darling-xnu/osfmk/kern/sched_multiq.c
2023-05-16 21:41:14 -07:00

1507 lines
42 KiB
C

/*
* Copyright (c) 2013-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <mach/mach_types.h>
#include <mach/machine.h>
#include <machine/machine_routines.h>
#include <machine/sched_param.h>
#include <machine/machine_cpu.h>
#include <kern/kern_types.h>
#include <kern/debug.h>
#include <kern/mach_param.h>
#include <kern/machine.h>
#include <kern/misc_protos.h>
#include <kern/processor.h>
#include <kern/queue.h>
#include <kern/sched.h>
#include <kern/sched_prim.h>
#include <kern/task.h>
#include <kern/thread.h>
#include <sys/kdebug.h>
/*
* Theory Statement
*
* How does the task scheduler work?
*
* It schedules threads across a few levels.
*
* RT threads are dealt with above us
* Bound threads go into the per-processor runq
* Non-bound threads are linked on their task's sched_group's runq
* sched_groups' sched_entries are linked on the pset's runq
*
* TODO: make this explicit - bound threads should have a different enqueue fxn
*
* When we choose a new thread, we will decide whether to look at the bound runqueue, the global runqueue
* or the current group's runqueue, then dequeue the next thread in that runqueue.
*
* We then manipulate the sched_entries to reflect the invariant that:
* Each non-empty priority level in a group's runq is represented by one sched_entry enqueued in the global
* runqueue.
*
* A sched_entry represents a chance at running - for each priority in each task, there is one chance of getting
* to run. This reduces the excess contention bonus given to processes which have work spread among many threads
* as compared to processes which do the same amount of work under fewer threads.
*
* NOTE: Currently, the multiq scheduler only supports one pset.
*
* NOTE ABOUT thread->sched_pri:
*
* It can change after enqueue - it's changed without pset lock but with thread lock if thread->runq is 0.
* Therefore we can only depend on it not changing during the enqueue and remove path, not the dequeue.
*
* TODO: Future features:
*
* Decouple the task priority from the sched_entry priority, allowing for:
* fast task priority change without having to iterate and re-dispatch all threads in the task.
* i.e. task-wide priority, task-wide boosting
* fancier group decay features
*
* Group (or task) decay:
* Decay is used for a few different things:
* Prioritizing latency-needing threads over throughput-needing threads for time-to-running
* Balancing work between threads in a process
* Balancing work done at the same priority between different processes
* Recovering from priority inversions between two threads in the same process
* Recovering from priority inversions between two threads in different processes
* Simulating a proportional share scheduler by allowing lower priority threads
* to run for a certain percentage of the time
*
* Task decay lets us separately address the 'same process' and 'different process' needs,
* which will allow us to make smarter tradeoffs in different cases.
* For example, we could resolve priority inversion in the same process by reordering threads without dropping the
* process below low priority threads in other processes.
*
* One lock to rule them all (or at least all the runqueues) instead of the pset locks
*
* Shrink sched_entry size to the size of a queue_chain_t by inferring priority, group, and perhaps runq field.
* The entries array is 5K currently so it'd be really great to reduce.
* One way to get sched_group below 4K without a new runq structure would be to remove the extra queues above realtime.
*
* When preempting a processor, store a flag saying if the preemption
* was from a thread in the same group or different group,
* and tell choose_thread about it.
*
* When choosing a processor, bias towards those running in the same
* group as I am running (at the same priority, or within a certain band?).
*
* Decide if we need to support psets.
* Decide how to support psets - do we need duplicate entries for each pset,
* or can we get away with putting the entry in either one or the other pset?
*
* Consider the right way to handle runq count - I don't want to iterate groups.
* Perhaps keep a global counter.
* Alternate option - remove it from choose_processor. It doesn't add much value
* now that we have global runq.
*
* Need a better way of finding group to target instead of looking at current_task.
* Perhaps choose_thread could pass in the current thread?
*
* Consider unifying runq copy-pastes.
*
* Thoughts on having a group central quantum bucket:
*
* I see two algorithms to decide quanta:
* A) Hand off only when switching thread to thread in the same group
* B) Allocate and return quanta to the group's pool
*
* Issues:
* If a task blocks completely, should it come back with the leftover quanta
* or brand new quanta?
*
* Should I put a flag saying zero out a quanta you grab when youre dispatched'?
*
* Resolution:
* Handing off quanta between threads will help with jumping around in the current task
* but will not help when a thread from a different task is involved.
* Need an algorithm that works with round robin-ing between threads in different tasks
*
* But wait - round robining can only be triggered by quantum expire or blocking.
* We need something that works with preemption or yielding - that's the more interesting idea.
*
* Existing algorithm - preemption doesn't re-set quantum, puts thread on head of runq.
* Blocking or quantum expiration does re-set quantum, puts thread on tail of runq.
*
* New algorithm -
* Hand off quanta when hopping between threads with same sched_group
* Even if thread was blocked it uses last thread remaining quanta when it starts.
*
* If we use the only cycle entry at quantum algorithm, then the quantum pool starts getting
* interesting.
*
* A thought - perhaps the handoff approach doesn't work so well in the presence of
* non-handoff wakeups i.e. wake other thread then wait then block - doesn't mean that
* woken thread will be what I switch to - other processor may have stolen it.
