darling-xnu/osfmk/kern/kpc_common.c
2023-05-16 21:41:14 -07:00

883 lines
21 KiB
C

/*
* Copyright (c) 2012 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <mach/mach_types.h>
#include <machine/machine_routines.h>
#include <kern/processor.h>
#include <kern/kalloc.h>
#include <sys/errno.h>
#include <sys/vm.h>
#include <kperf/buffer.h>
#include <kern/thread.h>
#if defined(__arm64__) || defined(__arm__)
#include <arm/cpu_data_internal.h>
#endif
#include <kern/kpc.h>
#include <kperf/kperf.h>
#include <kperf/sample.h>
#include <kperf/context.h>
#include <kperf/action.h>
uint32_t kpc_actionid[KPC_MAX_COUNTERS];
#define COUNTERBUF_SIZE_PER_CPU (KPC_MAX_COUNTERS * sizeof(uint64_t))
#define COUNTERBUF_SIZE (machine_info.logical_cpu_max * \
COUNTERBUF_SIZE_PER_CPU)
/* locks */
static LCK_GRP_DECLARE(kpc_config_lckgrp, "kpc");
static LCK_MTX_DECLARE(kpc_config_lock, &kpc_config_lckgrp);
/* state specifying if all counters have been requested by kperf */
static boolean_t force_all_ctrs = FALSE;
/* power manager */
static kpc_pm_handler_t kpc_pm_handler;
static boolean_t kpc_pm_has_custom_config;
static uint64_t kpc_pm_pmc_mask;
#if MACH_ASSERT
static bool kpc_calling_pm = false;
#endif /* MACH_ASSERT */
boolean_t kpc_context_switch_active = FALSE;
bool kpc_supported = true;
static uint64_t *
kpc_percpu_alloc(void)
{
return kheap_alloc_tag(KHEAP_DATA_BUFFERS, COUNTERBUF_SIZE_PER_CPU,
Z_WAITOK | Z_ZERO, VM_KERN_MEMORY_DIAG);
}
static void
kpc_percpu_free(uint64_t *buf)
{
if (buf) {
kheap_free(KHEAP_DATA_BUFFERS, buf, COUNTERBUF_SIZE_PER_CPU);
}
}
boolean_t
kpc_register_cpu(struct cpu_data *cpu_data)
{
assert(cpu_data);
assert(cpu_data->cpu_kpc_buf[0] == NULL);
assert(cpu_data->cpu_kpc_buf[1] == NULL);
assert(cpu_data->cpu_kpc_shadow == NULL);
assert(cpu_data->cpu_kpc_reload == NULL);
/*
* Buffers allocated through kpc_counterbuf_alloc() are large enough to
* store all PMCs values from all CPUs. This mimics the userspace API.
* This does not suit well with the per-CPU kpc buffers, since:
* 1. Buffers don't need to be this large.
* 2. The actual number of CPUs is not known at this point.
*
* CPUs are asked to callout into kpc when being registered, we'll
* allocate the memory here.
