darling-xnu/osfmk/kern/processor.h
2023-05-16 21:41:14 -07:00

674 lines
24 KiB
C

/*
* Copyright (c) 2000-2019 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
*/
/*
* processor.h: Processor and processor-related definitions.
*/
#ifndef _KERN_PROCESSOR_H_
#define _KERN_PROCESSOR_H_
#include <mach/boolean.h>
#include <mach/kern_return.h>
#include <kern/kern_types.h>
#include <sys/cdefs.h>
#ifdef MACH_KERNEL_PRIVATE
#include <mach/mach_types.h>
#include <kern/ast.h>
#include <kern/cpu_number.h>
#include <kern/smp.h>
#include <kern/simple_lock.h>
#include <kern/locks.h>
#include <kern/percpu.h>
#include <kern/queue.h>
#include <kern/sched.h>
#include <kern/sched_urgency.h>
#include <kern/timer.h>
#include <mach/sfi_class.h>
#include <kern/sched_clutch.h>
#include <kern/timer_call.h>
#include <kern/assert.h>
#include <machine/limits.h>
/*
* Processor state is accessed by locking the scheduling lock
* for the assigned processor set.
*
* -------------------- SHUTDOWN
* / ^ ^
* _/ | \
* OFF_LINE ---> START ---> RUNNING ---> IDLE ---> DISPATCHING
* \_________________^ ^ ^______/ /
* \__________________/
*
* Most of these state transitions are externally driven as a
* a directive (for instance telling an IDLE processor to start
* coming out of the idle state to run a thread). However these
* are typically paired with a handshake by the processor itself
* to indicate that it has completed a transition of indeterminate
* length (for example, the DISPATCHING->RUNNING or START->RUNNING
* transitions must occur on the processor itself).
*
* The boot processor has some special cases, and skips the START state,
* since it has already bootstrapped and is ready to context switch threads.
*
* When a processor is in DISPATCHING or RUNNING state, the current_pri,
* current_thmode, and deadline fields should be set, so that other
* processors can evaluate if it is an appropriate candidate for preemption.
*/
#if defined(CONFIG_SCHED_DEFERRED_AST)
/*
* -------------------- SHUTDOWN
* / ^ ^
* _/ | \
* OFF_LINE ---> START ---> RUNNING ---> IDLE ---> DISPATCHING
* \_________________^ ^ ^______/ ^_____ / /
* \__________________/
*
* A DISPATCHING processor may be put back into IDLE, if another
* processor determines that the target processor will have nothing to do
* upon reaching the RUNNING state. This is racy, but if the target
* responds and becomes RUNNING, it will not break the processor state
* machine.
*
* This change allows us to cancel an outstanding signal/AST on a processor
* (if such an operation is supported through hardware or software), and
* push the processor back into the IDLE state as a power optimization.
*/
#endif
typedef enum {
PROCESSOR_OFF_LINE = 0, /* Not available */
PROCESSOR_SHUTDOWN = 1, /* Going off-line */
PROCESSOR_START = 2, /* Being started */
PROCESSOR_UNUSED = 3, /* Formerly Inactive (unavailable) */
PROCESSOR_IDLE = 4, /* Idle (available) */
PROCESSOR_DISPATCHING = 5, /* Dispatching (idle -> active) */
PROCESSOR_RUNNING = 6, /* Normal execution */
PROCESSOR_STATE_LEN = (PROCESSOR_RUNNING + 1)
} processor_state_t;
typedef enum {
PSET_SMP,
#if __AMP__
PSET_AMP_E,
PSET_AMP_P,
#endif
} pset_cluster_type_t;
#if __AMP__
typedef enum {
SCHED_PERFCTL_POLICY_DEFAULT, /* static policy: set at boot */
SCHED_PERFCTL_POLICY_FOLLOW_GROUP, /* dynamic policy: perfctl_class follows thread group across amp clusters */
SCHED_PERFCTL_POLICY_RESTRICT_E, /* dynamic policy: limits perfctl_class to amp e cluster */
} sched_perfctl_class_policy_t;
extern _Atomic sched_perfctl_class_policy_t sched_perfctl_policy_util;
extern _Atomic sched_perfctl_class_policy_t sched_perfctl_policy_bg;
#endif /* __AMP__ */
typedef bitmap_t cpumap_t;
#if __arm64__
/*
* pset_execution_time_t
*
* The pset_execution_time_t type is used to maintain the average
* execution time of threads on a pset. Since the avg. execution time is
* updated from contexts where the pset lock is not held, it uses a
* double-wide RMW loop to update these values atomically.
