darling-xnu/osfmk/kern/telemetry.c
2023-05-16 21:41:14 -07:00

1287 lines
39 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2012-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <mach/host_priv.h>
#include <mach/host_special_ports.h>
#include <mach/mach_types.h>
#include <mach/telemetry_notification_server.h>
#include <kern/assert.h>
#include <kern/clock.h>
#include <kern/debug.h>
#include <kern/host.h>
#include <kern/kalloc.h>
#include <kern/kern_types.h>
#include <kern/locks.h>
#include <kern/misc_protos.h>
#include <kern/sched.h>
#include <kern/sched_prim.h>
#include <kern/telemetry.h>
#include <kern/timer_call.h>
#include <kern/policy_internal.h>
#include <kern/kcdata.h>
#include <pexpert/pexpert.h>
#include <vm/vm_kern.h>
#include <vm/vm_shared_region.h>
#include <kperf/callstack.h>
#include <kern/backtrace.h>
#include <kern/monotonic.h>
#include <sys/kdebug.h>
#include <uuid/uuid.h>
#include <kdp/kdp_dyld.h>
#define TELEMETRY_DEBUG 0
struct proc;
extern int proc_pid(struct proc *);
extern char *proc_name_address(void *p);
extern uint64_t proc_uniqueid(void *p);
extern uint64_t proc_was_throttled(void *p);
extern uint64_t proc_did_throttle(void *p);
extern int proc_selfpid(void);
extern boolean_t task_did_exec(task_t task);
extern boolean_t task_is_exec_copy(task_t task);
struct micro_snapshot_buffer {
vm_offset_t buffer;
uint32_t size;
uint32_t current_position;
uint32_t end_point;
};
void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer);
int telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer);
#define TELEMETRY_DEFAULT_SAMPLE_RATE (1) /* 1 sample every 1 second */
#define TELEMETRY_DEFAULT_BUFFER_SIZE (16*1024)
#define TELEMETRY_MAX_BUFFER_SIZE (64*1024)
#define TELEMETRY_DEFAULT_NOTIFY_LEEWAY (4*1024) // Userland gets 4k of leeway to collect data after notification
#define TELEMETRY_MAX_UUID_COUNT (128) // Max of 128 non-shared-cache UUIDs to log for symbolication
uint32_t telemetry_sample_rate = 0;
volatile boolean_t telemetry_needs_record = FALSE;
volatile boolean_t telemetry_needs_timer_arming_record = FALSE;
/*
* If TRUE, record micro-stackshot samples for all tasks.
* If FALSE, only sample tasks which are marked for telemetry.
*/
boolean_t telemetry_sample_all_tasks = FALSE;
boolean_t telemetry_sample_pmis = FALSE;
uint32_t telemetry_active_tasks = 0; // Number of tasks opted into telemetry
uint32_t telemetry_timestamp = 0;
/*
* The telemetry_buffer is responsible
* for timer samples and interrupt samples that are driven by
* compute_averages(). It will notify its client (if one
* exists) when it has enough data to be worth flushing.
*/
struct micro_snapshot_buffer telemetry_buffer = {
.buffer = 0,
.size = 0,
.current_position = 0,
.end_point = 0
};
int telemetry_bytes_since_last_mark = -1; // How much data since buf was last marked?
int telemetry_buffer_notify_at = 0;
LCK_GRP_DECLARE(telemetry_lck_grp, "telemetry group");
LCK_MTX_DECLARE(telemetry_mtx, &telemetry_lck_grp);
LCK_MTX_DECLARE(telemetry_pmi_mtx, &telemetry_lck_grp);
#define TELEMETRY_LOCK() do { lck_mtx_lock(&telemetry_mtx); } while (0)
#define TELEMETRY_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&telemetry_mtx)
#define TELEMETRY_UNLOCK() do { lck_mtx_unlock(&telemetry_mtx); } while (0)
#define TELEMETRY_PMI_LOCK() do { lck_mtx_lock(&telemetry_pmi_mtx); } while (0)
#define TELEMETRY_PMI_UNLOCK() do { lck_mtx_unlock(&telemetry_pmi_mtx); } while (0)
void
telemetry_init(void)
{
kern_return_t ret;
uint32_t telemetry_notification_leeway;
if (!PE_parse_boot_argn("telemetry_buffer_size",
&telemetry_buffer.size, sizeof(telemetry_buffer.size))) {
telemetry_buffer.size = TELEMETRY_DEFAULT_BUFFER_SIZE;
}
if (telemetry_buffer.size > TELEMETRY_MAX_BUFFER_SIZE) {
telemetry_buffer.size = TELEMETRY_MAX_BUFFER_SIZE;
}
ret = kmem_alloc(kernel_map, &telemetry_buffer.buffer, telemetry_buffer.size, VM_KERN_MEMORY_DIAG);
if (ret != KERN_SUCCESS) {
kprintf("Telemetry: Allocation failed: %d\n", ret);
return;
}
bzero((void *) telemetry_buffer.buffer, telemetry_buffer.size);
if (!PE_parse_boot_argn("telemetry_notification_leeway",
&telemetry_notification_leeway, sizeof(telemetry_notification_leeway))) {
/*
* By default, notify the user to collect the buffer when there is this much space left in the buffer.
