darling-xnu/osfmk/kern/waitq.c
2023-05-16 21:41:14 -07:00

5713 lines
140 KiB
C

/*
* Copyright (c) 2015-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_FREE_COPYRIGHT@
*/
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
* un-comment the following lines to debug the link/prepost tables
* NOTE: this expands each element by ~40 bytes
*/
//#define KEEP_WAITQ_LINK_STATS
//#define KEEP_WAITQ_PREPOST_STATS
#include <kern/ast.h>
#include <kern/backtrace.h>
#include <kern/kern_types.h>
#include <kern/ltable.h>
#include <kern/mach_param.h>
#include <kern/percpu.h>
#include <kern/queue.h>
#include <kern/sched_prim.h>
#include <kern/simple_lock.h>
#include <kern/spl.h>
#include <kern/waitq.h>
#include <kern/zalloc.h>
#include <kern/policy_internal.h>
#include <kern/turnstile.h>
#include <os/hash.h>
#include <libkern/OSAtomic.h>
#include <mach/sync_policy.h>
#include <vm/vm_kern.h>
#include <sys/kdebug.h>
#if defined(KEEP_WAITQ_LINK_STATS) || defined(KEEP_WAITQ_PREPOST_STATS)
# if !CONFIG_LTABLE_STATS
# error "You must configure LTABLE_STATS to use WAITQ_[LINK|PREPOST]_STATS"
# endif
# if !CONFIG_WAITQ_STATS
# error "You must configure WAITQ_STATS to use WAITQ_[LINK|PREPOST]_STATS"
# endif
#endif
#if CONFIG_WAITQ_DEBUG
#define wqdbg(fmt, ...) \
printf("WQ[%s]: " fmt "\n", __func__, ## __VA_ARGS__)
#else
#define wqdbg(fmt, ...) do { } while (0)
#endif
#ifdef WAITQ_VERBOSE_DEBUG
#define wqdbg_v(fmt, ...) \
printf("WQ[v:%s]: " fmt "\n", __func__, ## __VA_ARGS__)
#else
#define wqdbg_v(fmt, ...) do { } while (0)
#endif
#define wqinfo(fmt, ...) \
printf("WQ[%s]: " fmt "\n", __func__, ## __VA_ARGS__)
#define wqerr(fmt, ...) \
printf("WQ[%s] ERROR: " fmt "\n", __func__, ## __VA_ARGS__)
/*
* file-static functions / data
*/
static thread_t waitq_select_one_locked(struct waitq *waitq, event64_t event,
uint64_t *reserved_preposts,
int priority, spl_t *spl);
static kern_return_t waitq_select_thread_locked(struct waitq *waitq,
event64_t event,
thread_t thread, spl_t *spl);
ZONE_DECLARE(waitq_set_zone, "waitq sets",
sizeof(struct waitq_set), ZC_NOENCRYPT);
/* waitq prepost cache */
#define WQP_CACHE_MAX 50
struct wqp_cache {
uint64_t head;
unsigned int avail;
};
static struct wqp_cache PERCPU_DATA(wqp_cache);
#define P2ROUNDUP(x, align) (-(-((uint32_t)(x)) & -(align)))
#define ROUNDDOWN(x, y) (((x)/(y))*(y))
#if CONFIG_LTABLE_STATS || CONFIG_WAITQ_STATS
static __inline__ void waitq_grab_backtrace(uintptr_t bt[NWAITQ_BTFRAMES], int skip);
#endif
LCK_GRP_DECLARE(waitq_lck_grp, "waitq");
#if __arm64__
#define waitq_lock_to(wq, to) \
(hw_lock_bit_to(&(wq)->waitq_interlock, LCK_ILOCK, to, &waitq_lck_grp))
#define waitq_lock_unlock(wq) \
(hw_unlock_bit(&(wq)->waitq_interlock, LCK_ILOCK))
#define waitq_lock_init(wq) \
(wq->waitq_interlock = 0)
#else
#define waitq_lock_to(wq, to) \
(hw_lock_to(&(wq)->waitq_interlock, to, &waitq_lck_grp))
#define waitq_lock_unlock(wq) \
(hw_lock_unlock(&(wq)->waitq_interlock))
#define waitq_lock_init(wq) \
(hw_lock_init(&(wq)->waitq_interlock))
#endif /* __arm64__ */
/*
* Prepost callback function for specially marked waitq sets
* (prepost alternative)
*/
extern void waitq_set__CALLING_PREPOST_HOOK__(waitq_set_prepost_hook_t *ctx);
#define DEFAULT_MIN_FREE_TABLE_ELEM 100
static uint32_t g_min_free_table_elem;
static uint32_t g_min_free_cache;
/* ----------------------------------------------------------------------
*
* SetID Link Table Implementation
*
* ---------------------------------------------------------------------- */
static struct link_table g_wqlinktable;
enum wq_link_type {
WQL_ALL = -1,
WQL_FREE = LT_FREE,
WQL_WQS = LT_ELEM,
WQL_LINK = LT_LINK,
};
struct waitq_link {
struct lt_elem wqte;
union {
/* wqt_type == WQL_WQS (LT_ELEM) */
struct {
struct waitq_set *wql_set;
/* uint64_t sl_prepost_id; */
} wql_wqs;
/* wqt_type == WQL_LINK (LT_LINK) */
struct {
uint64_t left_setid;
uint64_t right_setid;
} wql_link;
};
#ifdef KEEP_WAITQ_LINK_STATS
thread_t sl_alloc_th;
task_t sl_alloc_task;
uintptr_t sl_alloc_bt[NWAITQ_BTFRAMES];
uint64_t sl_alloc_ts;
uintptr_t sl_invalidate_bt[NWAITQ_BTFRAMES];
uint64_t sl_invalidate_ts;
uintptr_t sl_mkvalid_bt[NWAITQ_BTFRAMES];
uint64_t sl_mkvalid_ts;
uint64_t sl_free_ts;
#endif