*/
if ((cpu_data->cpu_kpc_buf[0] = kpc_percpu_alloc()) == NULL) {
goto error;
}
if ((cpu_data->cpu_kpc_buf[1] = kpc_percpu_alloc()) == NULL) {
goto error;
}
if ((cpu_data->cpu_kpc_shadow = kpc_percpu_alloc()) == NULL) {
goto error;
}
if ((cpu_data->cpu_kpc_reload = kpc_percpu_alloc()) == NULL) {
goto error;
}
/* success */
return TRUE;
error:
kpc_unregister_cpu(cpu_data);
return FALSE;
}
void
kpc_unregister_cpu(struct cpu_data *cpu_data)
{
assert(cpu_data);
if (cpu_data->cpu_kpc_buf[0] != NULL) {
kpc_percpu_free(cpu_data->cpu_kpc_buf[0]);
cpu_data->cpu_kpc_buf[0] = NULL;
}
if (cpu_data->cpu_kpc_buf[1] != NULL) {
kpc_percpu_free(cpu_data->cpu_kpc_buf[1]);
cpu_data->cpu_kpc_buf[1] = NULL;
}
if (cpu_data->cpu_kpc_shadow != NULL) {
kpc_percpu_free(cpu_data->cpu_kpc_shadow);
cpu_data->cpu_kpc_shadow = NULL;
}
if (cpu_data->cpu_kpc_reload != NULL) {
kpc_percpu_free(cpu_data->cpu_kpc_reload);
cpu_data->cpu_kpc_reload = NULL;
}
}
static void
kpc_task_set_forced_all_ctrs(task_t task, boolean_t state)
{
assert(task);
task_lock(task);
if (state) {
task->t_kpc |= TASK_KPC_FORCED_ALL_CTRS;
} else {
task->t_kpc &= ~TASK_KPC_FORCED_ALL_CTRS;
}
task_unlock(task);
}
static boolean_t
kpc_task_get_forced_all_ctrs(task_t task)
{
assert(task);
return task->t_kpc & TASK_KPC_FORCED_ALL_CTRS ? TRUE : FALSE;
}
int
kpc_force_all_ctrs(task_t task, int val)
{
boolean_t new_state = val ? TRUE : FALSE;
boolean_t old_state = kpc_get_force_all_ctrs();
/*
* Refuse to do the operation if the counters are already forced by
* another task.
*/
if (kpc_get_force_all_ctrs() && !kpc_task_get_forced_all_ctrs(task)) {
return EACCES;
}
/* nothing to do if the state is not changing */
if (old_state == new_state) {
return 0;
}
/* notify the power manager */
if (kpc_pm_handler) {
#if MACH_ASSERT
kpc_calling_pm = true;
#endif /* MACH_ASSERT */
kpc_pm_handler( new_state ? FALSE : TRUE );
#if MACH_ASSERT
kpc_calling_pm = false;
#endif /* MACH_ASSERT */
}
/*
* This is a force -- ensure that counters are forced, even if power
* management fails to acknowledge it.
*/
if (force_all_ctrs != new_state) {
force_all_ctrs = new_state;
}
/* update the task bits */
kpc_task_set_forced_all_ctrs(task, new_state);
return 0;
}
void
kpc_pm_acknowledge(boolean_t available_to_pm)
{
/*
* Force-all-counters should still be true when the counters are being
* made available to power management and false when counters are going
* to be taken away.
*/
assert(force_all_ctrs == available_to_pm);
/*
* Make sure power management isn't playing games with us.
*/
assert(kpc_calling_pm == true);
/*
* Counters being available means no one is forcing all counters.
*/
force_all_ctrs = available_to_pm ? FALSE : TRUE;
}
int
kpc_get_force_all_ctrs(void)
{
return force_all_ctrs;
}
boolean_t
kpc_multiple_clients(void)
{
return kpc_pm_handler != NULL;
}
boolean_t
kpc_controls_fixed_counters(void)
{
return !kpc_pm_handler || force_all_ctrs || !kpc_pm_has_custom_config;
}
boolean_t
kpc_controls_counter(uint32_t ctr)
{
uint64_t pmc_mask = 0ULL;
assert(ctr < (kpc_fixed_count() + kpc_configurable_count()));
if (ctr < kpc_fixed_count()) {
return kpc_controls_fixed_counters();
}
/*
* By default kpc manages all PMCs, but if the Power Manager registered
* with custom_config=TRUE, the Power Manager manages its reserved PMCs.
* However, kpc takes ownership back if a task acquired all PMCs via
* force_all_ctrs.