*/
telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY;
}
if (telemetry_notification_leeway >= telemetry_buffer.size) {
printf("telemetry: nonsensical telemetry_notification_leeway boot-arg %d changed to %d\n",
telemetry_notification_leeway, TELEMETRY_DEFAULT_NOTIFY_LEEWAY);
telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY;
}
telemetry_buffer_notify_at = telemetry_buffer.size - telemetry_notification_leeway;
if (!PE_parse_boot_argn("telemetry_sample_rate",
&telemetry_sample_rate, sizeof(telemetry_sample_rate))) {
telemetry_sample_rate = TELEMETRY_DEFAULT_SAMPLE_RATE;
}
/*
* To enable telemetry for all tasks, include "telemetry_sample_all_tasks=1" in boot-args.
*/
if (!PE_parse_boot_argn("telemetry_sample_all_tasks",
&telemetry_sample_all_tasks, sizeof(telemetry_sample_all_tasks))) {
#if !defined(XNU_TARGET_OS_OSX) && !(DEVELOPMENT || DEBUG)
telemetry_sample_all_tasks = FALSE;
#else
telemetry_sample_all_tasks = TRUE;
#endif /* !defined(XNU_TARGET_OS_OSX) && !(DEVELOPMENT || DEBUG) */
}
kprintf("Telemetry: Sampling %stasks once per %u second%s\n",
(telemetry_sample_all_tasks) ? "all " : "",
telemetry_sample_rate, telemetry_sample_rate == 1 ? "" : "s");
}
/*
* Enable or disable global microstackshots (ie telemetry_sample_all_tasks).
*
* enable_disable == 1: turn it on
* enable_disable == 0: turn it off
*/
void
telemetry_global_ctl(int enable_disable)
{
if (enable_disable == 1) {
telemetry_sample_all_tasks = TRUE;
} else {
telemetry_sample_all_tasks = FALSE;
}
}
/*
* Opt the given task into or out of the telemetry stream.
*
* Supported reasons (callers may use any or all of):
* TF_CPUMON_WARNING
* TF_WAKEMON_WARNING
*
* enable_disable == 1: turn it on
* enable_disable == 0: turn it off
*/
void
telemetry_task_ctl(task_t task, uint32_t reasons, int enable_disable)
{
task_lock(task);
telemetry_task_ctl_locked(task, reasons, enable_disable);
task_unlock(task);
}
void
telemetry_task_ctl_locked(task_t task, uint32_t reasons, int enable_disable)
{
uint32_t origflags;
assert((reasons != 0) && ((reasons | TF_TELEMETRY) == TF_TELEMETRY));
task_lock_assert_owned(task);
origflags = task->t_flags;
if (enable_disable == 1) {
task->t_flags |= reasons;
if ((origflags & TF_TELEMETRY) == 0) {
OSIncrementAtomic(&telemetry_active_tasks);
#if TELEMETRY_DEBUG
printf("%s: telemetry OFF -> ON (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks);
#endif
}
} else {
task->t_flags &= ~reasons;
if (((origflags & TF_TELEMETRY) != 0) && ((task->t_flags & TF_TELEMETRY) == 0)) {
/*
* If this task went from having at least one telemetry bit to having none,
* the net change was to disable telemetry for the task.
*/
OSDecrementAtomic(&telemetry_active_tasks);
#if TELEMETRY_DEBUG
printf("%s: telemetry ON -> OFF (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks);
#endif
}
}
}
/*
* Determine if the current thread is eligible for telemetry:
*
* telemetry_sample_all_tasks: All threads are eligible. This takes precedence.
* telemetry_active_tasks: Count of tasks opted in.
* task->t_flags & TF_TELEMETRY: This task is opted in.
*/
static boolean_t
telemetry_is_active(thread_t thread)
{
task_t task = thread->task;
if (task == kernel_task) {
/* Kernel threads never return to an AST boundary, and are ineligible */
return FALSE;
}
if (telemetry_sample_all_tasks || telemetry_sample_pmis) {
return TRUE;
}
if ((telemetry_active_tasks > 0) && ((thread->task->t_flags & TF_TELEMETRY) != 0)) {
return TRUE;
}
return FALSE;
}
/*
* Userland is arming a timer. If we are eligible for such a record,
* sample now. No need to do this one at the AST because we're already at
* a safe place in this system call.
