ppl_trampoline_start)
#error "XPRR configuration error"
cmp x14, x21
b.ne Lppl_fail_dispatch
/* Verify the request ID. */
cmp x15, PMAP_COUNT
b.hs Lppl_fail_dispatch
GET_PMAP_CPU_DATA x12, x13, x14
/* Mark this CPU as being in the PPL. */
ldr w9, [x12, PMAP_CPU_DATA_PPL_STATE]
cmp w9, #PPL_STATE_KERNEL
b.eq Lppl_mark_cpu_as_dispatching
/* Check to see if we are trying to trap from within the PPL. */
cmp w9, #PPL_STATE_DISPATCH
b.eq Lppl_fail_dispatch_ppl
/* Ensure that we are returning from an exception. */
cmp w9, #PPL_STATE_EXCEPTION
b.ne Lppl_fail_dispatch
// where is w10 set?
// in CHECK_EXCEPTION_RETURN_DISPATCH_PPL
cmp w10, #PPL_STATE_EXCEPTION
b.ne Lppl_fail_dispatch
/* This is an exception return; set the CPU to the dispatching state. */
mov w9, #PPL_STATE_DISPATCH
str w9, [x12, PMAP_CPU_DATA_PPL_STATE]
/* Find the save area, and return to the saved PPL context. */
ldr x0, [x12, PMAP_CPU_DATA_SAVE_AREA]
mov sp, x0
b EXT(return_to_ppl)
Lppl_mark_cpu_as_dispatching:
cmp w10, #PPL_STATE_KERNEL
b.ne Lppl_fail_dispatch
/* Mark the CPU as dispatching. */
mov w13, #PPL_STATE_DISPATCH
str w13, [x12, PMAP_CPU_DATA_PPL_STATE]
/* Switch to the regular PPL stack. */
// TODO: switch to PPL_STACK earlier in gxf_ppl_entry_handler
ldr x9, [x12, PMAP_CPU_DATA_PPL_STACK]
// SP0 is thread stack here
mov x21, sp
// SP0 is now PPL stack
mov sp, x9
/* Save the old stack pointer off in case we need it. */
str x21, [x12, PMAP_CPU_DATA_KERN_SAVED_SP]
/* Get the handler for the request */
adrp x9, EXT(ppl_handler_table)@page
add x9, x9, EXT(ppl_handler_table)@pageoff
add x9, x9, x15, lsl #3
ldr x10, [x9]
/* Branch to the code that will invoke the PPL request. */
b EXT(ppl_dispatch)
Lppl_fail_dispatch_ppl:
/* Switch back to the kernel stack. */
ldr x10, [x12, PMAP_CPU_DATA_KERN_SAVED_SP]
mov sp, x10
Lppl_fail_dispatch:
/* Indicate that we failed. */
mov x15, #PPL_EXIT_BAD_CALL
/* Move the DAIF bits into the expected register. */
mov x10, x20
/* Return to kernel mode. */
b ppl_return_to_kernel_mode
Lppl_dispatch_exit:
/* Indicate that we are cleanly exiting the PPL. */
mov x15, #PPL_EXIT_DISPATCH
/* Switch back to the original (kernel thread) stack. */
mov sp, x21
/* Move the saved DAIF bits. */
mov x10, x20
/* Clear the old stack pointer. */
str xzr, [x12, PMAP_CPU_DATA_KERN_SAVED_SP]
/*
* Mark the CPU as no longer being in the PPL. We spin if our state
* machine is broken.
*/
ldr w9, [x12, PMAP_CPU_DATA_PPL_STATE]
cmp w9, #PPL_STATE_DISPATCH
b.ne .
mov w9, #PPL_STATE_KERNEL
str w9, [x12, PMAP_CPU_DATA_PPL_STATE]
/* Return to the kernel. */
b ppl_return_to_kernel_mode
.text
ppl_exit:
/*
* If we are dealing with an exception, hand off to the first level
* exception handler.