*/
pmc_mask = (1ULL << (ctr - kpc_fixed_count()));
if ((pmc_mask & kpc_pm_pmc_mask) && kpc_pm_has_custom_config && !force_all_ctrs) {
return FALSE;
}
return TRUE;
}
uint32_t
kpc_get_running(void)
{
uint64_t pmc_mask = 0;
uint32_t cur_state = 0;
if (kpc_is_running_fixed()) {
cur_state |= KPC_CLASS_FIXED_MASK;
}
pmc_mask = kpc_get_configurable_pmc_mask(KPC_CLASS_CONFIGURABLE_MASK);
if (kpc_is_running_configurable(pmc_mask)) {
cur_state |= KPC_CLASS_CONFIGURABLE_MASK;
}
pmc_mask = kpc_get_configurable_pmc_mask(KPC_CLASS_POWER_MASK);
if ((pmc_mask != 0) && kpc_is_running_configurable(pmc_mask)) {
cur_state |= KPC_CLASS_POWER_MASK;
}
return cur_state;
}
/* may be called from an IPI */
int
kpc_get_curcpu_counters(uint32_t classes, int *curcpu, uint64_t *buf)
{
int enabled = 0, offset = 0;
uint64_t pmc_mask = 0ULL;
assert(buf);
enabled = ml_set_interrupts_enabled(FALSE);
/* grab counters and CPU number as close as possible */
if (curcpu) {
*curcpu = cpu_number();
}
if (classes & KPC_CLASS_FIXED_MASK) {
kpc_get_fixed_counters(&buf[offset]);
offset += kpc_get_counter_count(KPC_CLASS_FIXED_MASK);
}
if (classes & KPC_CLASS_CONFIGURABLE_MASK) {
pmc_mask = kpc_get_configurable_pmc_mask(KPC_CLASS_CONFIGURABLE_MASK);
kpc_get_configurable_counters(&buf[offset], pmc_mask);
offset += kpc_popcount(pmc_mask);
}
if (classes & KPC_CLASS_POWER_MASK) {
pmc_mask = kpc_get_configurable_pmc_mask(KPC_CLASS_POWER_MASK);
kpc_get_configurable_counters(&buf[offset], pmc_mask);
offset += kpc_popcount(pmc_mask);
}
ml_set_interrupts_enabled(enabled);
return offset;
}
/* generic counter reading function, public api */
int
kpc_get_cpu_counters(boolean_t all_cpus, uint32_t classes,
int *curcpu, uint64_t *buf)
{
assert(buf);
/*
* Unlike reading the current CPU counters, reading counters from all
* CPUs is architecture dependent. This allows kpc to make the most of
* the platform if memory mapped registers is supported.
*/
if (all_cpus) {
return kpc_get_all_cpus_counters(classes, curcpu, buf);
} else {
return kpc_get_curcpu_counters(classes, curcpu, buf);
}
}
int
kpc_get_shadow_counters(boolean_t all_cpus, uint32_t classes,
int *curcpu, uint64_t *buf)
{
int curcpu_id = cpu_number();
uint32_t cfg_count = kpc_configurable_count(), offset = 0;
uint64_t pmc_mask = 0ULL;
boolean_t enabled;
assert(buf);
enabled = ml_set_interrupts_enabled(FALSE);
curcpu_id = cpu_number();
if (curcpu) {
*curcpu = curcpu_id;
}
for (int cpu = 0; cpu < machine_info.logical_cpu_max; ++cpu) {
/* filter if the caller did not request all cpus */