*/
int
telemetry_timer_event(__unused uint64_t deadline, __unused uint64_t interval, __unused uint64_t leeway)
{
if (telemetry_needs_timer_arming_record == TRUE) {
telemetry_needs_timer_arming_record = FALSE;
telemetry_take_sample(current_thread(), kTimerArmingRecord | kUserMode, &telemetry_buffer);
}
return 0;
}
#if defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES)
static void
telemetry_pmi_handler(bool user_mode, __unused void *ctx)
{
telemetry_mark_curthread(user_mode, TRUE);
}
#endif /* defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES) */
int
telemetry_pmi_setup(enum telemetry_pmi pmi_ctr, uint64_t period)
{
#if defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES)
static boolean_t sample_all_tasks_aside = FALSE;
static uint32_t active_tasks_aside = FALSE;
int error = 0;
const char *name = "?";
unsigned int ctr = 0;
TELEMETRY_PMI_LOCK();
switch (pmi_ctr) {
case TELEMETRY_PMI_NONE:
if (!telemetry_sample_pmis) {
error = 1;
goto out;
}
telemetry_sample_pmis = FALSE;
telemetry_sample_all_tasks = sample_all_tasks_aside;
telemetry_active_tasks = active_tasks_aside;
error = mt_microstackshot_stop();
if (!error) {
printf("telemetry: disabling ustackshot on PMI\n");
}
goto out;
case TELEMETRY_PMI_INSTRS:
ctr = MT_CORE_INSTRS;
name = "instructions";
break;
case TELEMETRY_PMI_CYCLES:
ctr = MT_CORE_CYCLES;
name = "cycles";
break;
default:
error = 1;
goto out;
}
telemetry_sample_pmis = TRUE;
sample_all_tasks_aside = telemetry_sample_all_tasks;
active_tasks_aside = telemetry_active_tasks;
telemetry_sample_all_tasks = FALSE;
telemetry_active_tasks = 0;
error = mt_microstackshot_start(ctr, period, telemetry_pmi_handler, NULL);
if (!error) {
printf("telemetry: ustackshot every %llu %s\n", period, name);
}
out:
TELEMETRY_PMI_UNLOCK();
return error;
#else /* defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES) */
#pragma unused(pmi_ctr, period)
return 1;
#endif /* !defined(MT_CORE_INSTRS) || !defined(MT_CORE_CYCLES) */
}
/*
* Mark the current thread for an interrupt-based
* telemetry record, to be sampled at the next AST boundary.
*/
void
telemetry_mark_curthread(boolean_t interrupted_userspace, boolean_t pmi)
{
uint32_t ast_bits = 0;
thread_t thread = current_thread();
/*
* If telemetry isn't active for this thread, return and try
* again next time.
*/
if (telemetry_is_active(thread) == FALSE) {
return;
}
ast_bits |= (interrupted_userspace ? AST_TELEMETRY_USER : AST_TELEMETRY_KERNEL);
if (pmi) {
ast_bits |= AST_TELEMETRY_PMI;
}
telemetry_needs_record = FALSE;
thread_ast_set(thread, ast_bits);
ast_propagate(thread);
}
void
compute_telemetry(void *arg __unused)
{
if (telemetry_sample_all_tasks || (telemetry_active_tasks > 0)) {
if ((++telemetry_timestamp) % telemetry_sample_rate == 0) {
telemetry_needs_record = TRUE;
telemetry_needs_timer_arming_record = TRUE;
}
}
}
/*
* If userland has registered a port for telemetry notifications, send one now.
*/
static void
telemetry_notify_user(void)
{
mach_port_t user_port = MACH_PORT_NULL;
kern_return_t kr = host_get_telemetry_port(host_priv_self(), &user_port);
if ((kr != KERN_SUCCESS) || !IPC_PORT_VALID(user_port)) {
return;
}
telemetry_notification(user_port, 0);
ipc_port_release_send(user_port);
}
void
telemetry_ast(thread_t thread, ast_t reasons)
{
assert((reasons & AST_TELEMETRY_ALL) != 0);
uint8_t record_type = 0;
if (reasons & AST_TELEMETRY_IO) {
record_type |= kIORecord;
}
if (reasons & (AST_TELEMETRY_USER | AST_TELEMETRY_KERNEL)) {
record_type |= (reasons & AST_TELEMETRY_PMI) ? kPMIRecord :
kInterruptRecord;
}
uint8_t user_telemetry = (reasons & AST_TELEMETRY_USER) ? kUserMode : 0;
uint8_t microsnapshot_flags = record_type | user_telemetry;
telemetry_take_sample(thread, microsnapshot_flags, &telemetry_buffer);
}
void
telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer)
{
task_t task;
void *p;
uint32_t btcount = 0, bti;
struct micro_snapshot *msnap;
struct task_snapshot *tsnap;
struct thread_snapshot *thsnap;
clock_sec_t secs;
clock_usec_t usecs;
vm_size_t framesize;
uint32_t current_record_start;
uint32_t tmp = 0;
boolean_t notify = FALSE;
if (thread == THREAD_NULL) {
return;
}
task = thread->task;
if ((task == TASK_NULL) || (task == kernel_task) || task_did_exec(task) || task_is_exec_copy(task)) {
return;
}
/* telemetry_XXX accessed outside of lock for instrumentation only */
KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_START,
microsnapshot_flags, telemetry_bytes_since_last_mark, 0,
(&telemetry_buffer != current_buffer));
p = get_bsdtask_info(task);
/*
* Gather up the data we'll need for this sample. The sample is written into the kernel
* buffer with the global telemetry lock held -- so we must do our (possibly faulting)
* copies from userland here, before taking the lock.
*/
uintptr_t frames[128];
bool user64_regs = false;
int bterror = 0;
btcount = backtrace_user(frames,
sizeof(frames) / sizeof(frames[0]), &bterror, &user64_regs, NULL);
if (bterror != 0) {
return;
}
bool user64_va = task_has_64Bit_addr(task);
/*
* Retrieve the array of UUID's for binaries used by this task.
* We reach down into DYLD's data structures to find the array.