* What do we do there?
*
* Conclusions:
* We currently don't know of a scenario where quantum buckets on the task is beneficial.
* We will instead handoff quantum between threads in the task, and keep quantum
* on the preempted thread if it's preempted by something outside the task.
*
*/
#if DEBUG || DEVELOPMENT
#define MULTIQ_SANITY_CHECK
#endif
typedef struct sched_entry {
queue_chain_t entry_links;
int16_t sched_pri; /* scheduled (current) priority */
int16_t runq;
int32_t pad;
} *sched_entry_t;
typedef run_queue_t entry_queue_t; /* A run queue that holds sched_entries instead of threads */
typedef run_queue_t group_runq_t; /* A run queue that is part of a sched_group */
#define SCHED_ENTRY_NULL ((sched_entry_t) 0)
#define MULTIQ_ERUNQ (-4) /* Indicates entry is on the main runq */
/* Each level in the run queue corresponds to one entry in the entries array */
struct sched_group {
struct sched_entry entries[NRQS];
struct run_queue runq;
queue_chain_t sched_groups;
};
/*
* Keep entry on the head of the runqueue while dequeueing threads.
* Only cycle it to the end of the runqueue when a thread in the task
* hits its quantum.
*/
static boolean_t deep_drain = FALSE;
/* Verify the consistency of the runq before touching it */
static boolean_t multiq_sanity_check = FALSE;
/*
* Draining threads from the current task is preferred
* when they're less than X steps below the current
* global highest priority
*/
#define DEFAULT_DRAIN_BAND_LIMIT MAXPRI
static integer_t drain_band_limit;
/*
* Don't go below this priority level if there is something above it in another task
*/
#define DEFAULT_DRAIN_DEPTH_LIMIT MAXPRI_THROTTLE
static integer_t drain_depth_limit;
/*
* Don't favor the task when there's something above this priority in another task.
*/
#define DEFAULT_DRAIN_CEILING BASEPRI_FOREGROUND
static integer_t drain_ceiling;
static ZONE_DECLARE(sched_group_zone, "sched groups",
sizeof(struct sched_group), ZC_NOENCRYPT | ZC_NOCALLOUT);
static uint64_t num_sched_groups = 0;
static queue_head_t sched_groups;
static LCK_GRP_DECLARE(sched_groups_lock_grp, "sched_groups");
static LCK_MTX_DECLARE(sched_groups_lock, &sched_groups_lock_grp);
static void
sched_multiq_init(void);
static thread_t
sched_multiq_steal_thread(processor_set_t pset);
static void
sched_multiq_thread_update_scan(sched_update_scan_context_t scan_context);
static boolean_t
sched_multiq_processor_enqueue(processor_t processor, thread_t thread,
sched_options_t options);
static boolean_t
sched_multiq_processor_queue_remove(processor_t processor, thread_t thread);
void
sched_multiq_quantum_expire(thread_t thread);
static ast_t
sched_multiq_processor_csw_check(processor_t processor);
static boolean_t
sched_multiq_processor_queue_has_priority(processor_t processor, int priority, boolean_t gte);
static int
sched_multiq_runq_count(processor_t processor);
static boolean_t
sched_multiq_processor_queue_empty(processor_t processor);
static uint64_t
sched_multiq_runq_stats_count_sum(processor_t processor);
static int
sched_multiq_processor_bound_count(processor_t processor);
static void
sched_multiq_pset_init(processor_set_t pset);
static void
sched_multiq_processor_init(processor_t processor);
static thread_t
sched_multiq_choose_thread(processor_t processor, int priority, ast_t reason);
static void
sched_multiq_processor_queue_shutdown(processor_t processor);
static sched_mode_t
sched_multiq_initial_thread_sched_mode(task_t parent_task);
static bool
sched_multiq_thread_avoid_processor(processor_t processor, thread_t thread);
const struct sched_dispatch_table sched_multiq_dispatch = {
.sched_name = "multiq",
.init = sched_multiq_init,
.timebase_init = sched_timeshare_timebase_init,
.processor_init = sched_multiq_processor_init,
.pset_init = sched_multiq_pset_init,
.maintenance_continuation = sched_timeshare_maintenance_continue,
.choose_thread = sched_multiq_choose_thread,
.steal_thread_enabled = sched_steal_thread_DISABLED,
.steal_thread = sched_multiq_steal_thread,
.compute_timeshare_priority = sched_compute_timeshare_priority,
.choose_node = sched_choose_node,
.choose_processor = choose_processor,
.processor_enqueue = sched_multiq_processor_enqueue,
.processor_queue_shutdown = sched_multiq_processor_queue_shutdown,
.processor_queue_remove = sched_multiq_processor_queue_remove,
.processor_queue_empty = sched_multiq_processor_queue_empty,
.priority_is_urgent = priority_is_urgent,
.processor_csw_check = sched_multiq_processor_csw_check,