*/
cmp x15, #PPL_EXIT_EXCEPTION
b.eq Ljump_to_fleh_handler
/* Restore the original AIF state. */
REENABLE_DAIF x10
/* If this was a panic call from the PPL, reinvoke panic. */
cmp x15, #PPL_EXIT_PANIC_CALL
b.eq Ljump_to_panic_trap_to_debugger
/* Load the preemption count. */
mrs x10, TPIDR_EL1
ldr w12, [x10, ACT_PREEMPT_CNT]
/* Detect underflow */
cbnz w12, Lno_preempt_underflow
b preempt_underflow
Lno_preempt_underflow:
/* Lower the preemption count. */
sub w12, w12, #1
str w12, [x10, ACT_PREEMPT_CNT]
/* Skip ASTs if the peemption count is not zero. */
cbnz x12, Lppl_skip_ast_taken
/* Skip the AST check if interrupts are disabled. */
mrs x1, DAIF
tst x1, #DAIF_IRQF
b.ne Lppl_skip_ast_taken
/* Disable interrupts. */
msr DAIFSet, #(DAIFSC_IRQF | DAIFSC_FIQF)
/* IF there is no urgent AST, skip the AST. */
ldr x12, [x10, ACT_CPUDATAP]
ldr x14, [x12, CPU_PENDING_AST]
tst x14, AST_URGENT
b.eq Lppl_defer_ast_taken
/* Stash our return value and return reason. */
mov x20, x0
mov x21, x15
/* Handle the AST. */
bl EXT(ast_taken_kernel)
/* Restore the return value and the return reason. */
mov x15, x21
mov x0, x20
Lppl_defer_ast_taken:
/* Reenable interrupts. */
msr DAIFClr, #(DAIFSC_IRQF | DAIFSC_FIQF)
Lppl_skip_ast_taken:
/* Pop the stack frame. */
ldp x29, x30, [sp, #0x10]
ldp x20, x21, [sp], #0x20
/* Check to see if this was a bad request. */
cmp x15, #PPL_EXIT_BAD_CALL
b.eq Lppl_bad_call
/* Return. */
ARM64_STACK_EPILOG
.align 2
Ljump_to_fleh_handler:
br x25
.align 2
Ljump_to_panic_trap_to_debugger:
b EXT(panic_trap_to_debugger)
Lppl_bad_call:
/* Panic. */
adrp x0, Lppl_bad_call_panic_str@page
add x0, x0, Lppl_bad_call_panic_str@pageoff
b EXT(panic)
.text
.align 2
.globl EXT(ppl_dispatch)
LEXT(ppl_dispatch)
/*
* Save a couple of important registers (implementation detail; x12 has
* the PPL per-CPU data address; x13 is not actually interesting).
*/
stp x12, x13, [sp, #-0x10]!
/* Restore the original AIF state. */
REENABLE_DAIF x20
/*
* Note that if the method is NULL, we'll blow up with a prefetch abort,
* but the exception vectors will deal with this properly.
*/
/* Invoke the PPL method. */
#ifdef HAS_APPLE_PAC
blraa x10, x9
#else
blr x10
#endif
/* Disable AIF. */
msr DAIFSet, #(DAIFSC_ASYNCF | DAIFSC_IRQF | DAIFSC_FIQF)
/* Restore those important registers. */
ldp x12, x13, [sp], #0x10
/* Mark this as a regular return, and hand off to the return path. */
b Lppl_dispatch_exit
.text
.align 2
.globl EXT(ppl_bootstrap_dispatch)
LEXT(ppl_bootstrap_dispatch)
/* Verify the PPL request. */
cmp x15, PMAP_COUNT
b.hs Lppl_fail_bootstrap_dispatch
/* Get the requested PPL routine. */
adrp x9, EXT(ppl_handler_table)@page
add x9, x9, EXT(ppl_handler_table)@pageoff
add x9, x9, x15, lsl #3
ldr x10, [x9]
/* Invoke the requested PPL routine. */
#ifdef HAS_APPLE_PAC
blraa x10, x9
#else
blr x10
#endif
/* Stash off the return value */
mov x20, x0
/* Drop the preemption count */
bl EXT(_enable_preemption)
mov x0, x20
/* Pop the stack frame. */
ldp x29, x30, [sp, #0x10]
ldp x20, x21, [sp], #0x20
#if __has_feature(ptrauth_returns)
retab
#else
ret
#endif
Lppl_fail_bootstrap_dispatch:
/* Pop our stack frame and panic. */
ldp x29, x30, [sp, #0x10]
ldp x20, x21, [sp], #0x20
#if __has_feature(ptrauth_returns)
autibsp
#endif
adrp x0, Lppl_bad_call_panic_str@page
add x0, x0, Lppl_bad_call_panic_str@pageoff
b EXT(panic)
.text
.align 2
.globl EXT(ml_panic_trap_to_debugger)
LEXT(ml_panic_trap_to_debugger)
mrs x10, DAIF
msr DAIFSet, #(DAIFSC_ASYNCF | DAIFSC_IRQF | DAIFSC_FIQF)
adrp x12, EXT(pmap_ppl_locked_down)@page
ldr w12, [x12, #EXT(pmap_ppl_locked_down)@pageoff]
cbz w12, Lnot_in_ppl_dispatch
LOAD_PMAP_CPU_DATA x11, x12, x13
ldr w12, [x11, PMAP_CPU_DATA_PPL_STATE]
cmp w12, #PPL_STATE_DISPATCH
b.ne Lnot_in_ppl_dispatch
/* Indicate (for the PPL->kernel transition) that we are panicking. */
mov x15, #PPL_EXIT_PANIC_CALL
/* Restore the old stack pointer as we can't push onto PPL stack after we exit PPL */
ldr x12, [x11, PMAP_CPU_DATA_KERN_SAVED_SP]
mov sp, x12
mrs x10, DAIF
mov w13, #PPL_STATE_PANIC
str w13, [x11, PMAP_CPU_DATA_PPL_STATE]
/* Now we are ready to exit the PPL. */
b ppl_return_to_kernel_mode
Lnot_in_ppl_dispatch:
REENABLE_DAIF x10
ret
.data
Lppl_bad_call_panic_str:
.asciz "ppl_dispatch: failed due to bad arguments/state"
#else /* XNU_MONITOR */
.text
.align 2
.globl EXT(ml_panic_trap_to_debugger)
LEXT(ml_panic_trap_to_debugger)
ret
#endif /* XNU_MONITOR */
/* ARM64_TODO Is globals_asm.h needed? */
//#include "globals_asm.h"
/* vim: set ts=4: */