*
* XXX - make this common with kdp?
*/
uint32_t uuid_info_count = 0;
mach_vm_address_t uuid_info_addr = 0;
uint32_t uuid_info_size = 0;
if (user64_va) {
uuid_info_size = sizeof(struct user64_dyld_uuid_info);
struct user64_dyld_all_image_infos task_image_infos;
if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) {
uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount;
uuid_info_addr = task_image_infos.uuidArray;
}
} else {
uuid_info_size = sizeof(struct user32_dyld_uuid_info);
struct user32_dyld_all_image_infos task_image_infos;
if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) {
uuid_info_count = task_image_infos.uuidArrayCount;
uuid_info_addr = task_image_infos.uuidArray;
}
}
/*
* If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating
* this data structure), we zero the uuid_info_count so that we won't even try to save load info
* for this task.
*/
if (!uuid_info_addr) {
uuid_info_count = 0;
}
/*
* Don't copy in an unbounded amount of memory. The main binary and interesting
* non-shared-cache libraries should be in the first few images.
*/
if (uuid_info_count > TELEMETRY_MAX_UUID_COUNT) {
uuid_info_count = TELEMETRY_MAX_UUID_COUNT;
}
uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size;
char *uuid_info_array = NULL;
if (uuid_info_count > 0) {
uuid_info_array = kheap_alloc(KHEAP_TEMP,
uuid_info_array_size, Z_WAITOK);
if (uuid_info_array == NULL) {
return;
}
/*
* Copy in the UUID info array.
* It may be nonresident, in which case just fix up nloadinfos to 0 in the task snapshot.
*/
if (copyin(uuid_info_addr, uuid_info_array, uuid_info_array_size) != 0) {
kheap_free(KHEAP_TEMP, uuid_info_array, uuid_info_array_size);
uuid_info_array = NULL;
uuid_info_array_size = 0;
}
}
/*
* Look for a dispatch queue serial number, and copy it in from userland if present.
*/
uint64_t dqserialnum = 0;
int dqserialnum_valid = 0;
uint64_t dqkeyaddr = thread_dispatchqaddr(thread);
if (dqkeyaddr != 0) {
uint64_t dqaddr = 0;
uint64_t dq_serialno_offset = get_task_dispatchqueue_serialno_offset(task);
if ((copyin(dqkeyaddr, (char *)&dqaddr, (user64_va ? 8 : 4)) == 0) &&
(dqaddr != 0) && (dq_serialno_offset != 0)) {
uint64_t dqserialnumaddr = dqaddr + dq_serialno_offset;
if (copyin(dqserialnumaddr, (char *)&dqserialnum, (user64_va ? 8 : 4)) == 0) {
dqserialnum_valid = 1;
}
}
}
clock_get_calendar_microtime(&secs, &usecs);
TELEMETRY_LOCK();
/*
* If our buffer is not backed by anything,
* then we cannot take the sample. Meant to allow us to deallocate the window
* buffer if it is disabled.
*/
if (!current_buffer->buffer) {
goto cancel_sample;
}
/*
* We do the bulk of the operation under the telemetry lock, on assumption that
* any page faults during execution will not cause another AST_TELEMETRY_ALL
* to deadlock; they will just block until we finish. This makes it easier
* to copy into the buffer directly. As soon as we unlock, userspace can copy
* out of our buffer.
*/
copytobuffer:
current_record_start = current_buffer->current_position;
if ((current_buffer->size - current_buffer->current_position) < sizeof(struct micro_snapshot)) {
/*
* We can't fit a record in the space available, so wrap around to the beginning.
* Save the current position as the known end point of valid data.
*/
current_buffer->end_point = current_record_start;
current_buffer->current_position = 0;
if (current_record_start == 0) {
/* This sample is too large to fit in the buffer even when we started at 0, so skip it */
goto cancel_sample;
}
goto copytobuffer;
}
msnap = (struct micro_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position);
msnap->snapshot_magic = STACKSHOT_MICRO_SNAPSHOT_MAGIC;
msnap->ms_flags = microsnapshot_flags;
msnap->ms_opaque_flags = 0; /* namespace managed by userspace */
msnap->ms_cpu = cpu_number();
msnap->ms_time = secs;
msnap->ms_time_microsecs = usecs;
current_buffer->current_position += sizeof(struct micro_snapshot);
if ((current_buffer->size - current_buffer->current_position) < sizeof(struct task_snapshot)) {
current_buffer->end_point = current_record_start;
current_buffer->current_position = 0;
if (current_record_start == 0) {
/* This sample is too large to fit in the buffer even when we started at 0, so skip it */
goto cancel_sample;
}
goto copytobuffer;
}
tsnap = (struct task_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position);
bzero(tsnap, sizeof(*tsnap));
tsnap->snapshot_magic = STACKSHOT_TASK_SNAPSHOT_MAGIC;
tsnap->pid = proc_pid(p);
tsnap->uniqueid = proc_uniqueid(p);
tsnap->user_time_in_terminated_threads = task->total_user_time;
tsnap->system_time_in_terminated_threads = task->total_system_time;
tsnap->suspend_count = task->suspend_count;
tsnap->task_size = (typeof(tsnap->task_size))(get_task_phys_footprint(task) / PAGE_SIZE);