.processor_queue_has_priority = sched_multiq_processor_queue_has_priority,
.initial_quantum_size = sched_timeshare_initial_quantum_size,
.initial_thread_sched_mode = sched_multiq_initial_thread_sched_mode,
.can_update_priority = can_update_priority,
.update_priority = update_priority,
.lightweight_update_priority = lightweight_update_priority,
.quantum_expire = sched_multiq_quantum_expire,
.processor_runq_count = sched_multiq_runq_count,
.processor_runq_stats_count_sum = sched_multiq_runq_stats_count_sum,
.processor_bound_count = sched_multiq_processor_bound_count,
.thread_update_scan = sched_multiq_thread_update_scan,
.multiple_psets_enabled = FALSE,
.sched_groups_enabled = TRUE,
.avoid_processor_enabled = TRUE,
.thread_avoid_processor = sched_multiq_thread_avoid_processor,
.processor_balance = sched_SMT_balance,
.rt_runq = sched_rtlocal_runq,
.rt_init = sched_rtlocal_init,
.rt_queue_shutdown = sched_rtlocal_queue_shutdown,
.rt_runq_scan = sched_rtlocal_runq_scan,
.rt_runq_count_sum = sched_rtlocal_runq_count_sum,
.qos_max_parallelism = sched_qos_max_parallelism,
.check_spill = sched_check_spill,
.ipi_policy = sched_ipi_policy,
.thread_should_yield = sched_thread_should_yield,
.run_count_incr = sched_run_incr,
.run_count_decr = sched_run_decr,
.update_thread_bucket = sched_update_thread_bucket,
.pset_made_schedulable = sched_pset_made_schedulable,
};
static void
sched_multiq_init(void)
{
#if defined(MULTIQ_SANITY_CHECK)
PE_parse_boot_argn("-multiq-sanity-check", &multiq_sanity_check, sizeof(multiq_sanity_check));
#endif
PE_parse_boot_argn("-multiq-deep-drain", &deep_drain, sizeof(deep_drain));
if (!PE_parse_boot_argn("multiq_drain_ceiling", &drain_ceiling, sizeof(drain_ceiling))) {
drain_ceiling = DEFAULT_DRAIN_CEILING;
}
if (!PE_parse_boot_argn("multiq_drain_depth_limit", &drain_depth_limit, sizeof(drain_depth_limit))) {
drain_depth_limit = DEFAULT_DRAIN_DEPTH_LIMIT;
}
if (!PE_parse_boot_argn("multiq_drain_band_limit", &drain_band_limit, sizeof(drain_band_limit))) {
drain_band_limit = DEFAULT_DRAIN_BAND_LIMIT;
}
printf("multiq scheduler config: deep-drain %d, ceiling %d, depth limit %d, band limit %d, sanity check %d\n",
deep_drain, drain_ceiling, drain_depth_limit, drain_band_limit, multiq_sanity_check);
queue_init(&sched_groups);
sched_timeshare_init();
}
static void
sched_multiq_processor_init(processor_t processor)
{
run_queue_init(&processor->runq);
}
static void
sched_multiq_pset_init(processor_set_t pset)
{
run_queue_init(&pset->pset_runq);
}
static sched_mode_t
sched_multiq_initial_thread_sched_mode(task_t parent_task)
{
if (parent_task == kernel_task) {
return TH_MODE_FIXED;
} else {
return TH_MODE_TIMESHARE;
}
}
sched_group_t
sched_group_create(void)
{
sched_group_t sched_group;
if (!SCHED(sched_groups_enabled)) {
return SCHED_GROUP_NULL;
}
sched_group = (sched_group_t)zalloc(sched_group_zone);
bzero(sched_group, sizeof(struct sched_group));
run_queue_init(&sched_group->runq);
for (size_t i = 0; i < NRQS; i++) {
sched_group->entries[i].runq = 0;
sched_group->entries[i].sched_pri = (int16_t)i;
}
lck_mtx_lock(&sched_groups_lock);
queue_enter(&sched_groups, sched_group, sched_group_t, sched_groups);
num_sched_groups++;
lck_mtx_unlock(&sched_groups_lock);
return sched_group;
}
void
sched_group_destroy(sched_group_t sched_group)
{
if (!SCHED(sched_groups_enabled)) {
assert(sched_group == SCHED_GROUP_NULL);
return;
}
assert(sched_group != SCHED_GROUP_NULL);
assert(sched_group->runq.count == 0);
for (int i = 0; i < NRQS; i++) {
assert(sched_group->entries[i].runq == 0);
assert(sched_group->entries[i].sched_pri == i);
}
lck_mtx_lock(&sched_groups_lock);
queue_remove(&sched_groups, sched_group, sched_group_t, sched_groups);
num_sched_groups--;
lck_mtx_unlock(&sched_groups_lock);
zfree(sched_group_zone, sched_group);
}
__attribute__((always_inline))
static inline entry_queue_t
multiq_main_entryq(processor_t processor)
{
return (entry_queue_t)&processor->processor_set->pset_runq;
}
__attribute__((always_inline))
static inline run_queue_t
multiq_bound_runq(processor_t processor)
{
return &processor->runq;
}
__attribute__((always_inline))
static inline sched_entry_t
group_entry_for_pri(sched_group_t group, integer_t pri)
{
return &group->entries[pri];
}
__attribute__((always_inline))
static inline sched_group_t
group_for_entry(sched_entry_t entry)
{
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wcast-align"
sched_group_t group = (sched_group_t)(entry - entry->sched_pri);