*/
typedef union {
struct {
uint64_t pset_avg_thread_execution_time;
uint64_t pset_execution_time_last_update;
};
unsigned __int128 pset_execution_time_packed;
} pset_execution_time_t;
#endif /* __arm64__ */
struct processor_set {
int pset_id;
int online_processor_count;
int cpu_set_low, cpu_set_hi;
int cpu_set_count;
int last_chosen;
uint64_t load_average;
uint64_t pset_load_average[TH_BUCKET_SCHED_MAX];
uint64_t pset_load_last_update;
cpumap_t cpu_bitmask;
cpumap_t recommended_bitmask;
cpumap_t cpu_state_map[PROCESSOR_STATE_LEN];
cpumap_t primary_map;
cpumap_t realtime_map;
cpumap_t cpu_running_foreign;
sched_bucket_t cpu_running_buckets[MAX_CPUS];
#define SCHED_PSET_TLOCK (1)
#if defined(SCHED_PSET_TLOCK)
/* TODO: reorder struct for temporal cache locality */
__attribute__((aligned(128))) lck_ticket_t sched_lock;
#else /* SCHED_PSET_TLOCK*/
__attribute__((aligned(128))) lck_spin_t sched_lock; /* lock for above */
#endif /* SCHED_PSET_TLOCK*/
#if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_MULTIQ)
struct run_queue pset_runq; /* runq for this processor set */
#endif
struct rt_queue rt_runq; /* realtime runq for this processor set */
#if CONFIG_SCHED_CLUTCH
struct sched_clutch_root pset_clutch_root; /* clutch hierarchy root */
#endif /* CONFIG_SCHED_CLUTCH */
#if defined(CONFIG_SCHED_TRADITIONAL)
int pset_runq_bound_count;
/* # of threads in runq bound to any processor in pset */
#endif
/* CPUs that have been sent an unacknowledged remote AST for scheduling purposes */
cpumap_t pending_AST_URGENT_cpu_mask;
cpumap_t pending_AST_PREEMPT_cpu_mask;
#if defined(CONFIG_SCHED_DEFERRED_AST)
/*
* A separate mask, for ASTs that we may be able to cancel. This is dependent on
* some level of support for requesting an AST on a processor, and then quashing
* that request later.
*
* The purpose of this field (and the associated codepaths) is to infer when we
* no longer need a processor that is DISPATCHING to come up, and to prevent it
* from coming out of IDLE if possible. This should serve to decrease the number
* of spurious ASTs in the system, and let processors spend longer periods in
* IDLE.
*/
cpumap_t pending_deferred_AST_cpu_mask;
#endif
cpumap_t pending_spill_cpu_mask;
struct ipc_port * pset_self; /* port for operations */
struct ipc_port * pset_name_self; /* port for information */
processor_set_t pset_list; /* chain of associated psets */
pset_node_t node;
uint32_t pset_cluster_id;
/*
* Currently the scheduler uses a mix of pset_cluster_type_t & cluster_type_t
* for recommendations etc. It might be useful to unify these as a single type.
*/
pset_cluster_type_t pset_cluster_type;
cluster_type_t pset_type;
#if CONFIG_SCHED_EDGE
bitmap_t foreign_psets[BITMAP_LEN(MAX_PSETS)];
sched_clutch_edge sched_edges[MAX_PSETS];
pset_execution_time_t pset_execution_time[TH_BUCKET_SCHED_MAX];
#endif /* CONFIG_SCHED_EDGE */
bool is_SMT; /* pset contains SMT processors */
};
extern struct processor_set pset0;
typedef bitmap_t pset_map_t;
struct pset_node {
processor_set_t psets; /* list of associated psets */
pset_node_t nodes; /* list of associated subnodes */
pset_node_t node_list; /* chain of associated nodes */
pset_node_t parent;
pset_map_t pset_map; /* map of associated psets */
_Atomic pset_map_t pset_idle_map; /* psets with at least one IDLE CPU */
_Atomic pset_map_t pset_idle_primary_map; /* psets with at least one IDLE primary CPU */
_Atomic pset_map_t pset_non_rt_map; /* psets with at least one available CPU not running a realtime thread */
_Atomic pset_map_t pset_non_rt_primary_map;/* psets with at least one available primary CPU not running a realtime thread */
};
extern struct pset_node pset_node0;
extern queue_head_t tasks, threads, corpse_tasks;
extern int tasks_count, terminated_tasks_count, threads_count, terminated_threads_count;
decl_lck_mtx_data(extern, tasks_threads_lock);
decl_lck_mtx_data(extern, tasks_corpse_lock);
/*
* The terminated tasks queue should only be inspected elsewhere by stackshot.