tsnap->faults = counter_load(&task->faults);
tsnap->pageins = task->pageins;
tsnap->cow_faults = task->cow_faults;
/*
* The throttling counters are maintained as 64-bit counters in the proc
* structure. However, we reserve 32-bits (each) for them in the task_snapshot
* struct to save space and since we do not expect them to overflow 32-bits. If we
* find these values overflowing in the future, the fix would be to simply
* upgrade these counters to 64-bit in the task_snapshot struct
*/
tsnap->was_throttled = (uint32_t) proc_was_throttled(p);
tsnap->did_throttle = (uint32_t) proc_did_throttle(p);
if (task->t_flags & TF_TELEMETRY) {
tsnap->ss_flags |= kTaskRsrcFlagged;
}
if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG)) {
tsnap->ss_flags |= kTaskDarwinBG;
}
proc_get_darwinbgstate(task, &tmp);
if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION) {
tsnap->ss_flags |= kTaskIsForeground;
}
if (tmp & PROC_FLAG_ADAPTIVE_IMPORTANT) {
tsnap->ss_flags |= kTaskIsBoosted;
}
if (tmp & PROC_FLAG_SUPPRESSED) {
tsnap->ss_flags |= kTaskIsSuppressed;
}
tsnap->latency_qos = task_grab_latency_qos(task);
strlcpy(tsnap->p_comm, proc_name_address(p), sizeof(tsnap->p_comm));
if (user64_va) {
tsnap->ss_flags |= kUser64_p;
}
if (task->task_shared_region_slide != -1) {
tsnap->shared_cache_slide = task->task_shared_region_slide;
bcopy(task->task_shared_region_uuid, tsnap->shared_cache_identifier,
sizeof(task->task_shared_region_uuid));
}
current_buffer->current_position += sizeof(struct task_snapshot);
/*
* Directly after the task snapshot, place the array of UUID's corresponding to the binaries
* used by this task.
*/
if ((current_buffer->size - current_buffer->current_position) < uuid_info_array_size) {
current_buffer->end_point = current_record_start;
current_buffer->current_position = 0;
if (current_record_start == 0) {
/* This sample is too large to fit in the buffer even when we started at 0, so skip it */
goto cancel_sample;
}
goto copytobuffer;
}
/*
* Copy the UUID info array into our sample.
*/
if (uuid_info_array_size > 0) {
bcopy(uuid_info_array, (char *)(current_buffer->buffer + current_buffer->current_position), uuid_info_array_size);
tsnap->nloadinfos = uuid_info_count;
}
current_buffer->current_position += uuid_info_array_size;
/*
* After the task snapshot & list of binary UUIDs, we place a thread snapshot.
*/
if ((current_buffer->size - current_buffer->current_position) < sizeof(struct thread_snapshot)) {
/* wrap and overwrite */
current_buffer->end_point = current_record_start;
current_buffer->current_position = 0;
if (current_record_start == 0) {
/* This sample is too large to fit in the buffer even when we started at 0, so skip it */
goto cancel_sample;
}
goto copytobuffer;
}
thsnap = (struct thread_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position);
bzero(thsnap, sizeof(*thsnap));
thsnap->snapshot_magic = STACKSHOT_THREAD_SNAPSHOT_MAGIC;
thsnap->thread_id = thread_tid(thread);
thsnap->state = thread->state;
thsnap->priority = thread->base_pri;
thsnap->sched_pri = thread->sched_pri;
thsnap->sched_flags = thread->sched_flags;
thsnap->ss_flags |= kStacksPCOnly;
thsnap->ts_qos = thread->effective_policy.thep_qos;
thsnap->ts_rqos = thread->requested_policy.thrp_qos;
thsnap->ts_rqos_override = MAX(thread->requested_policy.thrp_qos_override,
thread->requested_policy.thrp_qos_workq_override);
if (proc_get_effective_thread_policy(thread, TASK_POLICY_DARWIN_BG)) {
thsnap->ss_flags |= kThreadDarwinBG;
}
thsnap->user_time = timer_grab(&thread->user_timer);
uint64_t tval = timer_grab(&thread->system_timer);
if (thread->precise_user_kernel_time) {
thsnap->system_time = tval;
} else {
thsnap->user_time += tval;
thsnap->system_time = 0;
}
current_buffer->current_position += sizeof(struct thread_snapshot);
/*
* If this thread has a dispatch queue serial number, include it here.
*/
if (dqserialnum_valid) {
if ((current_buffer->size - current_buffer->current_position) < sizeof(dqserialnum)) {
/* wrap and overwrite */
current_buffer->end_point = current_record_start;
current_buffer->current_position = 0;
if (current_record_start == 0) {
/* This sample is too large to fit in the buffer even when we started at 0, so skip it */
goto cancel_sample;
}
goto copytobuffer;
}
thsnap->ss_flags |= kHasDispatchSerial;
bcopy(&dqserialnum, (char *)current_buffer->buffer + current_buffer->current_position, sizeof(dqserialnum));
current_buffer->current_position += sizeof(dqserialnum);
}
if (user64_regs) {
framesize = 8;
thsnap->ss_flags |= kUser64_p;
} else {
framesize = 4;
}
/*
* If we can't fit this entire stacktrace then cancel this record, wrap to the beginning,
* and start again there so that we always store a full record.
