darling-xnu/osfmk/arm64/loose_ends.c
2023-05-16 21:41:14 -07:00

842 lines
19 KiB
C

/*
* Copyright (c) 2007-2016 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <mach_assert.h>
#include <mach/vm_types.h>
#include <mach/mach_time.h>
#include <kern/timer.h>
#include <kern/clock.h>
#include <kern/machine.h>
#include <mach/machine.h>
#include <mach/machine/vm_param.h>
#include <mach_kdp.h>
#include <kdp/kdp_udp.h>
#if !MACH_KDP
#include <kdp/kdp_callout.h>
#endif /* !MACH_KDP */
#include <arm/cpu_data.h>
#include <arm/cpu_data_internal.h>
#include <arm/caches_internal.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <vm/pmap.h>
#include <arm/misc_protos.h>
#include <sys/errno.h>
#include <libkern/section_keywords.h>
#define INT_SIZE (BYTE_SIZE * sizeof (int))
#define BCOPY_PHYS_SRC_IS_PHYS(flags) (((flags) & cppvPsrc) != 0)
#define BCOPY_PHYS_DST_IS_PHYS(flags) (((flags) & cppvPsnk) != 0)
#define BCOPY_PHYS_SRC_IS_USER(flags) (((flags) & (cppvPsrc | cppvKmap)) == 0)
#define BCOPY_PHYS_DST_IS_USER(flags) (((flags) & (cppvPsnk | cppvKmap)) == 0)
static kern_return_t
bcopy_phys_internal(addr64_t src, addr64_t dst, vm_size_t bytes, int flags)
{
unsigned int src_index;
unsigned int dst_index;
vm_offset_t src_offset;
vm_offset_t dst_offset;
unsigned int wimg_bits_src, wimg_bits_dst;
unsigned int cpu_num = 0;
ppnum_t pn_src;
ppnum_t pn_dst;
addr64_t end __assert_only;
kern_return_t res = KERN_SUCCESS;
if (!BCOPY_PHYS_SRC_IS_USER(flags)) {
assert(!__improbable(os_add_overflow(src, bytes, &end)));
}
if (!BCOPY_PHYS_DST_IS_USER(flags)) {
assert(!__improbable(os_add_overflow(dst, bytes, &end)));
}
while ((bytes > 0) && (res == KERN_SUCCESS)) {
src_offset = src & PAGE_MASK;
dst_offset = dst & PAGE_MASK;
boolean_t use_copy_window_src = FALSE;
boolean_t use_copy_window_dst = FALSE;
vm_size_t count = bytes;
vm_size_t count2 = bytes;
if (BCOPY_PHYS_SRC_IS_PHYS(flags)) {
use_copy_window_src = !pmap_valid_address(src);
pn_src = (ppnum_t)(src >> PAGE_SHIFT);
#if !defined(__ARM_COHERENT_IO__) && !__ARM_PTE_PHYSMAP__
count = PAGE_SIZE - src_offset;
wimg_bits_src = pmap_cache_attributes(pn_src);
if ((wimg_bits_src & VM_WIMG_MASK) != VM_WIMG_DEFAULT) {
use_copy_window_src = TRUE;
}
#else
if (use_copy_window_src) {
wimg_bits_src = pmap_cache_attributes(pn_src);
count = PAGE_SIZE - src_offset;
}
#endif
}
if (BCOPY_PHYS_DST_IS_PHYS(flags)) {
// write preflighting needed for things like dtrace which may write static read-only mappings
use_copy_window_dst = (!pmap_valid_address(dst) || !mmu_kvtop_wpreflight(phystokv((pmap_paddr_t)dst)));
pn_dst = (ppnum_t)(dst >> PAGE_SHIFT);
#if !defined(__ARM_COHERENT_IO__) && !__ARM_PTE_PHYSMAP__
count2 = PAGE_SIZE - dst_offset;
wimg_bits_dst = pmap_cache_attributes(pn_dst);
if ((wimg_bits_dst & VM_WIMG_MASK) != VM_WIMG_DEFAULT) {
use_copy_window_dst = TRUE;
}
#else
if (use_copy_window_dst) {
wimg_bits_dst = pmap_cache_attributes(pn_dst);
count2 = PAGE_SIZE - dst_offset;
}
#endif
}
char *tmp_src;
char *tmp_dst;
if (use_copy_window_src || use_copy_window_dst) {