*/
extern queue_head_t terminated_tasks;
extern queue_head_t terminated_threads;
struct processor {
processor_state_t state; /* See above */
bool is_SMT;
bool is_recommended;
bool current_is_NO_SMT; /* cached TH_SFLAG_NO_SMT of current thread */
bool current_is_bound; /* current thread is bound to this processor */
bool current_is_eagerpreempt;/* current thread is TH_SFLAG_EAGERPREEMPT */
struct thread *active_thread; /* thread running on processor */
struct thread *idle_thread; /* this processor's idle thread. */
struct thread *startup_thread;
processor_set_t processor_set; /* assigned set */
/*
* XXX All current_* fields should be grouped together, as they're
* updated at the same time.
*/
int current_pri; /* priority of current thread */
sfi_class_id_t current_sfi_class; /* SFI class of current thread */
perfcontrol_class_t current_perfctl_class; /* Perfcontrol class for current thread */
/*
* The cluster type recommended for the current thread.
*/
pset_cluster_type_t current_recommended_pset_type;
thread_urgency_t current_urgency; /* cached urgency of current thread */
#if CONFIG_SCHED_TRADITIONAL
int runq_bound_count; /* # of threads bound to this processor */
#endif /* CONFIG_SCHED_TRADITIONAL */
#if CONFIG_THREAD_GROUPS
struct thread_group *current_thread_group; /* thread_group of current thread */
#endif
int starting_pri; /* priority of current thread as it was when scheduled */
int cpu_id; /* platform numeric id */
uint64_t quantum_end; /* time when current quantum ends */
uint64_t last_dispatch; /* time of last dispatch */
#if KPERF
uint64_t kperf_last_sample_time; /* time of last kperf sample */
#endif /* KPERF */
uint64_t deadline; /* for next realtime thread */
bool first_timeslice; /* has the quantum expired since context switch */
bool processor_offlined; /* has the processor been explicitly processor_offline'ed */
bool must_idle; /* Needs to be forced idle as next selected thread is allowed on this processor */
bool running_timers_active; /* whether the running timers should fire */
struct timer_call running_timers[RUNNING_TIMER_MAX];
#if CONFIG_SCHED_TRADITIONAL || CONFIG_SCHED_MULTIQ
struct run_queue runq; /* runq for this processor */
#endif /* CONFIG_SCHED_TRADITIONAL || CONFIG_SCHED_MULTIQ */
#if CONFIG_SCHED_GRRR
struct grrr_run_queue grrr_runq; /* Group Ratio Round-Robin runq */
#endif /* CONFIG_SCHED_GRRR */
/*
* Pointer to primary processor for secondary SMT processors, or a
* pointer to ourselves for primaries or non-SMT.
*/
processor_t processor_primary;
processor_t processor_secondary;
struct ipc_port *processor_self; /* port for operations */
processor_t processor_list; /* all existing processors */
/* Processor state statistics */
timer_data_t idle_state;
timer_data_t system_state;
timer_data_t user_state;
timer_t current_state; /* points to processor's idle, system, or user state timer */
/* Thread execution timers */
timer_t thread_timer; /* points to current thread's user or system timer */
timer_t kernel_timer; /* points to current thread's system_timer */
uint64_t timer_call_ttd; /* current timer call time-to-deadline */
};
extern processor_t processor_list;
decl_simple_lock_data(extern, processor_list_lock);
/*
* Maximum number of CPUs supported by the scheduler. bits.h bitmap macros
* need to be used to support greater than 64.