};
#if !defined(KEEP_WAITQ_LINK_STATS)
static_assert((sizeof(struct waitq_link) & (sizeof(struct waitq_link) - 1)) == 0,
"waitq_link struct must be a power of two!");
#endif
#define wql_refcnt(link) \
(lt_bits_refcnt((link)->wqte.lt_bits))
#define wql_type(link) \
(lt_bits_type((link)->wqte.lt_bits))
#define wql_mkvalid(link) \
do { \
lt_elem_mkvalid(&(link)->wqte); \
wql_do_mkvalid_stats(&(link)->wqte); \
} while (0)
#define wql_is_valid(link) \
lt_bits_valid((link)->wqte.lt_bits)
#define wql_setid wqte.lt_id
#define WQL_WQS_POISON ((void *)(0xf00df00d))
#define WQL_LINK_POISON (0x0bad0badffffffffull)
static void
wql_poison(struct link_table *table, struct lt_elem *elem)
{
struct waitq_link *link = (struct waitq_link *)elem;
(void)table;
switch (wql_type(link)) {
case WQL_WQS:
link->wql_wqs.wql_set = WQL_WQS_POISON;
break;
case WQL_LINK:
link->wql_link.left_setid = WQL_LINK_POISON;
link->wql_link.right_setid = WQL_LINK_POISON;
break;
default:
break;
}
#ifdef KEEP_WAITQ_LINK_STATS
memset(link->sl_alloc_bt, 0, sizeof(link->sl_alloc_bt));
link->sl_alloc_ts = 0;
memset(link->sl_mkvalid_bt, 0, sizeof(link->sl_mkvalid_bt));
link->sl_mkvalid_ts = 0;
link->sl_alloc_th = THREAD_NULL;
/* leave the sl_alloc_task in place for debugging */
link->sl_free_ts = mach_absolute_time();
#endif
}
#ifdef KEEP_WAITQ_LINK_STATS
static __inline__ void
wql_do_alloc_stats(struct lt_elem *elem)
{
if (elem) {
struct waitq_link *link = (struct waitq_link *)elem;
memset(link->sl_alloc_bt, 0, sizeof(link->sl_alloc_bt));
waitq_grab_backtrace(link->sl_alloc_bt, 0);
link->sl_alloc_th = current_thread();
link->sl_alloc_task = current_task();
assert(link->sl_alloc_ts == 0);
link->sl_alloc_ts = mach_absolute_time();
memset(link->sl_invalidate_bt, 0, sizeof(link->sl_invalidate_bt));
link->sl_invalidate_ts = 0;
}
}
static __inline__ void
wql_do_invalidate_stats(struct lt_elem *elem)
{
struct waitq_link *link = (struct waitq_link *)elem;
if (!elem) {
return;
}
assert(link->sl_mkvalid_ts > 0);
memset(link->sl_invalidate_bt, 0, sizeof(link->sl_invalidate_bt));
link->sl_invalidate_ts = mach_absolute_time();
waitq_grab_backtrace(link->sl_invalidate_bt, 0);
}
static __inline__ void
wql_do_mkvalid_stats(struct lt_elem *elem)
{
struct waitq_link *link = (struct waitq_link *)elem;
if (!elem) {
return;
}
memset(link->sl_mkvalid_bt, 0, sizeof(link->sl_mkvalid_bt));
link->sl_mkvalid_ts = mach_absolute_time();
waitq_grab_backtrace(link->sl_mkvalid_bt, 0);
}
#else
#define wql_do_alloc_stats(e)
#define wql_do_invalidate_stats(e)
#define wql_do_mkvalid_stats(e)
#endif /* KEEP_WAITQ_LINK_STATS */
static void
wql_init(void)
{
uint32_t tablesz = 0, max_links = 0;
if (PE_parse_boot_argn("wql_tsize", &tablesz, sizeof(tablesz)) != TRUE) {
tablesz = (uint32_t)g_lt_max_tbl_size;
}
tablesz = P2ROUNDUP(tablesz, PAGE_SIZE);
max_links = tablesz / sizeof(struct waitq_link);
assert(max_links > 0 && tablesz > 0);
/* we have a restricted index range */
if (max_links > (LT_IDX_MAX + 1)) {
max_links = LT_IDX_MAX + 1;
}
wqinfo("init linktable with max:%d elements (%d bytes)",
max_links, tablesz);
ltable_init(&g_wqlinktable, "wqslab.wql", max_links,
sizeof(struct waitq_link), wql_poison);
}
static void
wql_ensure_free_space(void)
{
if (g_wqlinktable.nelem - g_wqlinktable.used_elem < g_min_free_table_elem) {
/*
* we don't hold locks on these values, so check for underflow
*/
if (g_wqlinktable.used_elem <= g_wqlinktable.nelem) {
wqdbg_v("Forcing table growth: nelem=%d, used=%d, min_free=%d",
g_wqlinktable.nelem, g_wqlinktable.used_elem,
g_min_free_table_elem);
ltable_grow(&g_wqlinktable, g_min_free_table_elem);
}
}
}
static struct waitq_link *
wql_alloc_link(int type)
{
struct lt_elem *elem;
elem = ltable_alloc_elem(&g_wqlinktable, type, 1, 0);
wql_do_alloc_stats(elem);
return (struct waitq_link *)elem;
}
static void
wql_realloc_link(struct waitq_link *link, int type)
{
ltable_realloc_elem(&g_wqlinktable, &link->wqte, type);
#ifdef KEEP_WAITQ_LINK_STATS
memset(link->sl_alloc_bt, 0, sizeof(link->sl_alloc_bt));
link->sl_alloc_ts = 0;
wql_do_alloc_stats(&link->wqte);
memset(link->sl_invalidate_bt, 0, sizeof(link->sl_invalidate_bt));
link->sl_invalidate_ts = 0;
#endif
}
static void
wql_invalidate(struct waitq_link *link)