*/
if ((current_buffer->size - current_buffer->current_position) / framesize < btcount) {
current_buffer->end_point = current_record_start;
current_buffer->current_position = 0;
if (current_record_start == 0) {
/* This sample is too large to fit in the buffer even when we started at 0, so skip it */
goto cancel_sample;
}
goto copytobuffer;
}
for (bti = 0; bti < btcount; bti++, current_buffer->current_position += framesize) {
if (framesize == 8) {
*(uint64_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = frames[bti];
} else {
*(uint32_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = (uint32_t)frames[bti];
}
}
if (current_buffer->end_point < current_buffer->current_position) {
/*
* Each time the cursor wraps around to the beginning, we leave a
* differing amount of unused space at the end of the buffer. Make
* sure the cursor pushes the end point in case we're making use of
* more of the buffer than we did the last time we wrapped.
*/
current_buffer->end_point = current_buffer->current_position;
}
thsnap->nuser_frames = btcount;
/*
* Now THIS is a hack.
*/
if (current_buffer == &telemetry_buffer) {
telemetry_bytes_since_last_mark += (current_buffer->current_position - current_record_start);
if (telemetry_bytes_since_last_mark > telemetry_buffer_notify_at) {
notify = TRUE;
}
}
cancel_sample:
TELEMETRY_UNLOCK();
KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_END,
notify, telemetry_bytes_since_last_mark,
current_buffer->current_position, current_buffer->end_point);
if (notify) {
telemetry_notify_user();
}
if (uuid_info_array != NULL) {
kheap_free(KHEAP_TEMP, uuid_info_array, uuid_info_array_size);
}
}
#if TELEMETRY_DEBUG
static void
log_telemetry_output(vm_offset_t buf, uint32_t pos, uint32_t sz)
{
struct micro_snapshot *p;
uint32_t offset;
printf("Copying out %d bytes of telemetry at offset %d\n", sz, pos);
buf += pos;
/*
* Find and log each timestamp in this chunk of buffer.
*/
for (offset = 0; offset < sz; offset++) {
p = (struct micro_snapshot *)(buf + offset);
if (p->snapshot_magic == STACKSHOT_MICRO_SNAPSHOT_MAGIC) {
printf("telemetry timestamp: %lld\n", p->ms_time);
}
}
}
#endif
int
telemetry_gather(user_addr_t buffer, uint32_t *length, boolean_t mark)
{
return telemetry_buffer_gather(buffer, length, mark, &telemetry_buffer);
}
int
telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer)
{
int result = 0;
uint32_t oldest_record_offset;
KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_START,
mark, telemetry_bytes_since_last_mark, 0,
(&telemetry_buffer != current_buffer));
TELEMETRY_LOCK();
if (current_buffer->buffer == 0) {
*length = 0;
goto out;
}
if (*length < current_buffer->size) {
result = KERN_NO_SPACE;
goto out;
}
/*
* Copy the ring buffer out to userland in order sorted by time: least recent to most recent.
* First, we need to search forward from the cursor to find the oldest record in our buffer.
*/
oldest_record_offset = current_buffer->current_position;
do {
if (((oldest_record_offset + sizeof(uint32_t)) > current_buffer->size) ||
((oldest_record_offset + sizeof(uint32_t)) > current_buffer->end_point)) {
if (*(uint32_t *)(uintptr_t)(current_buffer->buffer) == 0) {
/*
* There is no magic number at the start of the buffer, which means
* it's empty; nothing to see here yet.
*/
*length = 0;
goto out;
}
/*
* We've looked through the end of the active buffer without finding a valid
* record; that means all valid records are in a single chunk, beginning at
* the very start of the buffer.
*/
oldest_record_offset = 0;
assert(*(uint32_t *)(uintptr_t)(current_buffer->buffer) == STACKSHOT_MICRO_SNAPSHOT_MAGIC);
break;
}
if (*(uint32_t *)(uintptr_t)(current_buffer->buffer + oldest_record_offset) == STACKSHOT_MICRO_SNAPSHOT_MAGIC) {
break;
}
/*
* There are no alignment guarantees for micro-stackshot records, so we must search at each
* byte offset.
*/
oldest_record_offset++;
} while (oldest_record_offset != current_buffer->current_position);
/*
* If needed, copyout in two chunks: from the oldest record to the end of the buffer, and then
* from the beginning of the buffer up to the current position.