mp_disable_preemption();
cpu_num = cpu_number();
}
if (use_copy_window_src) {
src_index = pmap_map_cpu_windows_copy(pn_src, VM_PROT_READ, wimg_bits_src);
tmp_src = (char*)(pmap_cpu_windows_copy_addr(cpu_num, src_index) + src_offset);
} else if (BCOPY_PHYS_SRC_IS_PHYS(flags)) {
tmp_src = (char*)phystokv_range((pmap_paddr_t)src, &count);
} else {
tmp_src = (char*)src;
}
if (use_copy_window_dst) {
dst_index = pmap_map_cpu_windows_copy(pn_dst, VM_PROT_READ | VM_PROT_WRITE, wimg_bits_dst);
tmp_dst = (char*)(pmap_cpu_windows_copy_addr(cpu_num, dst_index) + dst_offset);
} else if (BCOPY_PHYS_DST_IS_PHYS(flags)) {
tmp_dst = (char*)phystokv_range((pmap_paddr_t)dst, &count2);
} else {
tmp_dst = (char*)dst;
}
if (count > count2) {
count = count2;
}
if (count > bytes) {
count = bytes;
}
if (BCOPY_PHYS_SRC_IS_USER(flags)) {
res = copyin((user_addr_t)src, tmp_dst, count);
} else if (BCOPY_PHYS_DST_IS_USER(flags)) {
res = copyout(tmp_src, (user_addr_t)dst, count);
} else {
bcopy(tmp_src, tmp_dst, count);
}
if (use_copy_window_src) {
pmap_unmap_cpu_windows_copy(src_index);
}
if (use_copy_window_dst) {
pmap_unmap_cpu_windows_copy(dst_index);
}
if (use_copy_window_src || use_copy_window_dst) {
mp_enable_preemption();
}
src += count;
dst += count;
bytes -= count;
}
return res;
}
void
bcopy_phys(addr64_t src, addr64_t dst, vm_size_t bytes)
{
bcopy_phys_internal(src, dst, bytes, cppvPsrc | cppvPsnk);
}
void
bzero_phys_nc(addr64_t src64, vm_size_t bytes)
{
bzero_phys(src64, bytes);
}
extern void *secure_memset(void *, int, size_t);
/* Zero bytes starting at a physical address */
void
bzero_phys(addr64_t src, vm_size_t bytes)
{
unsigned int wimg_bits;
unsigned int cpu_num = cpu_number();
ppnum_t pn;
addr64_t end __assert_only;
assert(!__improbable(os_add_overflow(src, bytes, &end)));
vm_offset_t offset = src & PAGE_MASK;
while (bytes > 0) {
vm_size_t count = bytes;
boolean_t use_copy_window = !pmap_valid_address(src);
pn = (ppnum_t)(src >> PAGE_SHIFT);
wimg_bits = pmap_cache_attributes(pn);
#if !defined(__ARM_COHERENT_IO__) && !__ARM_PTE_PHYSMAP__
count = PAGE_SIZE - offset;
if ((wimg_bits & VM_WIMG_MASK) != VM_WIMG_DEFAULT) {
use_copy_window = TRUE;
}
#else
if (use_copy_window) {
count = PAGE_SIZE - offset;
}
#endif
char *buf;
unsigned int index;
if (use_copy_window) {
mp_disable_preemption();
cpu_num = cpu_number();
index = pmap_map_cpu_windows_copy(pn, VM_PROT_READ | VM_PROT_WRITE, wimg_bits);
buf = (char *)(pmap_cpu_windows_copy_addr(cpu_num, index) + offset);
} else {
buf = (char *)phystokv_range((pmap_paddr_t)src, &count);
}
if (count > bytes) {
count = bytes;
}
switch (wimg_bits & VM_WIMG_MASK) {
case VM_WIMG_DEFAULT:
case VM_WIMG_WCOMB:
case VM_WIMG_INNERWBACK:
case VM_WIMG_WTHRU:
bzero(buf, count);
break;
default:
/* 'dc zva' performed by bzero is not safe for device memory */
secure_memset((void*)buf, 0, count);
}
if (use_copy_window) {
pmap_unmap_cpu_windows_copy(index);
mp_enable_preemption();
}
src += count;
bytes -= count;
offset = 0;
}
}
/*
* Read data from a physical address.