{
lt_elem_invalidate(&link->wqte);
wql_do_invalidate_stats(&link->wqte);
}
static struct waitq_link *
wql_get_link(uint64_t setid)
{
struct lt_elem *elem;
elem = ltable_get_elem(&g_wqlinktable, setid);
return (struct waitq_link *)elem;
}
static void
wql_put_link(struct waitq_link *link)
{
if (!link) {
return;
}
ltable_put_elem(&g_wqlinktable, (struct lt_elem *)link);
}
static struct waitq_link *
wql_get_reserved(uint64_t setid, int type)
{
struct lt_elem *elem;
elem = lt_elem_list_first(&g_wqlinktable, setid);
if (!elem) {
return NULL;
}
ltable_realloc_elem(&g_wqlinktable, elem, type);
return (struct waitq_link *)elem;
}
static inline int waitq_maybe_remove_link(struct waitq *waitq,
uint64_t setid,
struct waitq_link *parent,
struct waitq_link *left,
struct waitq_link *right);
enum {
LINK_WALK_ONE_LEVEL = 0,
LINK_WALK_FULL_DAG = 1,
LINK_WALK_FULL_DAG_UNLOCKED = 2,
};
typedef int (*wql_callback_func)(struct waitq *waitq, void *ctx,
struct waitq_link *link);
/**
* walk_waitq_links: walk all table elements (of type 'link_type') pointed to by 'setid'
*
* Conditions:
* waitq is locked (or NULL)
* 'setid' is managed by 'waitq'
* this could be direct (waitq->waitq_set_id == setid)
* OR indirect (setid is the left/right ID in a LINK chain,
* whose root is waitq->waitq_set_id)
*
* Notes:
* This function uses recursion to walk the set of table elements
* pointed to by 'setid'. For each element encountered, 'cb' will be
* called. If non-zero, the return value of this callback function can
* early-out of the table walk.
*
* For each link element encountered, the function takes a reference to
* it. The reference is dropped only after the callback and any recursion
* has completed.
*
* The assumed table/link/tree structure:
* 'setid'
* / \
* / \
* L(LINK) R(LINK)
* /\ /\
* / \ / \
* / \ Rl(*) Rr(*)
* Ll(*) Lr(*) /\ /\
* /\ /\ ... ... ... ...
* ... ... ... ...
* \
* WQS(wqset_q.waitq_setid == Sx)
* [waitq set is a membet of setid, 'Sx')
*
* 'Sx'
* / \
* / \
* L(LINK) R(LINK)
* /\ /\
* ... ... ... ...
*
* The basic algorithm is as follows:
* *) take a reference to the table object pointed to by 'setid'
* *) if appropriate, call 'cb' (potentially early-out on non-zero return)
* *) if the link object points to a waitq set, and the walk type
* is 'FULL_DAG' (full directed-acyclic-graph), then try to lock
* the associated waitq set object and recursively walk all sets to
* which that set belongs. This is a DFS of the tree structure.
* *) recurse down the left side of the tree (following the
* 'left_setid' pointer in the link object
* *) recurse down the right side of the tree (following the
* 'right_setid' pointer in the link object
*/
static __attribute__((noinline))
int
walk_waitq_links(int walk_type, struct waitq *waitq,
uint64_t setid, int link_type,
void *ctx, wql_callback_func cb)
{
struct waitq_link *link;
uint64_t nextid;
int wqltype;
link = wql_get_link(setid);
/* invalid link */
if (!link) {
return WQ_ITERATE_CONTINUE;
}
setid = nextid = 0;
wqltype = wql_type(link);
if (wqltype == WQL_LINK) {
setid = link->wql_link.left_setid;
nextid = link->wql_link.right_setid;
}
/*
* Make the callback only on specified link_type (or all links)
* Note that after the callback, the link object may be
* invalid. The only valid thing we can do is put our
* reference to it (which may put it back on the free list)
*/
if (link_type == WQL_ALL || link_type == wqltype) {
/* allow the callback to early-out */
int ret = cb(waitq, ctx, link);
if (ret != WQ_ITERATE_CONTINUE) {
wql_put_link(link);
return ret;
}
}
if (wqltype == WQL_WQS &&
(walk_type == LINK_WALK_FULL_DAG ||
walk_type == LINK_WALK_FULL_DAG_UNLOCKED)) {
/*
* Recurse down any sets to which this wait queue set was
* added. We do this just before we put our reference to
* the link object (which may free it).
*/
struct waitq_set *wqset = link->wql_wqs.wql_set;
int ret = WQ_ITERATE_CONTINUE;
int should_unlock = 0;
uint64_t wqset_setid = 0;
if (waitq_set_is_valid(wqset) && walk_type == LINK_WALK_FULL_DAG) {
assert(!waitq_irq_safe(&wqset->wqset_q));
waitq_set_lock(wqset);
should_unlock = 1;
}
/*
* verify the linked waitq set as it could have been
* invalidated before we grabbed the lock!