#pragma clang diagnostic pop
return group;
}
/* Peek at the head of the runqueue */
static sched_entry_t
entry_queue_first_entry(entry_queue_t rq)
{
assert(rq->count != 0);
circle_queue_t queue = &rq->queues[rq->highq];
sched_entry_t entry = cqe_queue_first(queue, struct sched_entry, entry_links);
assert(entry->sched_pri == rq->highq);
return entry;
}
#if defined(MULTIQ_SANITY_CHECK)
#if MACH_ASSERT
__attribute__((always_inline))
static inline boolean_t
queue_chain_linked(queue_chain_t* chain)
{
if (chain->next != NULL) {
assert(chain->prev != NULL);
return TRUE;
} else {
assert(chain->prev == NULL);
return FALSE;
}
}
#endif /* MACH_ASSERT */
static thread_t
group_first_thread(sched_group_t group)
{
group_runq_t rq = &group->runq;
assert(rq->count != 0);
circle_queue_t queue = &rq->queues[rq->highq];
thread_t thread = cqe_queue_first(queue, struct thread, runq_links);
assert(thread != THREAD_NULL);
assert_thread_magic(thread);
assert(thread->sched_group == group);
/* TODO: May not be safe */
assert(thread->sched_pri == rq->highq);
return thread;
}
/* Asserts if entry is not in entry runq at pri */
static void
entry_queue_check_entry(entry_queue_t runq, sched_entry_t entry, int expected_pri)
{
circle_queue_t q;
sched_entry_t elem;
assert(queue_chain_linked(&entry->entry_links));
assert(entry->runq == MULTIQ_ERUNQ);
q = &runq->queues[expected_pri];
cqe_foreach_element(elem, q, entry_links) {
if (elem == entry) {
return;
}
}
panic("runq %p doesn't contain entry %p at pri %d", runq, entry, expected_pri);
}
/* Asserts if thread is not in group at its priority */
static void
sched_group_check_thread(sched_group_t group, thread_t thread)
{
circle_queue_t q;
thread_t elem;
int pri = thread->sched_pri;
assert(thread->runq != PROCESSOR_NULL);
q = &group->runq.queues[pri];
cqe_foreach_element(elem, q, runq_links) {
if (elem == thread) {
return;
}
}
panic("group %p doesn't contain thread %p at pri %d", group, thread, pri);
}
static void
global_check_entry_queue(entry_queue_t main_entryq)
{
if (main_entryq->count == 0) {
return;
}
sched_entry_t entry = entry_queue_first_entry(main_entryq);
assert(entry->runq == MULTIQ_ERUNQ);
sched_group_t group = group_for_entry(entry);
thread_t thread = group_first_thread(group);
__assert_only sched_entry_t thread_entry = group_entry_for_pri(thread->sched_group, thread->sched_pri);
assert(entry->sched_pri == group->runq.highq);
assert(entry == thread_entry);
assert(thread->runq != PROCESSOR_NULL);
}
static void
group_check_run_queue(entry_queue_t main_entryq, sched_group_t group)
{
if (group->runq.count == 0) {
return;
}
thread_t thread = group_first_thread(group);
assert(thread->runq != PROCESSOR_NULL);
sched_entry_t sched_entry = group_entry_for_pri(thread->sched_group, thread->sched_pri);
entry_queue_check_entry(main_entryq, sched_entry, thread->sched_pri);
assert(sched_entry->sched_pri == thread->sched_pri);
assert(sched_entry->runq == MULTIQ_ERUNQ);
}
#endif /* defined(MULTIQ_SANITY_CHECK) */
/*
* The run queue must not be empty.
*/
static sched_entry_t
entry_queue_dequeue_entry(entry_queue_t rq)
{
sched_entry_t sched_entry;
circle_queue_t queue = &rq->queues[rq->highq];
assert(rq->count > 0);
assert(!circle_queue_empty(queue));
sched_entry = cqe_dequeue_head(queue, struct sched_entry, entry_links);
SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
rq->count--;
if (SCHED(priority_is_urgent)(rq->highq)) {
rq->urgency--; assert(rq->urgency >= 0);
}
if (circle_queue_empty(queue)) {
rq_bitmap_clear(rq->bitmap, rq->highq);
rq->highq = bitmap_first(rq->bitmap, NRQS);
}
sched_entry->runq = 0;
return sched_entry;
}
/*
* The run queue must not be empty.
*/
static boolean_t
entry_queue_enqueue_entry(
entry_queue_t rq,
sched_entry_t entry,
integer_t options)
{
int sched_pri = entry->sched_pri;
circle_queue_t queue = &rq->queues[sched_pri];
boolean_t result = FALSE;
assert(entry->runq == 0);
if (circle_queue_empty(queue)) {
circle_enqueue_tail(queue, &entry->entry_links);
rq_bitmap_set(rq->bitmap, sched_pri);
if (sched_pri > rq->highq) {
rq->highq = sched_pri;
result = TRUE;
}
} else {
if (options & SCHED_TAILQ) {
circle_enqueue_tail(queue, &entry->entry_links);
} else {
circle_enqueue_head(queue, &entry->entry_links);
}
}
if (SCHED(priority_is_urgent)(sched_pri)) {
rq->urgency++;
}
SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
rq->count++;
entry->runq = MULTIQ_ERUNQ;
return result;
}
/*
* The entry must be in this runqueue.