*/
static unsigned long long
ml_phys_read_data(pmap_paddr_t paddr, int size)
{
unsigned int index;
unsigned int wimg_bits;
ppnum_t pn = (ppnum_t)(paddr >> PAGE_SHIFT);
ppnum_t pn_end = (ppnum_t)((paddr + size - 1) >> PAGE_SHIFT);
unsigned long long result = 0;
vm_offset_t copywindow_vaddr = 0;
unsigned char s1;
unsigned short s2;
unsigned int s4;
if (__improbable(pn_end != pn)) {
panic("%s: paddr 0x%llx spans a page boundary", __func__, (uint64_t)paddr);
}
#if defined(__ARM_COHERENT_IO__) || __ARM_PTE_PHYSMAP__
if (pmap_valid_address(paddr)) {
switch (size) {
case 1:
s1 = *(volatile unsigned char *)phystokv(paddr);
result = s1;
break;
case 2:
s2 = *(volatile unsigned short *)phystokv(paddr);
result = s2;
break;
case 4:
s4 = *(volatile unsigned int *)phystokv(paddr);
result = s4;
break;
case 8:
result = *(volatile unsigned long long *)phystokv(paddr);
break;
default:
panic("Invalid size %d for ml_phys_read_data\n", size);
break;
}
return result;
}
#endif
mp_disable_preemption();
wimg_bits = pmap_cache_attributes(pn);
index = pmap_map_cpu_windows_copy(pn, VM_PROT_READ, wimg_bits);
copywindow_vaddr = pmap_cpu_windows_copy_addr(cpu_number(), index) | ((uint32_t)paddr & PAGE_MASK);
switch (size) {
case 1:
s1 = *(volatile unsigned char *)copywindow_vaddr;
result = s1;
break;
case 2:
s2 = *(volatile unsigned short *)copywindow_vaddr;
result = s2;
break;
case 4:
s4 = *(volatile unsigned int *)copywindow_vaddr;
result = s4;
break;
case 8:
result = *(volatile unsigned long long*)copywindow_vaddr;
break;
default:
panic("Invalid size %d for ml_phys_read_data\n", size);
break;
}
pmap_unmap_cpu_windows_copy(index);
mp_enable_preemption();
return result;
}
unsigned int
ml_phys_read( vm_offset_t paddr)
{
return (unsigned int)ml_phys_read_data((pmap_paddr_t)paddr, 4);
}
unsigned int
ml_phys_read_word(vm_offset_t paddr)
{
return (unsigned int)ml_phys_read_data((pmap_paddr_t)paddr, 4);
}
unsigned int
ml_phys_read_64(addr64_t paddr64)
{
return (unsigned int)ml_phys_read_data((pmap_paddr_t)paddr64, 4);
}
unsigned int
ml_phys_read_word_64(addr64_t paddr64)
{
return (unsigned int)ml_phys_read_data((pmap_paddr_t)paddr64, 4);
}
unsigned int
ml_phys_read_half(vm_offset_t paddr)
{
return (unsigned int)ml_phys_read_data((pmap_paddr_t)paddr, 2);
}
unsigned int
ml_phys_read_half_64(addr64_t paddr64)
{
return (unsigned int)ml_phys_read_data((pmap_paddr_t)paddr64, 2);
}
unsigned int
ml_phys_read_byte(vm_offset_t paddr)
{
return (unsigned int)ml_phys_read_data((pmap_paddr_t)paddr, 1);
}
unsigned int
ml_phys_read_byte_64(addr64_t paddr64)
{
return (unsigned int)ml_phys_read_data((pmap_paddr_t)paddr64, 1);
}
unsigned long long
ml_phys_read_double(vm_offset_t paddr)
{
return ml_phys_read_data((pmap_paddr_t)paddr, 8);
}
unsigned long long
ml_phys_read_double_64(addr64_t paddr64)
{
return ml_phys_read_data((pmap_paddr_t)paddr64, 8);
}
/*
* Write data to a physical address.