*/
if (wqset->wqset_id != link->wql_setid.id) {
/* This is the bottom of the tree: just get out */
if (should_unlock) {
waitq_set_unlock(wqset);
}
wql_put_link(link);
return WQ_ITERATE_CONTINUE;
}
wqset_setid = wqset->wqset_q.waitq_set_id;
if (wqset_setid > 0) {
ret = walk_waitq_links(walk_type, &wqset->wqset_q,
wqset_setid, link_type, ctx, cb);
}
if (should_unlock) {
waitq_set_unlock(wqset);
}
if (ret != WQ_ITERATE_CONTINUE) {
wql_put_link(link);
return ret;
}
}
wql_put_link(link);
/* recurse down left side of the tree */
if (setid) {
int ret = walk_waitq_links(walk_type, waitq, setid, link_type, ctx, cb);
if (ret != WQ_ITERATE_CONTINUE) {
return ret;
}
}
/* recurse down right side of the tree */
if (nextid) {
return walk_waitq_links(walk_type, waitq, nextid, link_type, ctx, cb);
}
return WQ_ITERATE_CONTINUE;
}
/* ----------------------------------------------------------------------
*
* Prepost Link Table Implementation
*
* ---------------------------------------------------------------------- */
static struct link_table g_prepost_table;
enum wq_prepost_type {
WQP_FREE = LT_FREE,
WQP_WQ = LT_ELEM,
WQP_POST = LT_LINK,
};
struct wq_prepost {
struct lt_elem wqte;
union {
/* wqt_type == WQP_WQ (LT_ELEM) */
struct {
struct waitq *wqp_wq_ptr;
} wqp_wq;
/* wqt_type == WQP_POST (LT_LINK) */
struct {
uint64_t wqp_next_id;
uint64_t wqp_wq_id;
} wqp_post;
};
#ifdef KEEP_WAITQ_PREPOST_STATS
thread_t wqp_alloc_th;
task_t wqp_alloc_task;
uintptr_t wqp_alloc_bt[NWAITQ_BTFRAMES];
#endif
};
#if !defined(KEEP_WAITQ_PREPOST_STATS)
static_assert((sizeof(struct wq_prepost) & (sizeof(struct wq_prepost) - 1)) == 0,
"wq_prepost struct must be a power of two!");
#endif
#define wqp_refcnt(wqp) \
(lt_bits_refcnt((wqp)->wqte.lt_bits))
#define wqp_type(wqp) \
(lt_bits_type((wqp)->wqte.lt_bits))
#define wqp_set_valid(wqp) \
lt_elem_mkvalid(&(wqp)->wqte)
#define wqp_is_valid(wqp) \
lt_bits_valid((wqp)->wqte.lt_bits)
#define wqp_prepostid wqte.lt_id
#define WQP_WQ_POISON (0x0bad0badffffffffull)
#define WQP_POST_POISON (0xf00df00df00df00d)
static void
wqp_poison(struct link_table *table, struct lt_elem *elem)
{
struct wq_prepost *wqp = (struct wq_prepost *)elem;
(void)table;
switch (wqp_type(wqp)) {
case WQP_WQ:
break;
case WQP_POST:
wqp->wqp_post.wqp_next_id = WQP_POST_POISON;
wqp->wqp_post.wqp_wq_id = WQP_POST_POISON;
break;
default:
break;
}
}
#ifdef KEEP_WAITQ_PREPOST_STATS
static __inline__ void
wqp_do_alloc_stats(struct lt_elem *elem)
{
if (!elem) {
return;
}
struct wq_prepost *wqp = (struct wq_prepost *)elem;
uintptr_t alloc_bt[sizeof(wqp->wqp_alloc_bt)];
waitq_grab_backtrace(alloc_bt, NWAITQ_BTFRAMES);
/* be sure the take stats for _all_ allocated objects */
for (;;) {
memcpy(wqp->wqp_alloc_bt, alloc_bt, sizeof(alloc_bt));
wqp->wqp_alloc_th = current_thread();
wqp->wqp_alloc_task = current_task();
wqp = (struct wq_prepost *)lt_elem_list_next(&g_prepost_table, &wqp->wqte);
if (!wqp) {
break;
}
}
}
#else
#define wqp_do_alloc_stats(e)
#endif /* KEEP_WAITQ_LINK_STATS */
static void
wqp_init(void)
{
uint32_t tablesz = 0, max_wqp = 0;
if (PE_parse_boot_argn("wqp_tsize", &tablesz, sizeof(tablesz)) != TRUE) {
tablesz = (uint32_t)g_lt_max_tbl_size;
}
tablesz = P2ROUNDUP(tablesz, PAGE_SIZE);
max_wqp = tablesz / sizeof(struct wq_prepost);
assert(max_wqp > 0 && tablesz > 0);
/* we have a restricted index range */
if (max_wqp > (LT_IDX_MAX + 1)) {
max_wqp = LT_IDX_MAX + 1;
}
wqinfo("init prepost table with max:%d elements (%d bytes)",
max_wqp, tablesz);
ltable_init(&g_prepost_table, "wqslab.prepost", max_wqp,
sizeof(struct wq_prepost), wqp_poison);
}
/*
* Refill the per-CPU cache.