*/
if (oldest_record_offset != 0) {
#if TELEMETRY_DEBUG
log_telemetry_output(current_buffer->buffer, oldest_record_offset,
current_buffer->end_point - oldest_record_offset);
#endif
if ((result = copyout((void *)(current_buffer->buffer + oldest_record_offset), buffer,
current_buffer->end_point - oldest_record_offset)) != 0) {
*length = 0;
goto out;
}
*length = current_buffer->end_point - oldest_record_offset;
} else {
*length = 0;
}
#if TELEMETRY_DEBUG
log_telemetry_output(current_buffer->buffer, 0, current_buffer->current_position);
#endif
if ((result = copyout((void *)current_buffer->buffer, buffer + *length,
current_buffer->current_position)) != 0) {
*length = 0;
goto out;
}
*length += (uint32_t)current_buffer->current_position;
out:
if (mark && (*length > 0)) {
telemetry_bytes_since_last_mark = 0;
}
TELEMETRY_UNLOCK();
KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_END,
current_buffer->current_position, *length,
current_buffer->end_point, (&telemetry_buffer != current_buffer));
return result;
}
/************************/
/* BOOT PROFILE SUPPORT */
/************************/
/*
* Boot Profiling
*
* The boot-profiling support is a mechanism to sample activity happening on the
* system during boot. This mechanism sets up a periodic timer and on every timer fire,
* captures a full backtrace into the boot profiling buffer. This buffer can be pulled
* out and analyzed from user-space. It is turned on using the following boot-args:
* "bootprofile_buffer_size" specifies the size of the boot profile buffer
* "bootprofile_interval_ms" specifies the interval for the profiling timer
*
* Process Specific Boot Profiling
*
* The boot-arg "bootprofile_proc_name" can be used to specify a certain
* process that needs to profiled during boot. Setting this boot-arg changes
* the way stackshots are captured. At every timer fire, the code looks at the
* currently running process and takes a stackshot only if the requested process
* is on-core (which makes it unsuitable for MP systems).
*
* Trigger Events
*
* The boot-arg "bootprofile_type=boot" starts the timer during early boot. Using
* "wake" starts the timer at AP wake from suspend-to-RAM.
*/
#define BOOTPROFILE_MAX_BUFFER_SIZE (64*1024*1024) /* see also COPYSIZELIMIT_PANIC */
vm_offset_t bootprofile_buffer = 0;
uint32_t bootprofile_buffer_size = 0;
uint32_t bootprofile_buffer_current_position = 0;
uint32_t bootprofile_interval_ms = 0;
uint64_t bootprofile_stackshot_flags = 0;
uint64_t bootprofile_interval_abs = 0;
uint64_t bootprofile_next_deadline = 0;
uint32_t bootprofile_all_procs = 0;
char bootprofile_proc_name[17];
uint64_t bootprofile_delta_since_timestamp = 0;
LCK_GRP_DECLARE(bootprofile_lck_grp, "bootprofile_group");
LCK_MTX_DECLARE(bootprofile_mtx, &bootprofile_lck_grp);
enum {
kBootProfileDisabled = 0,
kBootProfileStartTimerAtBoot,
kBootProfileStartTimerAtWake
} bootprofile_type = kBootProfileDisabled;
static timer_call_data_t bootprofile_timer_call_entry;
#define BOOTPROFILE_LOCK() do { lck_mtx_lock(&bootprofile_mtx); } while(0)
#define BOOTPROFILE_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&bootprofile_mtx)
#define BOOTPROFILE_UNLOCK() do { lck_mtx_unlock(&bootprofile_mtx); } while(0)
static void bootprofile_timer_call(
timer_call_param_t param0,
timer_call_param_t param1);
void
bootprofile_init(void)
{
kern_return_t ret;
char type[32];
if (!PE_parse_boot_argn("bootprofile_buffer_size",
&bootprofile_buffer_size, sizeof(bootprofile_buffer_size))) {
bootprofile_buffer_size = 0;
}
if (bootprofile_buffer_size > BOOTPROFILE_MAX_BUFFER_SIZE) {
bootprofile_buffer_size = BOOTPROFILE_MAX_BUFFER_SIZE;
}
if (!PE_parse_boot_argn("bootprofile_interval_ms",
&bootprofile_interval_ms, sizeof(bootprofile_interval_ms))) {
bootprofile_interval_ms = 0;
}
if (!PE_parse_boot_argn("bootprofile_stackshot_flags",
&bootprofile_stackshot_flags, sizeof(bootprofile_stackshot_flags))) {
bootprofile_stackshot_flags = 0;
}
if (!PE_parse_boot_argn("bootprofile_proc_name",
&bootprofile_proc_name, sizeof(bootprofile_proc_name))) {
bootprofile_all_procs = 1;
bootprofile_proc_name[0] = '\0';
}
if (PE_parse_boot_argn("bootprofile_type", type, sizeof(type))) {
if (0 == strcmp(type, "boot")) {
bootprofile_type = kBootProfileStartTimerAtBoot;
} else if (0 == strcmp(type, "wake")) {
bootprofile_type = kBootProfileStartTimerAtWake;
} else {
bootprofile_type = kBootProfileDisabled;
}
} else {
bootprofile_type = kBootProfileDisabled;
}
clock_interval_to_absolutetime_interval(bootprofile_interval_ms, NSEC_PER_MSEC, &bootprofile_interval_abs);
/* Both boot args must be set to enable */
if ((bootprofile_type == kBootProfileDisabled) || (bootprofile_buffer_size == 0) || (bootprofile_interval_abs == 0)) {
return;
}
ret = kmem_alloc(kernel_map, &bootprofile_buffer, bootprofile_buffer_size, VM_KERN_MEMORY_DIAG);
if (ret != KERN_SUCCESS) {
kprintf("Boot profile: Allocation failed: %d\n", ret);
return;
}
bzero((void *) bootprofile_buffer, bootprofile_buffer_size);
kprintf("Boot profile: Sampling %s once per %u ms at %s\n",
bootprofile_all_procs ? "all procs" : bootprofile_proc_name, bootprofile_interval_ms,
bootprofile_type == kBootProfileStartTimerAtBoot ? "boot" : (bootprofile_type == kBootProfileStartTimerAtWake ? "wake" : "unknown"));
timer_call_setup(&bootprofile_timer_call_entry,
bootprofile_timer_call,
NULL);
if (bootprofile_type == kBootProfileStartTimerAtBoot) {
bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs;
timer_call_enter_with_leeway(&bootprofile_timer_call_entry,
NULL,
bootprofile_next_deadline,
0,
TIMER_CALL_SYS_NORMAL,
FALSE);
}
}
void
bootprofile_wake_from_sleep(void)
{
if (bootprofile_type == kBootProfileStartTimerAtWake) {
bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs;
timer_call_enter_with_leeway(&bootprofile_timer_call_entry,
NULL,
bootprofile_next_deadline,
0,
TIMER_CALL_SYS_NORMAL,
FALSE);
}
}
static void
bootprofile_timer_call(
timer_call_param_t param0 __unused,
timer_call_param_t param1 __unused)
{
unsigned retbytes = 0;
int pid_to_profile = -1;
if (!BOOTPROFILE_TRY_SPIN_LOCK()) {
goto reprogram;
}
/* Check if process-specific boot profiling is turned on */
if (!bootprofile_all_procs) {
/*
* Since boot profiling initializes really early in boot, it is
* possible that at this point, the task/proc is not initialized.