*/
static void
ml_phys_write_data(pmap_paddr_t paddr, unsigned long long data, int size)
{
unsigned int index;
unsigned int wimg_bits;
ppnum_t pn = (ppnum_t)(paddr >> PAGE_SHIFT);
ppnum_t pn_end = (ppnum_t)((paddr + size - 1) >> PAGE_SHIFT);
vm_offset_t copywindow_vaddr = 0;
if (__improbable(pn_end != pn)) {
panic("%s: paddr 0x%llx spans a page boundary", __func__, (uint64_t)paddr);
}
#if defined(__ARM_COHERENT_IO__) || __ARM_PTE_PHYSMAP__
if (pmap_valid_address(paddr)) {
switch (size) {
case 1:
*(volatile unsigned char *)phystokv(paddr) = (unsigned char)data;
return;
case 2:
*(volatile unsigned short *)phystokv(paddr) = (unsigned short)data;
return;
case 4:
*(volatile unsigned int *)phystokv(paddr) = (unsigned int)data;
return;
case 8:
*(volatile unsigned long long *)phystokv(paddr) = data;
return;
default:
panic("Invalid size %d for ml_phys_write_data\n", size);
}
}
#endif
mp_disable_preemption();
wimg_bits = pmap_cache_attributes(pn);
index = pmap_map_cpu_windows_copy(pn, VM_PROT_READ | VM_PROT_WRITE, wimg_bits);
copywindow_vaddr = pmap_cpu_windows_copy_addr(cpu_number(), index) | ((uint32_t)paddr & PAGE_MASK);
switch (size) {
case 1:
*(volatile unsigned char *)(copywindow_vaddr) =
(unsigned char)data;
break;
case 2:
*(volatile unsigned short *)(copywindow_vaddr) =
(unsigned short)data;
break;
case 4:
*(volatile unsigned int *)(copywindow_vaddr) =
(uint32_t)data;
break;
case 8:
*(volatile unsigned long long *)(copywindow_vaddr) =
(unsigned long long)data;
break;
default:
panic("Invalid size %d for ml_phys_write_data\n", size);
break;
}
pmap_unmap_cpu_windows_copy(index);
mp_enable_preemption();
}
void
ml_phys_write_byte(vm_offset_t paddr, unsigned int data)
{
ml_phys_write_data((pmap_paddr_t)paddr, data, 1);
}
void
ml_phys_write_byte_64(addr64_t paddr64, unsigned int data)
{
ml_phys_write_data((pmap_paddr_t)paddr64, data, 1);
}
void
ml_phys_write_half(vm_offset_t paddr, unsigned int data)
{
ml_phys_write_data((pmap_paddr_t)paddr, data, 2);
}
void
ml_phys_write_half_64(addr64_t paddr64, unsigned int data)
{
ml_phys_write_data((pmap_paddr_t)paddr64, data, 2);
}
void
ml_phys_write(vm_offset_t paddr, unsigned int data)
{
ml_phys_write_data((pmap_paddr_t)paddr, data, 4);
}
void
ml_phys_write_64(addr64_t paddr64, unsigned int data)
{
ml_phys_write_data((pmap_paddr_t)paddr64, data, 4);
}
void
ml_phys_write_word(vm_offset_t paddr, unsigned int data)
{
ml_phys_write_data((pmap_paddr_t)paddr, data, 4);
}
void
ml_phys_write_word_64(addr64_t paddr64, unsigned int data)
{
ml_phys_write_data((pmap_paddr_t)paddr64, data, 4);
}
void
ml_phys_write_double(vm_offset_t paddr, unsigned long long data)
{
ml_phys_write_data((pmap_paddr_t)paddr, data, 8);
}
void
ml_phys_write_double_64(addr64_t paddr64, unsigned long long data)
{
ml_phys_write_data((pmap_paddr_t)paddr64, data, 8);
}
/*
* Set indicated bit in bit string.