*/
static void
wq_prepost_refill_cpu_cache(uint32_t nalloc)
{
struct lt_elem *new_head, *old_head;
struct wqp_cache *cache;
/* require preemption enabled to allocate elements */
if (get_preemption_level() != 0) {
return;
}
new_head = ltable_alloc_elem(&g_prepost_table,
LT_RESERVED, nalloc, 1);
if (new_head == NULL) {
return;
}
disable_preemption();
cache = PERCPU_GET(wqp_cache);
/* check once more before putting these elements on the list */
if (cache->avail >= WQP_CACHE_MAX) {
lt_elem_list_release(&g_prepost_table, new_head, LT_RESERVED);
enable_preemption();
return;
}
cache->avail += nalloc;
if (cache->head == 0 || cache->head == LT_IDX_MAX) {
cache->head = new_head->lt_id.id;
goto out;
}
old_head = lt_elem_list_first(&g_prepost_table, cache->head);
(void)lt_elem_list_link(&g_prepost_table, new_head, old_head);
cache->head = new_head->lt_id.id;
out:
enable_preemption();
return;
}
static void
wq_prepost_ensure_free_space(void)
{
uint32_t free_elem;
uint32_t min_free;
struct wqp_cache *cache;
if (g_min_free_cache == 0) {
g_min_free_cache = (WQP_CACHE_MAX * ml_wait_max_cpus());
}
/*
* Ensure that we always have a pool of per-CPU prepost elements
*/
disable_preemption();
cache = PERCPU_GET(wqp_cache);
free_elem = cache->avail;
enable_preemption();
if (free_elem < (WQP_CACHE_MAX / 3)) {
wq_prepost_refill_cpu_cache(WQP_CACHE_MAX - free_elem);
}
/*
* Now ensure that we have a sufficient amount of free table space
*/
free_elem = g_prepost_table.nelem - g_prepost_table.used_elem;
min_free = g_min_free_table_elem + g_min_free_cache;
if (free_elem < min_free) {
/*
* we don't hold locks on these values, so check for underflow
*/
if (g_prepost_table.used_elem <= g_prepost_table.nelem) {
wqdbg_v("Forcing table growth: nelem=%d, used=%d, min_free=%d+%d",
g_prepost_table.nelem, g_prepost_table.used_elem,
g_min_free_table_elem, g_min_free_cache);
ltable_grow(&g_prepost_table, min_free);
}
}
}
static struct wq_prepost *
wq_prepost_alloc(int type, int nelem)
{
struct lt_elem *elem;
struct wq_prepost *wqp;
struct wqp_cache *cache;
if (type != LT_RESERVED) {
goto do_alloc;
}
if (nelem == 0) {
return NULL;
}
/*
* First try to grab the elements from the per-CPU cache if we are
* allocating RESERVED elements
*/
disable_preemption();
cache = PERCPU_GET(wqp_cache);
if (nelem <= (int)cache->avail) {
struct lt_elem *first, *next = NULL;
int nalloc = nelem;
cache->avail -= nelem;
/* grab the first element */
first = lt_elem_list_first(&g_prepost_table, cache->head);
/* find the last element and re-adjust the cache head */
for (elem = first; elem != NULL && nalloc > 0; elem = next) {
next = lt_elem_list_next(&g_prepost_table, elem);
if (--nalloc == 0) {
/* terminate the allocated list */
elem->lt_next_idx = LT_IDX_MAX;
break;
}
}
assert(nalloc == 0);
if (!next) {
cache->head = LT_IDX_MAX;
} else {
cache->head = next->lt_id.id;
}
/* assert that we don't have mis-matched book keeping */
assert(!(cache->head == LT_IDX_MAX && cache->avail > 0));
enable_preemption();
elem = first;
goto out;
}
enable_preemption();
do_alloc:
/* fall-back to standard table allocation */
elem = ltable_alloc_elem(&g_prepost_table, type, nelem, 0);
if (!elem) {
return NULL;
}
out:
wqp = (struct wq_prepost *)elem;
wqp_do_alloc_stats(elem);
return wqp;
}
static void
wq_prepost_invalidate(struct wq_prepost *wqp)
{
lt_elem_invalidate(&wqp->wqte);
}
static struct wq_prepost *
wq_prepost_get(uint64_t wqp_id)
{
struct lt_elem *elem;
elem = ltable_get_elem(&g_prepost_table, wqp_id);
return (struct wq_prepost *)elem;
}
static void
wq_prepost_put(struct wq_prepost *wqp)
{
ltable_put_elem(&g_prepost_table, (struct lt_elem *)wqp);
}
static int
wq_prepost_rlink(struct wq_prepost *parent, struct wq_prepost *child)
{
return lt_elem_list_link(&g_prepost_table, &parent->wqte, &child->wqte);
}
static struct wq_prepost *
wq_prepost_get_rnext(struct wq_prepost *head)
{
struct lt_elem *elem;
struct wq_prepost *wqp;
uint64_t id;
elem = lt_elem_list_next(&g_prepost_table, &head->wqte);
if (!elem) {
return NULL;
}
id = elem->lt_id.id;
elem = ltable_get_elem(&g_prepost_table, id);
if (!elem) {
return NULL;
}
wqp = (struct wq_prepost *)elem;
if (elem->lt_id.id != id ||
wqp_type(wqp) != WQP_POST ||
wqp->wqp_post.wqp_next_id != head->wqp_prepostid.id) {