*/
static void
entry_queue_remove_entry(
entry_queue_t rq,
sched_entry_t entry)
{
int sched_pri = entry->sched_pri;
#if defined(MULTIQ_SANITY_CHECK)
if (multiq_sanity_check) {
entry_queue_check_entry(rq, entry, sched_pri);
}
#endif
remqueue(&entry->entry_links);
SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
rq->count--;
if (SCHED(priority_is_urgent)(sched_pri)) {
rq->urgency--; assert(rq->urgency >= 0);
}
if (circle_queue_empty(&rq->queues[sched_pri])) {
/* update run queue status */
rq_bitmap_clear(rq->bitmap, sched_pri);
rq->highq = bitmap_first(rq->bitmap, NRQS);
}
entry->runq = 0;
}
static void
entry_queue_change_entry(
entry_queue_t rq,
sched_entry_t entry,
integer_t options)
{
int sched_pri = entry->sched_pri;
circle_queue_t queue = &rq->queues[sched_pri];
#if defined(MULTIQ_SANITY_CHECK)
if (multiq_sanity_check) {
entry_queue_check_entry(rq, entry, sched_pri);
}
#endif
circle_dequeue(queue, &entry->entry_links);
if (options & SCHED_TAILQ) {
circle_enqueue_tail(queue, &entry->entry_links);
} else {
circle_enqueue_head(queue, &entry->entry_links);
}
}
/*
* The run queue must not be empty.
*
* sets queue_empty to TRUE if queue is now empty at thread_pri
*/
static thread_t
group_run_queue_dequeue_thread(
group_runq_t rq,
integer_t *thread_pri,
boolean_t *queue_empty)
{
thread_t thread;
circle_queue_t queue = &rq->queues[rq->highq];
assert(rq->count > 0);
assert(!circle_queue_empty(queue));
*thread_pri = rq->highq;
thread = cqe_dequeue_head(queue, struct thread, runq_links);
assert_thread_magic(thread);
SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
rq->count--;
if (SCHED(priority_is_urgent)(rq->highq)) {
rq->urgency--; assert(rq->urgency >= 0);
}
if (circle_queue_empty(queue)) {
rq_bitmap_clear(rq->bitmap, rq->highq);
rq->highq = bitmap_first(rq->bitmap, NRQS);
*queue_empty = TRUE;
} else {
*queue_empty = FALSE;
}
return thread;
}
/*
* The run queue must not be empty.
* returns TRUE if queue was empty at thread_pri
*/
static boolean_t
group_run_queue_enqueue_thread(
group_runq_t rq,
thread_t thread,
integer_t thread_pri,
integer_t options)
{
circle_queue_t queue = &rq->queues[thread_pri];
boolean_t result = FALSE;
assert(thread->runq == PROCESSOR_NULL);
assert_thread_magic(thread);
if (circle_queue_empty(queue)) {
circle_enqueue_tail(queue, &thread->runq_links);
rq_bitmap_set(rq->bitmap, thread_pri);
if (thread_pri > rq->highq) {
rq->highq = thread_pri;
}
result = TRUE;
} else {
if (options & SCHED_TAILQ) {
circle_enqueue_tail(queue, &thread->runq_links);
} else {
circle_enqueue_head(queue, &thread->runq_links);
}
}
if (SCHED(priority_is_urgent)(thread_pri)) {
rq->urgency++;
}
SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
rq->count++;
return result;
}
/*
* The thread must be in this runqueue.
* returns TRUE if queue is now empty at thread_pri
*/
static boolean_t
group_run_queue_remove_thread(
group_runq_t rq,
thread_t thread,
integer_t thread_pri)
{
circle_queue_t queue = &rq->queues[thread_pri];
boolean_t result = FALSE;
assert_thread_magic(thread);
assert(thread->runq != PROCESSOR_NULL);
circle_dequeue(queue, &thread->runq_links);
SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
rq->count--;
if (SCHED(priority_is_urgent)(thread_pri)) {
rq->urgency--; assert(rq->urgency >= 0);
}
if (circle_queue_empty(queue)) {
/* update run queue status */
rq_bitmap_clear(rq->bitmap, thread_pri);
rq->highq = bitmap_first(rq->bitmap, NRQS);
result = TRUE;
}
thread->runq = PROCESSOR_NULL;
return result;
}
/*
* A thread's sched pri may change out from under us because
* we're clearing thread->runq here without the thread locked.
* Do not rely on it to be the same as when we enqueued.