*/
void
setbit(int bitno, int *s)
{
s[bitno / INT_SIZE] |= 1U << (bitno % INT_SIZE);
}
/*
* Clear indicated bit in bit string.
*/
void
clrbit(int bitno, int *s)
{
s[bitno / INT_SIZE] &= ~(1U << (bitno % INT_SIZE));
}
/*
* Test if indicated bit is set in bit string.
*/
int
testbit(int bitno, int *s)
{
return s[bitno / INT_SIZE] & (1U << (bitno % INT_SIZE));
}
/*
* Find first bit set in bit string.
*/
int
ffsbit(int *s)
{
int offset;
for (offset = 0; !*s; offset += INT_SIZE, ++s) {
;
}
return offset + __builtin_ctz(*s);
}
int
ffs(unsigned int mask)
{
if (mask == 0) {
return 0;
}
/*
* NOTE: cannot use __builtin_ffs because it generates a call to
* 'ffs'
*/
return 1 + __builtin_ctz(mask);
}
int
ffsll(unsigned long long mask)
{
if (mask == 0) {
return 0;
}
/*
* NOTE: cannot use __builtin_ffsll because it generates a call to
* 'ffsll'
*/
return 1 + __builtin_ctzll(mask);
}
/*
* Find last bit set in bit string.
*/
int
fls(unsigned int mask)
{
if (mask == 0) {
return 0;
}
return (sizeof(mask) << 3) - __builtin_clz(mask);
}
int
flsll(unsigned long long mask)
{
if (mask == 0) {
return 0;
}
return (sizeof(mask) << 3) - __builtin_clzll(mask);
}
#undef bcmp
int
bcmp(
const void *pa,
const void *pb,
size_t len)
{
const char *a = (const char *) pa;
const char *b = (const char *) pb;
if (len == 0) {
return 0;
}
do{
if (*a++ != *b++) {
break;
}
} while (--len);
/*
* Check for the overflow case but continue to handle the non-overflow
* case the same way just in case someone is using the return value
* as more than zero/non-zero
*/
if ((len & 0xFFFFFFFF00000000ULL) && !(len & 0x00000000FFFFFFFFULL)) {
return 0xFFFFFFFFL;
} else {
return (int)len;
}
}
#undef memcmp
MARK_AS_HIBERNATE_TEXT
int
memcmp(const void *s1, const void *s2, size_t n)
{
if (n != 0) {
const unsigned char *p1 = s1, *p2 = s2;
do {
if (*p1++ != *p2++) {
return *--p1 - *--p2;
}
} while (--n != 0);
}
return 0;
}
kern_return_t
copypv(addr64_t source, addr64_t sink, unsigned int size, int which)
{
if ((which & (cppvPsrc | cppvPsnk)) == 0) { /* Make sure that only one is virtual */
panic("%s: no more than 1 parameter may be virtual", __func__);
}
kern_return_t res = bcopy_phys_internal(source, sink, size, which);
#ifndef __ARM_COHERENT_IO__
if (which & cppvFsrc) {
flush_dcache64(source, size, ((which & cppvPsrc) == cppvPsrc));
}
if (which & cppvFsnk) {
flush_dcache64(sink, size, ((which & cppvPsnk) == cppvPsnk));
}
#endif
return res;
}
#if MACH_ASSERT
extern int copyinframe(vm_address_t fp, char *frame, boolean_t is64bit);
/*
* Machine-dependent routine to fill in an array with up to callstack_max
* levels of return pc information.