*/
#define MAX_SCHED_CPUS 64
extern processor_t processor_array[MAX_SCHED_CPUS]; /* array indexed by cpuid */
extern processor_set_t pset_array[MAX_PSETS]; /* array indexed by pset_id */
extern uint32_t processor_avail_count;
extern uint32_t processor_avail_count_user;
extern uint32_t primary_processor_avail_count;
extern uint32_t primary_processor_avail_count_user;
#define master_processor PERCPU_GET_MASTER(processor)
PERCPU_DECL(struct processor, processor);
extern processor_t current_processor(void);
/* Lock macros, always acquired and released with interrupts disabled (splsched()) */
extern lck_grp_t pset_lck_grp;
#if defined(SCHED_PSET_TLOCK)
#define pset_lock_init(p) lck_ticket_init(&(p)->sched_lock, &pset_lck_grp)
#define pset_lock(p) lck_ticket_lock(&(p)->sched_lock, &pset_lck_grp)
#define pset_unlock(p) lck_ticket_unlock(&(p)->sched_lock)
#define pset_assert_locked(p) lck_ticket_assert_owned(&(p)->sched_lock)
#else /* SCHED_PSET_TLOCK*/
#define pset_lock_init(p) lck_spin_init(&(p)->sched_lock, &pset_lck_grp, NULL)
#define pset_lock(p) lck_spin_lock_grp(&(p)->sched_lock, &pset_lck_grp)
#define pset_unlock(p) lck_spin_unlock(&(p)->sched_lock)
#define pset_assert_locked(p) LCK_SPIN_ASSERT(&(p)->sched_lock, LCK_ASSERT_OWNED)
#endif /*!SCHED_PSET_TLOCK*/
extern void processor_bootstrap(void);
extern void processor_init(
processor_t processor,
int cpu_id,
processor_set_t processor_set);
extern void processor_set_primary(
processor_t processor,
processor_t primary);
extern kern_return_t processor_shutdown(
processor_t processor);
extern kern_return_t processor_start_from_user(
processor_t processor);
extern kern_return_t processor_exit_from_user(
processor_t processor);
extern kern_return_t sched_processor_enable(
processor_t processor,
boolean_t enable);
extern void processor_queue_shutdown(
processor_t processor);
extern void processor_queue_shutdown(
processor_t processor);
extern processor_set_t processor_pset(
processor_t processor);
extern pset_node_t pset_node_root(void);
extern processor_set_t pset_create(
pset_node_t node);
extern void pset_init(
processor_set_t pset,
pset_node_t node);
extern processor_set_t pset_find(
uint32_t cluster_id,
processor_set_t default_pset);
#if !defined(RC_HIDE_XNU_FIRESTORM) && (MAX_CPU_CLUSTERS > 2)
/*
* Find the first processor_set for the given pset_cluster_type.
* Should be removed with rdar://57340304, as it's only
* useful for the workaround described in rdar://57306691.
*/
extern processor_set_t pset_find_first_by_cluster_type(
pset_cluster_type_t pset_cluster_type);
#endif /* !defined(RC_HIDE_XNU_FIRESTORM) && (MAX_CPU_CLUSTERS > 2) */
extern kern_return_t processor_info_count(
processor_flavor_t flavor,
mach_msg_type_number_t *count);
#define pset_deallocate(x)
#define pset_reference(x)
extern void machine_run_count(
uint32_t count);
extern processor_t machine_choose_processor(
processor_set_t pset,
processor_t processor);
#define next_pset(p) (((p)->pset_list != PROCESSOR_SET_NULL)? (p)->pset_list: (p)->node->psets)
#define PSET_THING_TASK 0
#define PSET_THING_THREAD 1
extern pset_cluster_type_t recommended_pset_type(
thread_t thread);
#if CONFIG_THREAD_GROUPS
extern pset_cluster_type_t thread_group_pset_recommendation(
struct thread_group *tg,
cluster_type_t recommendation);
#endif /* CONFIG_THREAD_GROUPS */
inline static bool
pset_is_recommended(processor_set_t pset)
{
return (pset->recommended_bitmask & pset->cpu_bitmask) != 0;
}
extern void processor_state_update_idle(
processor_t processor);
extern void processor_state_update_from_thread(
processor_t processor,
thread_t thread);
extern void processor_state_update_explicit(
processor_t processor,
int pri,
sfi_class_id_t sfi_class,
pset_cluster_type_t pset_type,
perfcontrol_class_t perfctl_class,
thread_urgency_t urgency,
sched_bucket_t bucket);
#define PSET_LOAD_NUMERATOR_SHIFT 16
#define PSET_LOAD_FRACTIONAL_SHIFT 4
#if CONFIG_SCHED_EDGE
extern cluster_type_t pset_type_for_id(uint32_t cluster_id);
/*
* The Edge scheduler uses average scheduling latency as the metric for making
* thread migration decisions. One component of avg scheduling latency is the load
* average on the cluster.
*
* Load Average Fixed Point Arithmetic
*
* The load average is maintained as a 24.8 fixed point arithmetic value for precision.
* When multiplied by the average execution time, it needs to be rounded up (based on
* the most significant bit of the fractional part) for better accuracy. After rounding
* up, the whole number part of the value is used as the actual load value for
* migrate/steal decisions.