*/
static thread_t
sched_global_dequeue_thread(entry_queue_t main_entryq)
{
boolean_t pri_level_empty = FALSE;
sched_entry_t entry;
group_runq_t group_runq;
thread_t thread;
integer_t thread_pri;
sched_group_t group;
assert(main_entryq->count > 0);
entry = entry_queue_dequeue_entry(main_entryq);
group = group_for_entry(entry);
group_runq = &group->runq;
thread = group_run_queue_dequeue_thread(group_runq, &thread_pri, &pri_level_empty);
thread->runq = PROCESSOR_NULL;
if (!pri_level_empty) {
entry_queue_enqueue_entry(main_entryq, entry, SCHED_TAILQ);
}
return thread;
}
/* Dequeue a thread from the global runq without moving the entry */
static thread_t
sched_global_deep_drain_dequeue_thread(entry_queue_t main_entryq)
{
boolean_t pri_level_empty = FALSE;
sched_entry_t entry;
group_runq_t group_runq;
thread_t thread;
integer_t thread_pri;
sched_group_t group;
assert(main_entryq->count > 0);
entry = entry_queue_first_entry(main_entryq);
group = group_for_entry(entry);
group_runq = &group->runq;
thread = group_run_queue_dequeue_thread(group_runq, &thread_pri, &pri_level_empty);
thread->runq = PROCESSOR_NULL;
if (pri_level_empty) {
entry_queue_remove_entry(main_entryq, entry);
}
return thread;
}
static thread_t
sched_group_dequeue_thread(
entry_queue_t main_entryq,
sched_group_t group)
{
group_runq_t group_runq = &group->runq;
boolean_t pri_level_empty = FALSE;
thread_t thread;
integer_t thread_pri;
thread = group_run_queue_dequeue_thread(group_runq, &thread_pri, &pri_level_empty);
thread->runq = PROCESSOR_NULL;
if (pri_level_empty) {
entry_queue_remove_entry(main_entryq, group_entry_for_pri(group, thread_pri));
}
return thread;
}
static void
sched_group_remove_thread(
entry_queue_t main_entryq,
sched_group_t group,
thread_t thread)
{
integer_t thread_pri = thread->sched_pri;
sched_entry_t sched_entry = group_entry_for_pri(group, thread_pri);
#if defined(MULTIQ_SANITY_CHECK)
if (multiq_sanity_check) {
global_check_entry_queue(main_entryq);
group_check_run_queue(main_entryq, group);
sched_group_check_thread(group, thread);
entry_queue_check_entry(main_entryq, sched_entry, thread_pri);
}
#endif
boolean_t pri_level_empty = group_run_queue_remove_thread(&group->runq, thread, thread_pri);
if (pri_level_empty) {
entry_queue_remove_entry(main_entryq, sched_entry);
}
#if defined(MULTIQ_SANITY_CHECK)
if (multiq_sanity_check) {
global_check_entry_queue(main_entryq);
group_check_run_queue(main_entryq, group);
}
#endif
}
static void
sched_group_enqueue_thread(
entry_queue_t main_entryq,
sched_group_t group,
thread_t thread,
integer_t options)
{
#if defined(MULTIQ_SANITY_CHECK)
if (multiq_sanity_check) {
global_check_entry_queue(main_entryq);
group_check_run_queue(main_entryq, group);
}
#endif
int sched_pri = thread->sched_pri;
boolean_t pri_level_was_empty = group_run_queue_enqueue_thread(&group->runq, thread, sched_pri, options);
if (pri_level_was_empty) {
/*
* TODO: Need to figure out if passing options here is a good idea or not
* What effects would it have?
*/
entry_queue_enqueue_entry(main_entryq, &group->entries[sched_pri], options);
} else if (options & SCHED_HEADQ) {
/* The thread should be at the head of the line - move its entry to the front */
entry_queue_change_entry(main_entryq, &group->entries[sched_pri], options);
}
}
/*
* Locate a thread to execute from the run queue and return it.
* Only choose a thread with greater or equal priority.
*
* pset is locked, thread is not locked.
*
* Returns THREAD_NULL if it cannot find a valid thread.
*
* Note: we cannot rely on the value of thread->sched_pri in this path because
* we don't have the thread locked.
*
* TODO: Remove tracepoints
*/
static thread_t
sched_multiq_choose_thread(
processor_t processor,
int priority,
ast_t reason)
{
entry_queue_t main_entryq = multiq_main_entryq(processor);
run_queue_t bound_runq = multiq_bound_runq(processor);
boolean_t choose_bound_runq = FALSE;
if (bound_runq->highq < priority &&
main_entryq->highq < priority) {
return THREAD_NULL;
}
if (bound_runq->count && main_entryq->count) {
if (bound_runq->highq >= main_entryq->highq) {
choose_bound_runq = TRUE;
} else {
/* Use main runq */
}
} else if (bound_runq->count) {
choose_bound_runq = TRUE;
} else if (main_entryq->count) {
/* Use main runq */
} else {
return THREAD_NULL;
}
if (choose_bound_runq) {
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
MACHDBG_CODE(DBG_MACH_SCHED, MACH_MULTIQ_DEQUEUE) | DBG_FUNC_NONE,
MACH_MULTIQ_BOUND, main_entryq->highq, bound_runq->highq, 0, 0);
return run_queue_dequeue(bound_runq, SCHED_HEADQ);
}
sched_group_t group = current_thread()->sched_group;
#if defined(MULTIQ_SANITY_CHECK)
if (multiq_sanity_check) {
global_check_entry_queue(main_entryq);
group_check_run_queue(main_entryq, group);
}
#endif
/*
* Determine if we should look at the group or the global queue
*
* TODO:
* Perhaps pass reason as a 'should look inside' argument to choose_thread
* Should YIELD AST override drain limit?
*/
if (group->runq.count != 0 && (reason & AST_PREEMPTION) == 0) {
boolean_t favor_group = TRUE;
integer_t global_pri = main_entryq->highq;
integer_t group_pri = group->runq.highq;
/*
* Favor the current group if the group is still the globally highest.