*/
void
machine_callstack(
uintptr_t * buf,
vm_size_t callstack_max)
{
/* Captures the USER call stack */
uint32_t i = 0;
struct arm_saved_state *state = find_user_regs(current_thread());
if (!state) {
while (i < callstack_max) {
buf[i++] = 0;
}
} else {
if (is_saved_state64(state)) {
uint64_t frame[2];
buf[i++] = (uintptr_t)get_saved_state_pc(state);
frame[0] = get_saved_state_fp(state);
while (i < callstack_max && frame[0] != 0) {
if (copyinframe(frame[0], (void*) frame, TRUE)) {
break;
}
buf[i++] = (uintptr_t)frame[1];
}
} else {
uint32_t frame[2];
buf[i++] = (uintptr_t)get_saved_state_pc(state);
frame[0] = (uint32_t)get_saved_state_fp(state);
while (i < callstack_max && frame[0] != 0) {
if (copyinframe(frame[0], (void*) frame, FALSE)) {
break;
}
buf[i++] = (uintptr_t)frame[1];
}
}
while (i < callstack_max) {
buf[i++] = 0;
}
}
}
#endif /* MACH_ASSERT */
int
clr_be_bit(void)
{
panic("clr_be_bit");
return 0;
}
boolean_t
ml_probe_read(
__unused vm_offset_t paddr,
__unused unsigned int *val)
{
panic("ml_probe_read() unimplemented");
return 1;
}
boolean_t
ml_probe_read_64(
__unused addr64_t paddr,
__unused unsigned int *val)
{
panic("ml_probe_read_64() unimplemented");
return 1;
}
void
ml_thread_policy(
__unused thread_t thread,
__unused unsigned policy_id,
__unused unsigned policy_info)
{
// <rdar://problem/7141284>: Reduce print noise
// kprintf("ml_thread_policy() unimplemented\n");
}
__dead2
void
panic_unimplemented(void)
{
panic("Not yet implemented.");
}
/* ARM64_TODO <rdar://problem/9198953> */
void abort(void) __dead2;
void
abort(void)
{
panic("Abort.");
}
#if !MACH_KDP
void
kdp_register_callout(kdp_callout_fn_t fn, void *arg)
{
#pragma unused(fn,arg)
}
#endif
/*
* Get a quick virtual mapping of a physical page and run a callback on that
* page's virtual address.
*
* @param dst64 Physical address to access (doesn't need to be page-aligned).
* @param bytes Number of bytes to be accessed. This cannot cross page boundaries.
* @param func Callback function to call with the page's virtual address.
* @param arg Argument passed directly to `func`.
*
* @return The return value from `func`.
*/
int
apply_func_phys(
addr64_t dst64,
vm_size_t bytes,
int (*func)(void * buffer, vm_size_t bytes, void * arg),
void * arg)
{
/* The physical aperture is only guaranteed to work with kernel-managed addresses. */
if (!pmap_valid_address(dst64)) {
panic("%s address error: passed in address (%#llx) not a kernel managed address",
__FUNCTION__, dst64);
}
/* Ensure we stay within a single page */
if (((((uint32_t)dst64 & (ARM_PGBYTES - 1)) + bytes) > ARM_PGBYTES)) {
panic("%s alignment error: tried accessing addresses spanning more than one page %#llx %#lx",
__FUNCTION__, dst64, bytes);
}
return func((void*)phystokv(dst64), bytes, arg);
}