* Nothing to do in that case.
*/
if ((current_task() != NULL) && (current_task()->bsd_info != NULL) &&
(0 == strncmp(bootprofile_proc_name, proc_name_address(current_task()->bsd_info), 17))) {
pid_to_profile = proc_selfpid();
} else {
/*
* Process-specific boot profiling requested but the on-core process is
* something else. Nothing to do here.
*/
BOOTPROFILE_UNLOCK();
goto reprogram;
}
}
/* initiate a stackshot with whatever portion of the buffer is left */
if (bootprofile_buffer_current_position < bootprofile_buffer_size) {
uint64_t flags = STACKSHOT_KCDATA_FORMAT | STACKSHOT_TRYLOCK | STACKSHOT_SAVE_LOADINFO
| STACKSHOT_GET_GLOBAL_MEM_STATS;
#if defined(XNU_TARGET_OS_OSX)
flags |= STACKSHOT_SAVE_KEXT_LOADINFO;
#endif
/* OR on flags specified in boot-args */
flags |= bootprofile_stackshot_flags;
if ((flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) && (bootprofile_delta_since_timestamp == 0)) {
/* Can't take deltas until the first one */
flags &= ~STACKSHOT_COLLECT_DELTA_SNAPSHOT;
}
uint64_t timestamp = 0;
if (bootprofile_stackshot_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) {
timestamp = mach_absolute_time();
}
kern_return_t r = stack_snapshot_from_kernel(
pid_to_profile, (void *)(bootprofile_buffer + bootprofile_buffer_current_position),
bootprofile_buffer_size - bootprofile_buffer_current_position,
flags, bootprofile_delta_since_timestamp, 0, &retbytes);
/*
* We call with STACKSHOT_TRYLOCK because the stackshot lock is coarser
* than the bootprofile lock. If someone else has the lock we'll just
* try again later.
*/
if (r == KERN_LOCK_OWNED) {
BOOTPROFILE_UNLOCK();
goto reprogram;
}
if (bootprofile_stackshot_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT &&
r == KERN_SUCCESS) {
bootprofile_delta_since_timestamp = timestamp;
}
bootprofile_buffer_current_position += retbytes;
}
BOOTPROFILE_UNLOCK();
/* If we didn't get any data or have run out of buffer space, stop profiling */
if ((retbytes == 0) || (bootprofile_buffer_current_position == bootprofile_buffer_size)) {
return;
}
reprogram:
/* If the user gathered the buffer, no need to keep profiling */
if (bootprofile_interval_abs == 0) {
return;
}
clock_deadline_for_periodic_event(bootprofile_interval_abs,
mach_absolute_time(),
&bootprofile_next_deadline);
timer_call_enter_with_leeway(&bootprofile_timer_call_entry,
NULL,
bootprofile_next_deadline,
0,
TIMER_CALL_SYS_NORMAL,
FALSE);
}
void
bootprofile_get(void **buffer, uint32_t *length)
{
BOOTPROFILE_LOCK();
*buffer = (void*) bootprofile_buffer;
*length = bootprofile_buffer_current_position;
BOOTPROFILE_UNLOCK();
}
int
bootprofile_gather(user_addr_t buffer, uint32_t *length)
{
int result = 0;
BOOTPROFILE_LOCK();
if (bootprofile_buffer == 0) {
*length = 0;
goto out;
}
if (*length < bootprofile_buffer_current_position) {
result = KERN_NO_SPACE;
goto out;
}
if ((result = copyout((void *)bootprofile_buffer, buffer,
bootprofile_buffer_current_position)) != 0) {
*length = 0;
goto out;
}
*length = bootprofile_buffer_current_position;
/* cancel future timers */
bootprofile_interval_abs = 0;
out:
BOOTPROFILE_UNLOCK();
return result;
}