ltable_put_elem(&g_prepost_table, elem);
return NULL;
}
return wqp;
}
static void
wq_prepost_reset_rnext(struct wq_prepost *wqp)
{
(void)lt_elem_list_break(&g_prepost_table, &wqp->wqte);
}
/**
* remove 'wqp' from the prepost list on 'wqset'
*
* Conditions:
* wqset is locked
* caller holds a reference on wqp (and is responsible to release it)
*
* Result:
* wqp is invalidated, wqset is potentially updated with a new
* prepost ID, and the next element of the prepost list may be
* consumed as well (if the list contained only 2 objects)
*/
static int
wq_prepost_remove(struct waitq_set *wqset,
struct wq_prepost *wqp)
{
int more_posts = 1;
uint64_t next_id = wqp->wqp_post.wqp_next_id;
uint64_t wqp_id = wqp->wqp_prepostid.id;
struct wq_prepost *prev_wqp, *next_wqp;
assert(wqp_type(wqp) == WQP_POST);
assert(wqset->wqset_q.waitq_prepost == 1);
if (next_id == wqp_id) {
/* the list is singular and becoming empty */
wqset->wqset_prepost_id = 0;
more_posts = 0;
goto out;
}
prev_wqp = wq_prepost_get_rnext(wqp);
assert(prev_wqp != NULL);
assert(prev_wqp->wqp_post.wqp_next_id == wqp_id);
assert(prev_wqp->wqp_prepostid.id != wqp_id);
assert(wqp_type(prev_wqp) == WQP_POST);
if (prev_wqp->wqp_prepostid.id == next_id) {
/*
* There are two items in the list, and we're removing one. We
* only need to keep the WQP_WQ pointer from 'prev_wqp'
*/
wqset->wqset_prepost_id = prev_wqp->wqp_post.wqp_wq_id;
wq_prepost_invalidate(prev_wqp);
wq_prepost_put(prev_wqp);
more_posts = 0;
goto out;
}
/* prev->next = next */
prev_wqp->wqp_post.wqp_next_id = next_id;
/* next->prev = prev */
next_wqp = wq_prepost_get(next_id);
assert(next_wqp != NULL);
assert(next_wqp != wqp);
assert(next_wqp != prev_wqp);
assert(wqp_type(next_wqp) == WQP_POST);
wq_prepost_reset_rnext(next_wqp);
wq_prepost_rlink(next_wqp, prev_wqp);
/* If we remove the head of the list, update the wqset */
if (wqp_id == wqset->wqset_prepost_id) {
wqset->wqset_prepost_id = next_id;
}
wq_prepost_put(prev_wqp);
wq_prepost_put(next_wqp);
out:
wq_prepost_reset_rnext(wqp);
wq_prepost_invalidate(wqp);
return more_posts;
}
static struct wq_prepost *
wq_prepost_rfirst(uint64_t id)
{
struct lt_elem *elem;
elem = lt_elem_list_first(&g_prepost_table, id);
wqp_do_alloc_stats(elem);
return (struct wq_prepost *)(void *)elem;
}
static struct wq_prepost *
wq_prepost_rpop(uint64_t *id, int type)
{
struct lt_elem *elem;
elem = lt_elem_list_pop(&g_prepost_table, id, type);
wqp_do_alloc_stats(elem);
return (struct wq_prepost *)(void *)elem;
}
static void
wq_prepost_release_rlist(struct wq_prepost *wqp)
{
int nelem = 0;
struct wqp_cache *cache;
struct lt_elem *elem;
if (!wqp) {
return;
}
elem = &wqp->wqte;
/*
* These are reserved elements: release them back to the per-cpu pool
* if our cache is running low.
*/
disable_preemption();
cache = PERCPU_GET(wqp_cache);
if (cache->avail < WQP_CACHE_MAX) {
struct lt_elem *tmp = NULL;
if (cache->head != LT_IDX_MAX) {
tmp = lt_elem_list_first(&g_prepost_table, cache->head);
}
nelem = lt_elem_list_link(&g_prepost_table, elem, tmp);
cache->head = elem->lt_id.id;
cache->avail += nelem;
enable_preemption();
return;
}
enable_preemption();
/* release these elements back to the main table */
nelem = lt_elem_list_release(&g_prepost_table, elem, LT_RESERVED);
#if CONFIG_WAITQ_STATS
g_prepost_table.nreserved_releases += 1;
OSDecrementAtomic64(&g_prepost_table.nreservations);
#endif
}
typedef int (*wqp_callback_func)(struct waitq_set *wqset,
void *ctx,
struct wq_prepost *wqp,
struct waitq *waitq);
/**
* iterate over a chain of preposts associated with a waitq set.
*
* Conditions:
* wqset is locked
*
* Notes:
* This loop performs automatic prepost chain management / culling, and
* may reset or adjust the waitq set's prepost ID pointer. If you don't
* want this extra processing, you can use wq_prepost_iterate().
*/
static int
wq_prepost_foreach_locked(struct waitq_set *wqset,
void *ctx, wqp_callback_func cb)
{
int ret = WQ_ITERATE_SUCCESS;
struct wq_prepost *wqp, *tmp_wqp;
assert(cb != NULL);
if (!wqset || !waitq_set_maybe_preposted(wqset)) {
return WQ_ITERATE_SUCCESS;
}
restart:
wqp = wq_prepost_get(wqset->wqset_prepost_id);
if (!wqp) {
/*
* The prepost object is no longer valid, reset the waitq
* set's prepost id.