if (!all_cpus && (cpu != curcpu_id)) {
continue;
}
if (classes & KPC_CLASS_FIXED_MASK) {
uint32_t count = kpc_get_counter_count(KPC_CLASS_FIXED_MASK);
memcpy(&buf[offset], &FIXED_SHADOW_CPU(cpu, 0), count * sizeof(uint64_t));
offset += count;
}
if (classes & KPC_CLASS_CONFIGURABLE_MASK) {
pmc_mask = kpc_get_configurable_pmc_mask(KPC_CLASS_CONFIGURABLE_MASK);
for (uint32_t cfg_ctr = 0; cfg_ctr < cfg_count; ++cfg_ctr) {
if ((1ULL << cfg_ctr) & pmc_mask) {
buf[offset++] = CONFIGURABLE_SHADOW_CPU(cpu, cfg_ctr);
}
}
}
if (classes & KPC_CLASS_POWER_MASK) {
pmc_mask = kpc_get_configurable_pmc_mask(KPC_CLASS_POWER_MASK);
for (uint32_t cfg_ctr = 0; cfg_ctr < cfg_count; ++cfg_ctr) {
if ((1ULL << cfg_ctr) & pmc_mask) {
buf[offset++] = CONFIGURABLE_SHADOW_CPU(cpu, cfg_ctr);
}
}
}
}
ml_set_interrupts_enabled(enabled);
return offset;
}
uint32_t
kpc_get_counter_count(uint32_t classes)
{
uint32_t count = 0;
if (classes & KPC_CLASS_FIXED_MASK) {
count += kpc_fixed_count();
}
if (classes & (KPC_CLASS_CONFIGURABLE_MASK | KPC_CLASS_POWER_MASK)) {
uint64_t pmc_msk = kpc_get_configurable_pmc_mask(classes);
uint32_t pmc_cnt = kpc_popcount(pmc_msk);
count += pmc_cnt;
}
return count;
}
uint32_t
kpc_get_config_count(uint32_t classes)
{
uint32_t count = 0;
if (classes & KPC_CLASS_FIXED_MASK) {
count += kpc_fixed_config_count();
}
if (classes & (KPC_CLASS_CONFIGURABLE_MASK | KPC_CLASS_POWER_MASK)) {
uint64_t pmc_mask = kpc_get_configurable_pmc_mask(classes);
count += kpc_configurable_config_count(pmc_mask);
}
if ((classes & KPC_CLASS_RAWPMU_MASK) && !kpc_multiple_clients()) {
count += kpc_rawpmu_config_count();
}
return count;
}
int
kpc_get_config(uint32_t classes, kpc_config_t *current_config)
{
uint32_t count = 0;
assert(current_config);
if (classes & KPC_CLASS_FIXED_MASK) {
kpc_get_fixed_config(&current_config[count]);
count += kpc_get_config_count(KPC_CLASS_FIXED_MASK);
}
if (classes & KPC_CLASS_CONFIGURABLE_MASK) {
uint64_t pmc_mask = kpc_get_configurable_pmc_mask(KPC_CLASS_CONFIGURABLE_MASK);
kpc_get_configurable_config(&current_config[count], pmc_mask);
count += kpc_get_config_count(KPC_CLASS_CONFIGURABLE_MASK);
}
if (classes & KPC_CLASS_POWER_MASK) {
uint64_t pmc_mask = kpc_get_configurable_pmc_mask(KPC_CLASS_POWER_MASK);
kpc_get_configurable_config(&current_config[count], pmc_mask);
count += kpc_get_config_count(KPC_CLASS_POWER_MASK);
}
if (classes & KPC_CLASS_RAWPMU_MASK) {
// Client shouldn't ask for config words that aren't available.
// Most likely, they'd misinterpret the returned buffer if we
// allowed this.