*
* Otherwise, consider choosing a thread from the current group
* even if it's lower priority than the global highest priority.
*/
if (global_pri > group_pri) {
/*
* If there's something elsewhere above the depth limit,
* don't pick a thread below the limit.
*/
if (global_pri > drain_depth_limit && group_pri <= drain_depth_limit) {
favor_group = FALSE;
}
/*
* If there's something at or above the ceiling,
* don't favor the group.
*/
if (global_pri >= drain_ceiling) {
favor_group = FALSE;
}
/*
* Don't go more than X steps below the global highest
*/
if ((global_pri - group_pri) >= drain_band_limit) {
favor_group = FALSE;
}
}
if (favor_group) {
/* Pull from local runq */
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
MACHDBG_CODE(DBG_MACH_SCHED, MACH_MULTIQ_DEQUEUE) | DBG_FUNC_NONE,
MACH_MULTIQ_GROUP, global_pri, group_pri, 0, 0);
return sched_group_dequeue_thread(main_entryq, group);
}
}
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
MACHDBG_CODE(DBG_MACH_SCHED, MACH_MULTIQ_DEQUEUE) | DBG_FUNC_NONE,
MACH_MULTIQ_GLOBAL, main_entryq->highq, group->runq.highq, 0, 0);
/* Couldn't pull from local runq, pull from global runq instead */
if (deep_drain) {
return sched_global_deep_drain_dequeue_thread(main_entryq);
} else {
return sched_global_dequeue_thread(main_entryq);
}
}
/*
* Thread must be locked, and not already be on a run queue.
* pset is locked.
*/
static boolean_t
sched_multiq_processor_enqueue(
processor_t processor,
thread_t thread,
sched_options_t options)
{
boolean_t result;
assert(processor == thread->chosen_processor);
if (thread->bound_processor != PROCESSOR_NULL) {
assert(thread->bound_processor == processor);
result = run_queue_enqueue(multiq_bound_runq(processor), thread, options);
thread->runq = processor;
return result;
}
sched_group_enqueue_thread(multiq_main_entryq(processor),
thread->sched_group,
thread, options);
thread->runq = processor;
return FALSE;
}
/*
* Called in the context of thread with thread and pset unlocked,
* after updating thread priority but before propagating that priority
* to the processor
*/
void
sched_multiq_quantum_expire(thread_t thread)
{
if (deep_drain) {
/*
* Move the entry at this priority to the end of the queue,
* to allow the next task a shot at running.
*/
processor_t processor = thread->last_processor;
processor_set_t pset = processor->processor_set;
entry_queue_t entryq = multiq_main_entryq(processor);
pset_lock(pset);
sched_entry_t entry = group_entry_for_pri(thread->sched_group, processor->current_pri);
if (entry->runq == MULTIQ_ERUNQ) {
entry_queue_change_entry(entryq, entry, SCHED_TAILQ);
}
pset_unlock(pset);
}
}
static boolean_t
sched_multiq_processor_queue_empty(processor_t processor)
{
return multiq_main_entryq(processor)->count == 0 &&
multiq_bound_runq(processor)->count == 0;
}
static ast_t
sched_multiq_processor_csw_check(processor_t processor)
{
boolean_t has_higher;
int pri;
if (sched_multiq_thread_avoid_processor(processor, current_thread())) {
return AST_PREEMPT | AST_URGENT;
}
entry_queue_t main_entryq = multiq_main_entryq(processor);
run_queue_t bound_runq = multiq_bound_runq(processor);
assert(processor->active_thread != NULL);
pri = MAX(main_entryq->highq, bound_runq->highq);
if (processor->first_timeslice) {
has_higher = (pri > processor->current_pri);
} else {
has_higher = (pri >= processor->current_pri);
}
if (has_higher) {
if (main_entryq->urgency > 0) {
return AST_PREEMPT | AST_URGENT;
}
if (bound_runq->urgency > 0) {
return AST_PREEMPT | AST_URGENT;
}
return AST_PREEMPT;
}
return AST_NONE;
}
static boolean_t
sched_multiq_processor_queue_has_priority(
processor_t processor,
int priority,
boolean_t gte)
{
run_queue_t main_runq = multiq_main_entryq(processor);
run_queue_t bound_runq = multiq_bound_runq(processor);
int qpri = MAX(main_runq->highq, bound_runq->highq);
if (gte) {
return qpri >= priority;
} else {
return qpri > priority;
}
}
static int
sched_multiq_runq_count(processor_t processor)
{
/*
* TODO: Decide whether to keep a count of runnable threads in the pset
* or just return something less than the true count.
*
* This needs to be fast, so no iterating the whole runq.
*
* Another possible decision is to remove this - with global runq
* it doesn't make much sense.