*/
#define SCHED_PSET_LOAD_EWMA_FRACTION_BITS 8
#define SCHED_PSET_LOAD_EWMA_ROUND_BIT (1 << (SCHED_PSET_LOAD_EWMA_FRACTION_BITS - 1))
#define SCHED_PSET_LOAD_EWMA_FRACTION_MASK ((1 << SCHED_PSET_LOAD_EWMA_FRACTION_BITS) - 1)
inline static int
sched_get_pset_load_average(processor_set_t pset, sched_bucket_t sched_bucket)
{
return (int)(((pset->pset_load_average[sched_bucket] + SCHED_PSET_LOAD_EWMA_ROUND_BIT) >> SCHED_PSET_LOAD_EWMA_FRACTION_BITS) *
pset->pset_execution_time[sched_bucket].pset_avg_thread_execution_time);
}
#else /* CONFIG_SCHED_EDGE */
inline static int
sched_get_pset_load_average(processor_set_t pset, __unused sched_bucket_t sched_bucket)
{
return (int)pset->load_average >> (PSET_LOAD_NUMERATOR_SHIFT - PSET_LOAD_FRACTIONAL_SHIFT);
}
#endif /* CONFIG_SCHED_EDGE */
extern void sched_update_pset_load_average(processor_set_t pset, uint64_t curtime);
extern void sched_update_pset_avg_execution_time(processor_set_t pset, uint64_t delta, uint64_t curtime, sched_bucket_t sched_bucket);
inline static void
pset_update_processor_state(processor_set_t pset, processor_t processor, uint new_state)
{
pset_assert_locked(pset);
uint old_state = processor->state;
uint cpuid = (uint)processor->cpu_id;
assert(processor->processor_set == pset);
assert(bit_test(pset->cpu_bitmask, cpuid));
assert(old_state < PROCESSOR_STATE_LEN);
assert(new_state < PROCESSOR_STATE_LEN);
processor->state = new_state;
bit_clear(pset->cpu_state_map[old_state], cpuid);
bit_set(pset->cpu_state_map[new_state], cpuid);
if ((old_state == PROCESSOR_RUNNING) || (new_state == PROCESSOR_RUNNING)) {
sched_update_pset_load_average(pset, 0);
if (new_state == PROCESSOR_RUNNING) {
assert(processor == current_processor());
}
}
if ((old_state == PROCESSOR_IDLE) || (new_state == PROCESSOR_IDLE)) {
if (new_state == PROCESSOR_IDLE) {
bit_clear(pset->realtime_map, cpuid);
}
pset_node_t node = pset->node;
if (bit_count(node->pset_map) == 1) {
/* Node has only a single pset, so skip node pset map updates */
return;
}
if (new_state == PROCESSOR_IDLE) {
if (processor->processor_primary == processor) {
if (!bit_test(atomic_load(&node->pset_non_rt_primary_map), pset->pset_id)) {
atomic_bit_set(&node->pset_non_rt_primary_map, pset->pset_id, memory_order_relaxed);
}
if (!bit_test(atomic_load(&node->pset_idle_primary_map), pset->pset_id)) {
atomic_bit_set(&node->pset_idle_primary_map, pset->pset_id, memory_order_relaxed);
}
}
if (!bit_test(atomic_load(&node->pset_non_rt_map), pset->pset_id)) {
atomic_bit_set(&node->pset_non_rt_map, pset->pset_id, memory_order_relaxed);
}
if (!bit_test(atomic_load(&node->pset_idle_map), pset->pset_id)) {
atomic_bit_set(&node->pset_idle_map, pset->pset_id, memory_order_relaxed);
}
} else {
cpumap_t idle_map = pset->cpu_state_map[PROCESSOR_IDLE];
if (idle_map == 0) {
/* No more IDLE CPUs */
if (bit_test(atomic_load(&node->pset_idle_map), pset->pset_id)) {
atomic_bit_clear(&node->pset_idle_map, pset->pset_id, memory_order_relaxed);
}
}
if (processor->processor_primary == processor) {
idle_map &= pset->primary_map;
if (idle_map == 0) {
/* No more IDLE primary CPUs */
if (bit_test(atomic_load(&node->pset_idle_primary_map), pset->pset_id)) {
atomic_bit_clear(&node->pset_idle_primary_map, pset->pset_id, memory_order_relaxed);
}
}
}
}
}
}
#else /* MACH_KERNEL_PRIVATE */
__BEGIN_DECLS
extern void pset_deallocate(
processor_set_t pset);
extern void pset_reference(
processor_set_t pset);
__END_DECLS
#endif /* MACH_KERNEL_PRIVATE */
#ifdef KERNEL_PRIVATE
__BEGIN_DECLS
extern unsigned int processor_count;
extern processor_t cpu_to_processor(int cpu);
extern kern_return_t enable_smt_processors(bool enable);
__END_DECLS
#endif /* KERNEL_PRIVATE */
#endif /* _KERN_PROCESSOR_H_ */