if (kpc_multiple_clients()) {
return EPERM;
}
kpc_get_rawpmu_config(&current_config[count]);
count += kpc_get_config_count(KPC_CLASS_RAWPMU_MASK);
}
return 0;
}
int
kpc_set_config(uint32_t classes, kpc_config_t *configv)
{
int ret = 0;
struct kpc_config_remote mp_config = {
.classes = classes, .configv = configv,
.pmc_mask = kpc_get_configurable_pmc_mask(classes)
};
assert(configv);
/* don't allow RAWPMU configuration when sharing counters */
if ((classes & KPC_CLASS_RAWPMU_MASK) && kpc_multiple_clients()) {
return EPERM;
}
/* no clients have the right to modify both classes */
if ((classes & (KPC_CLASS_CONFIGURABLE_MASK)) &&
(classes & (KPC_CLASS_POWER_MASK))) {
return EPERM;
}
lck_mtx_lock(&kpc_config_lock);
/* translate the power class for the machine layer */
if (classes & KPC_CLASS_POWER_MASK) {
mp_config.classes |= KPC_CLASS_CONFIGURABLE_MASK;
}
ret = kpc_set_config_arch( &mp_config );
lck_mtx_unlock(&kpc_config_lock);
return ret;
}
uint32_t
kpc_get_counterbuf_size(void)
{
return COUNTERBUF_SIZE;
}
/* allocate a buffer large enough for all possible counters */
uint64_t *
kpc_counterbuf_alloc(void)
{
return kheap_alloc_tag(KHEAP_DATA_BUFFERS, COUNTERBUF_SIZE,
Z_WAITOK | Z_ZERO, VM_KERN_MEMORY_DIAG);
}
void
kpc_counterbuf_free(uint64_t *buf)
{
if (buf) {
kheap_free(KHEAP_DATA_BUFFERS, buf, COUNTERBUF_SIZE);
}
}
void
kpc_sample_kperf(uint32_t actionid, uint32_t counter, uint64_t config,
uint64_t count, uintptr_t pc, kperf_kpc_flags_t flags)
{
struct kperf_sample sbuf;
uint64_t desc = config | (uint64_t)counter << 32 | (uint64_t)flags << 48;
BUF_DATA(PERF_KPC_HNDLR | DBG_FUNC_START, desc, count, pc);
thread_t thread = current_thread();
task_t task = get_threadtask(thread);
struct kperf_context ctx = {
.cur_thread = thread,
.cur_task = task,
.cur_pid = task_pid(task),
.trigger_type = TRIGGER_TYPE_PMI,
.trigger_id = 0,
};
int r = kperf_sample(&sbuf, &ctx, actionid, SAMPLE_FLAG_PEND_USER);
BUF_INFO(PERF_KPC_HNDLR | DBG_FUNC_END, r);
}
int
kpc_set_period(uint32_t classes, uint64_t *val)
{
struct kpc_config_remote mp_config = {
.classes = classes, .configv = val,
.pmc_mask = kpc_get_configurable_pmc_mask(classes)
};
assert(val);
/* no clients have the right to modify both classes */
if ((classes & (KPC_CLASS_CONFIGURABLE_MASK)) &&
(classes & (KPC_CLASS_POWER_MASK))) {
return EPERM;
}
lck_mtx_lock(&kpc_config_lock);
#ifdef FIXED_COUNTER_SHADOW
if ((classes & KPC_CLASS_FIXED_MASK) && !kpc_controls_fixed_counters()) {
lck_mtx_unlock(&kpc_config_lock);
return EPERM;
}
# else
if (classes & KPC_CLASS_FIXED_MASK) {
lck_mtx_unlock(&kpc_config_lock);
return EINVAL;
}
#endif
/* translate the power class for the machine layer */
if (classes & KPC_CLASS_POWER_MASK) {
mp_config.classes |= KPC_CLASS_CONFIGURABLE_MASK;
}
kprintf("setting period %u\n", classes);
kpc_set_period_arch( &mp_config );
lck_mtx_unlock(&kpc_config_lock);
return 0;
}
int
kpc_get_period(uint32_t classes, uint64_t *val)
{
uint32_t count = 0;
uint64_t pmc_mask = 0ULL;
assert(val);