*/
return multiq_main_entryq(processor)->count + multiq_bound_runq(processor)->count;
}
static uint64_t
sched_multiq_runq_stats_count_sum(processor_t processor)
{
/*
* TODO: This one does need to go through all the runqueues, but it's only needed for
* the sched stats tool
*/
uint64_t bound_sum = multiq_bound_runq(processor)->runq_stats.count_sum;
if (processor->cpu_id == processor->processor_set->cpu_set_low) {
return bound_sum + multiq_main_entryq(processor)->runq_stats.count_sum;
} else {
return bound_sum;
}
}
static int
sched_multiq_processor_bound_count(processor_t processor)
{
return multiq_bound_runq(processor)->count;
}
static void
sched_multiq_processor_queue_shutdown(processor_t processor)
{
processor_set_t pset = processor->processor_set;
entry_queue_t main_entryq = multiq_main_entryq(processor);
thread_t thread;
queue_head_t tqueue;
/* We only need to migrate threads if this is the last active processor in the pset */
if (pset->online_processor_count > 0) {
pset_unlock(pset);
return;
}
queue_init(&tqueue);
/* Note that we do not remove bound threads from the queues here */
while (main_entryq->count > 0) {
thread = sched_global_dequeue_thread(main_entryq);
enqueue_tail(&tqueue, &thread->runq_links);
}
pset_unlock(pset);
qe_foreach_element_safe(thread, &tqueue, runq_links) {
remqueue(&thread->runq_links);
thread_lock(thread);
thread_setrun(thread, SCHED_TAILQ);
thread_unlock(thread);
}
}
/*
* Thread is locked
*
* This is why we can never read sched_pri unless we have the thread locked.
* Which we do in the enqueue and remove cases, but not the dequeue case.
*/
static boolean_t
sched_multiq_processor_queue_remove(
processor_t processor,
thread_t thread)
{
boolean_t removed = FALSE;
processor_set_t pset = processor->processor_set;
pset_lock(pset);
if (thread->runq != PROCESSOR_NULL) {
/*
* Thread is on a run queue and we have a lock on
* that run queue.
*/
assert(thread->runq == processor);
if (thread->bound_processor != PROCESSOR_NULL) {
assert(processor == thread->bound_processor);
run_queue_remove(multiq_bound_runq(processor), thread);
thread->runq = PROCESSOR_NULL;
} else {
sched_group_remove_thread(multiq_main_entryq(processor),
thread->sched_group,
thread);
}
removed = TRUE;
}
pset_unlock(pset);
return removed;
}
/* pset is locked, returned unlocked */
static thread_t
sched_multiq_steal_thread(processor_set_t pset)
{
pset_unlock(pset);
return THREAD_NULL;
}
/*
* Scan the global queue for candidate groups, and scan those groups for
* candidate threads.
*
* TODO: This iterates every group runq in its entirety for each entry it has in the runq, which is O(N^2)
* Instead, iterate only the queue in the group runq matching the priority of the entry.
*
* Returns TRUE if retry is needed.
*/
static boolean_t
group_scan(entry_queue_t runq, sched_update_scan_context_t scan_context)
{
int count = runq->count;
int queue_index;
assert(count >= 0);
if (count == 0) {
return FALSE;
}
for (queue_index = bitmap_first(runq->bitmap, NRQS);
queue_index >= 0;
queue_index = bitmap_next(runq->bitmap, queue_index)) {
sched_entry_t entry;
cqe_foreach_element(entry, &runq->queues[queue_index], entry_links) {
assert(count > 0);
sched_group_t group = group_for_entry(entry);
if (group->runq.count > 0) {
if (runq_scan(&group->runq, scan_context)) {
return TRUE;
}
}
count--;
}
}
return FALSE;
}
static void
sched_multiq_thread_update_scan(sched_update_scan_context_t scan_context)
{
boolean_t restart_needed = FALSE;
processor_t processor = processor_list;
processor_set_t pset;
thread_t thread;
spl_t s;
/*
* We update the threads associated with each processor (bound and idle threads)
* and then update the threads in each pset runqueue.
*/
do {
do {
pset = processor->processor_set;
s = splsched();
pset_lock(pset);
restart_needed = runq_scan(multiq_bound_runq(processor), scan_context);
pset_unlock(pset);
splx(s);
if (restart_needed) {
break;
}
thread = processor->idle_thread;
if (thread != THREAD_NULL && thread->sched_stamp != sched_tick) {
if (thread_update_add_thread(thread) == FALSE) {
restart_needed = TRUE;
break;
}
}
} while ((processor = processor->processor_list) != NULL);
/* Ok, we now have a collection of candidates -- fix them. */
thread_update_process_threads();
} while (restart_needed);
pset = &pset0;
do {
do {
s = splsched();
pset_lock(pset);
restart_needed = group_scan(&pset->pset_runq, scan_context);
pset_unlock(pset);
splx(s);
if (restart_needed) {
break;
}
} while ((pset = pset->pset_list) != NULL);
/* Ok, we now have a collection of candidates -- fix them. */
thread_update_process_threads();
} while (restart_needed);
}
extern int sched_allow_rt_smt;
/* Return true if this thread should not continue running on this processor */
static bool
sched_multiq_thread_avoid_processor(processor_t processor, thread_t thread)
{
if (processor->processor_primary != processor) {
/*
* This is a secondary SMT processor. If the primary is running
* a realtime thread, only allow realtime threads on the secondary.
*/
if ((processor->processor_primary->current_pri >= BASEPRI_RTQUEUES) && ((thread->sched_pri < BASEPRI_RTQUEUES) || !sched_allow_rt_smt)) {
return true;
}
}
return false;
}