*/
wqset->wqset_prepost_id = 0;
return WQ_ITERATE_SUCCESS;
}
if (wqp_type(wqp) == WQP_WQ) {
uint64_t __assert_only wqp_id = wqp->wqp_prepostid.id;
ret = cb(wqset, ctx, wqp, wqp->wqp_wq.wqp_wq_ptr);
switch (ret) {
case WQ_ITERATE_INVALIDATE_CONTINUE:
/* the caller wants to remove the only prepost here */
assert(wqp_id == wqset->wqset_prepost_id);
wqset->wqset_prepost_id = 0;
OS_FALLTHROUGH;
case WQ_ITERATE_CONTINUE:
wq_prepost_put(wqp);
ret = WQ_ITERATE_SUCCESS;
break;
case WQ_ITERATE_RESTART:
wq_prepost_put(wqp);
OS_FALLTHROUGH;
case WQ_ITERATE_DROPPED:
goto restart;
default:
wq_prepost_put(wqp);
break;
}
return ret;
}
assert(wqp->wqp_prepostid.id == wqset->wqset_prepost_id);
assert(wqp_type(wqp) == WQP_POST);
/*
* At this point we know we have a list of POST objects.
* Grab a handle to the last element in the list and start
* the iteration.
*/
tmp_wqp = wq_prepost_get_rnext(wqp);
assert(tmp_wqp != NULL && wqp_type(tmp_wqp) == WQP_POST);
uint64_t last_id = tmp_wqp->wqp_prepostid.id;
wq_prepost_put(tmp_wqp);
ret = WQ_ITERATE_SUCCESS;
for (;;) {
uint64_t wqp_id, first_id, next_id;
wqp_id = wqp->wqp_prepostid.id;
first_id = wqset->wqset_prepost_id;
next_id = wqp->wqp_post.wqp_next_id;
/* grab the WQP_WQ object this _POST points to */
tmp_wqp = wq_prepost_get(wqp->wqp_post.wqp_wq_id);
if (!tmp_wqp) {
/*
* This WQP_POST object points to an invalid
* WQP_WQ object - remove the POST object from
* the list.
*/
if (wq_prepost_remove(wqset, wqp) == 0) {
wq_prepost_put(wqp);
goto restart;
}
goto next_prepost;
}
assert(wqp_type(tmp_wqp) == WQP_WQ);
/*
* make the callback: note that this could remove 'wqp' or
* drop the lock on our waitq set. We need to re-validate
* our state when this function returns.
*/
ret = cb(wqset, ctx, wqp, tmp_wqp->wqp_wq.wqp_wq_ptr);
wq_prepost_put(tmp_wqp);
switch (ret) {
case WQ_ITERATE_CONTINUE:
/* continue iteration */
break;
case WQ_ITERATE_INVALIDATE_CONTINUE:
assert(next_id == wqp->wqp_post.wqp_next_id);
if (wq_prepost_remove(wqset, wqp) == 0) {
wq_prepost_put(wqp);
goto restart;
}
goto next_prepost;
case WQ_ITERATE_RESTART:
wq_prepost_put(wqp);
OS_FALLTHROUGH;
case WQ_ITERATE_DROPPED:
/* the callback dropped the ref to wqp: just restart */
goto restart;
default:
/* break out of the iteration for some other reason */
goto finish_prepost_foreach;
}
/*
* the set lock may have been dropped during callback,
* if something looks different, restart the prepost iteration
*/
if (!wqp_is_valid(wqp) ||
(wqp->wqp_post.wqp_next_id != next_id) ||
wqset->wqset_prepost_id != first_id) {
wq_prepost_put(wqp);
goto restart;
}
next_prepost:
/* this was the last object in the list */
if (wqp_id == last_id) {
break;
}
/* get the next object */
tmp_wqp = wq_prepost_get(next_id);
if (!tmp_wqp) {
/*
* At this point we've already checked our state
* after the callback (which may have dropped the set
* lock). If we find an invalid member of the list
* then something is wrong.
*/
panic("Invalid WQP_POST member 0x%llx in waitq set "
"0x%llx prepost list (first:%llx, "
"wqp:%p)",
next_id, wqset->wqset_id, first_id, wqp);
}
wq_prepost_put(wqp);
wqp = tmp_wqp;
assert(wqp_type(wqp) == WQP_POST);
}
finish_prepost_foreach:
wq_prepost_put(wqp);
if (ret == WQ_ITERATE_CONTINUE) {
ret = WQ_ITERATE_SUCCESS;
}
return ret;
}
/**
* Perform a simple loop over a chain of prepost objects
*
* Conditions:
* If 'prepost_id' is associated with a waitq (set) then that object must
* be locked before calling this function.
* Callback function, 'cb', must be able to handle a NULL wqset pointer
* and a NULL waitq pointer!
*
* Notes:
* This prepost chain iteration will _not_ automatically adjust any chain
* element or linkage. This is the responsibility of the caller! If you
* want automatic prepost chain management (at a cost of extra CPU time),
* you can use: wq_prepost_foreach_locked().