lck_mtx_lock(&kpc_config_lock);
if (classes & KPC_CLASS_FIXED_MASK) {
/* convert reload values to periods */
count = kpc_get_counter_count(KPC_CLASS_FIXED_MASK);
for (uint32_t i = 0; i < count; ++i) {
*val++ = kpc_fixed_max() - FIXED_RELOAD(i);
}
}
if (classes & KPC_CLASS_CONFIGURABLE_MASK) {
pmc_mask = kpc_get_configurable_pmc_mask(KPC_CLASS_CONFIGURABLE_MASK);
/* convert reload values to periods */
count = kpc_configurable_count();
for (uint32_t i = 0; i < count; ++i) {
if ((1ULL << i) & pmc_mask) {
*val++ = kpc_configurable_max() - CONFIGURABLE_RELOAD(i);
}
}
}
if (classes & KPC_CLASS_POWER_MASK) {
pmc_mask = kpc_get_configurable_pmc_mask(KPC_CLASS_POWER_MASK);
/* convert reload values to periods */
count = kpc_configurable_count();
for (uint32_t i = 0; i < count; ++i) {
if ((1ULL << i) & pmc_mask) {
*val++ = kpc_configurable_max() - CONFIGURABLE_RELOAD(i);
}
}
}
lck_mtx_unlock(&kpc_config_lock);
return 0;
}
int
kpc_set_actionid(uint32_t classes, uint32_t *val)
{
uint32_t count = 0;
uint64_t pmc_mask = 0ULL;
assert(val);
/* NOTE: what happens if a pmi occurs while actionids are being
* set is undefined. */
lck_mtx_lock(&kpc_config_lock);
if (classes & KPC_CLASS_FIXED_MASK) {
count = kpc_get_counter_count(KPC_CLASS_FIXED_MASK);
memcpy(&FIXED_ACTIONID(0), val, count * sizeof(uint32_t));
val += count;
}
if (classes & KPC_CLASS_CONFIGURABLE_MASK) {
pmc_mask = kpc_get_configurable_pmc_mask(KPC_CLASS_CONFIGURABLE_MASK);
count = kpc_configurable_count();
for (uint32_t i = 0; i < count; ++i) {
if ((1ULL << i) & pmc_mask) {
CONFIGURABLE_ACTIONID(i) = *val++;
}
}
}
if (classes & KPC_CLASS_POWER_MASK) {
pmc_mask = kpc_get_configurable_pmc_mask(KPC_CLASS_POWER_MASK);
count = kpc_configurable_count();
for (uint32_t i = 0; i < count; ++i) {
if ((1ULL << i) & pmc_mask) {
CONFIGURABLE_ACTIONID(i) = *val++;
}
}
}
lck_mtx_unlock(&kpc_config_lock);
return 0;
}
int
kpc_get_actionid(uint32_t classes, uint32_t *val)
{
uint32_t count = 0;
uint64_t pmc_mask = 0ULL;
assert(val);
lck_mtx_lock(&kpc_config_lock);
if (classes & KPC_CLASS_FIXED_MASK) {
count = kpc_get_counter_count(KPC_CLASS_FIXED_MASK);
memcpy(val, &FIXED_ACTIONID(0), count * sizeof(uint32_t));
val += count;
}
if (classes & KPC_CLASS_CONFIGURABLE_MASK) {
pmc_mask = kpc_get_configurable_pmc_mask(KPC_CLASS_CONFIGURABLE_MASK);
count = kpc_configurable_count();
for (uint32_t i = 0; i < count; ++i) {
if ((1ULL << i) & pmc_mask) {
*val++ = CONFIGURABLE_ACTIONID(i);
}
}
}
if (classes & KPC_CLASS_POWER_MASK) {
pmc_mask = kpc_get_configurable_pmc_mask(KPC_CLASS_POWER_MASK);
count = kpc_configurable_count();
for (uint32_t i = 0; i < count; ++i) {
if ((1ULL << i) & pmc_mask) {
*val++ = CONFIGURABLE_ACTIONID(i);
}
}
}
lck_mtx_unlock(&kpc_config_lock);
return 0;
}
int
kpc_set_running(uint32_t classes)
{
uint32_t all_cfg_classes = KPC_CLASS_CONFIGURABLE_MASK | KPC_CLASS_POWER_MASK;
struct kpc_running_remote mp_config = {
.classes = classes, .cfg_target_mask = 0ULL, .cfg_state_mask = 0ULL
};
/* target all available PMCs */
mp_config.cfg_target_mask = kpc_get_configurable_pmc_mask(all_cfg_classes);
/* translate the power class for the machine layer */
if (classes & KPC_CLASS_POWER_MASK) {
mp_config.classes |= KPC_CLASS_CONFIGURABLE_MASK;
}
/* generate the state of each configurable PMCs */
mp_config.cfg_state_mask = kpc_get_configurable_pmc_mask(classes);
return kpc_set_running_arch(&mp_config);
}
boolean_t
kpc_register_pm_handler(kpc_pm_handler_t handler)
{
return kpc_reserve_pm_counters(0x38, handler, TRUE);
}
boolean_t
kpc_reserve_pm_counters(uint64_t pmc_mask, kpc_pm_handler_t handler,
boolean_t custom_config)
{
uint64_t all_mask = (1ULL << kpc_configurable_count()) - 1;
uint64_t req_mask = 0ULL;
/* pre-condition */
assert(handler != NULL);
assert(kpc_pm_handler == NULL);
/* check number of counters requested */
req_mask = (pmc_mask & all_mask);
assert(kpc_popcount(req_mask) <= kpc_configurable_count());
/* save the power manager states */
kpc_pm_has_custom_config = custom_config;
kpc_pm_pmc_mask = req_mask;
kpc_pm_handler = handler;
printf("kpc: pm registered pmc_mask=%llx custom_config=%d\n",
req_mask, custom_config);
/* post-condition */
{
uint32_t cfg_count = kpc_get_counter_count(KPC_CLASS_CONFIGURABLE_MASK);
uint32_t pwr_count = kpc_popcount(kpc_pm_pmc_mask);
#pragma unused(cfg_count, pwr_count)
assert((cfg_count + pwr_count) == kpc_configurable_count());
}
return force_all_ctrs ? FALSE : TRUE;
}
void
kpc_release_pm_counters(void)
{
/* pre-condition */
assert(kpc_pm_handler != NULL);
/* release the counters */
kpc_pm_has_custom_config = FALSE;
kpc_pm_pmc_mask = 0ULL;
kpc_pm_handler = NULL;
printf("kpc: pm released counters\n");
/* post-condition */
assert(kpc_get_counter_count(KPC_CLASS_CONFIGURABLE_MASK) == kpc_configurable_count());
}
uint8_t
kpc_popcount(uint64_t value)
{
return (uint8_t)__builtin_popcountll(value);
}
uint64_t
kpc_get_configurable_pmc_mask(uint32_t classes)
{
uint32_t configurable_count = kpc_configurable_count();
uint64_t cfg_mask = 0ULL, pwr_mask = 0ULL, all_cfg_pmcs_mask = 0ULL;
/* not configurable classes or no configurable counters */
if (((classes & (KPC_CLASS_CONFIGURABLE_MASK | KPC_CLASS_POWER_MASK)) == 0) ||
(configurable_count == 0)) {
goto exit;
}
assert(configurable_count < 64);
all_cfg_pmcs_mask = (1ULL << configurable_count) - 1;
if (classes & KPC_CLASS_CONFIGURABLE_MASK) {
if (force_all_ctrs == TRUE) {
cfg_mask |= all_cfg_pmcs_mask;
} else {
cfg_mask |= (~kpc_pm_pmc_mask) & all_cfg_pmcs_mask;
}
}
/*
* The power class exists iff:
* - No tasks acquired all PMCs
* - PM registered and uses kpc to interact with PMCs
*/
if ((force_all_ctrs == FALSE) &&
(kpc_pm_handler != NULL) &&
(kpc_pm_has_custom_config == FALSE) &&
(classes & KPC_CLASS_POWER_MASK)) {
pwr_mask |= kpc_pm_pmc_mask & all_cfg_pmcs_mask;
}
exit:
/* post-conditions */
assert(((cfg_mask | pwr_mask) & (~all_cfg_pmcs_mask)) == 0 );
assert( kpc_popcount(cfg_mask | pwr_mask) <= kpc_configurable_count());
assert((cfg_mask & pwr_mask) == 0ULL );
return cfg_mask | pwr_mask;
}