*/
static int
wq_prepost_iterate(uint64_t prepost_id,
void *ctx, wqp_callback_func cb)
{
int ret;
struct wq_prepost *wqp;
if (!prepost_id) {
return WQ_ITERATE_SUCCESS;
}
wqp = wq_prepost_get(prepost_id);
if (!wqp) {
return WQ_ITERATE_SUCCESS;
}
if (wqp_type(wqp) == WQP_WQ) {
ret = WQ_ITERATE_SUCCESS;
if (cb) {
ret = cb(NULL, ctx, wqp, wqp->wqp_wq.wqp_wq_ptr);
}
if (ret != WQ_ITERATE_DROPPED) {
wq_prepost_put(wqp);
}
return ret;
}
assert(wqp->wqp_prepostid.id == prepost_id);
assert(wqp_type(wqp) == WQP_POST);
/* at this point we know we have a list of POST objects */
uint64_t next_id;
ret = WQ_ITERATE_CONTINUE;
do {
struct wq_prepost *tmp_wqp;
struct waitq *wq = NULL;
next_id = wqp->wqp_post.wqp_next_id;
/* grab the WQP_WQ object this _POST points to */
tmp_wqp = wq_prepost_get(wqp->wqp_post.wqp_wq_id);
if (tmp_wqp) {
assert(wqp_type(tmp_wqp) == WQP_WQ);
wq = tmp_wqp->wqp_wq.wqp_wq_ptr;
}
if (cb) {
ret = cb(NULL, ctx, wqp, wq);
}
if (tmp_wqp) {
wq_prepost_put(tmp_wqp);
}
if (ret != WQ_ITERATE_CONTINUE) {
break;
}
tmp_wqp = wq_prepost_get(next_id);
if (!tmp_wqp) {
/*
* the chain is broken: nothing we can do here besides
* bail from the iteration.
*/
ret = WQ_ITERATE_ABORTED;
break;
}
wq_prepost_put(wqp);
wqp = tmp_wqp;
assert(wqp_type(wqp) == WQP_POST);
} while (next_id != prepost_id);
if (ret != WQ_ITERATE_DROPPED) {
wq_prepost_put(wqp);
}
if (ret == WQ_ITERATE_CONTINUE) {
ret = WQ_ITERATE_SUCCESS;
}
return ret;
}
struct _is_posted_ctx {
struct waitq *posting_wq;
int did_prepost;
};
static int
wq_is_preposted_on_set_cb(struct waitq_set *wqset, void *ctx,
struct wq_prepost *wqp, struct waitq *waitq)
{
struct _is_posted_ctx *pctx = (struct _is_posted_ctx *)ctx;
(void)wqset;
(void)wqp;
/*
* Don't early-out, run through the _entire_ list:
* This ensures that we retain a minimum number of invalid elements.
*/
if (pctx->posting_wq == waitq) {
pctx->did_prepost = 1;
}
return WQ_ITERATE_CONTINUE;
}
/**
* checks if 'waitq' has already preposted on 'wqset'
*
* Parameters:
* waitq The waitq that's preposting
* wqset The set onto which waitq may be preposted
*
* Conditions:
* both waitq and wqset are locked
*
* Returns non-zero if 'waitq' has already preposted to 'wqset'
*/
static int
wq_is_preposted_on_set(struct waitq *waitq, struct waitq_set *wqset)
{
int ret;
struct _is_posted_ctx pctx;
/*
* If the set's only prepost matches the waitq's prepost ID,
* then it obviously already preposted to the set.
*/
if (waitq->waitq_prepost_id != 0 &&
wqset->wqset_prepost_id == waitq->waitq_prepost_id) {
return 1;
}
/* use full prepost iteration: always trim the list */
pctx.posting_wq = waitq;
pctx.did_prepost = 0;
ret = wq_prepost_foreach_locked(wqset, (void *)&pctx,
wq_is_preposted_on_set_cb);
return pctx.did_prepost;
}
static struct wq_prepost *
wq_get_prepost_obj(uint64_t *reserved, int type)
{
struct wq_prepost *wqp = NULL;
/*
* don't fail just because the caller doesn't have enough
* reservations, we've kept a low-water mark on the prepost table,
* so there should be some available for us.
*/
if (reserved && *reserved) {
wqp = wq_prepost_rpop(reserved, type);
assert(wqp->wqte.lt_id.idx < g_prepost_table.nelem);
} else {
/*
* TODO: if in interrupt context, grab from a special
* region / reserved list!
*/
wqp = wq_prepost_alloc(type, 1);
}
if (wqp == NULL) {
panic("Couldn't allocate prepost object!");
}
return wqp;
}
/**
* prepost a waitq onto a waitq set
*
* Parameters:
* wqset The set onto which waitq will be preposted
* waitq The waitq that's preposting
* reserved List (lt_elem_list_ style) of pre-allocated prepost elements
* Could be NULL
*
* Conditions:
* both wqset and waitq are locked
*
* Notes:
* If reserved is NULL, this may block on prepost table growth.
*/
static void
wq_prepost_do_post_locked(struct waitq_set *wqset,
struct waitq *waitq,
uint64_t *reserved)
{
struct wq_prepost *wqp_post, *wqp_head, *wqp_tail;
assert(waitq_held(waitq) && waitq_held(&wqset->wqset_q));
/*
* nothing to do if it's already preposted:
* note that this also culls any invalid prepost objects
*/
if (wq_is_preposted_on_set(waitq, wqset)) {
return;
}
assert(waitqs_is_linked(wqset));
/*
* This function is called because an event is being posted to 'waitq'.
* We need a prepost object associated with this queue. Allocate one
* now if the waitq isn't already associated with one.
*/
if (waitq->waitq_prepost_id == 0) {
struct wq_prepost *wqp;
wqp = wq_get_prepost_obj(reserved, WQP_WQ);
wqp->wqp_wq.wqp_wq_ptr = waitq;
wqp_set_valid(wqp);
waitq->waitq_prepost_id = wqp->wqp_prepostid.id;
wq_prepost_put(wqp);
}
#if CONFIG_LTABLE_STATS
g_prepost_table.npreposts += 1;
#endif
wqdbg_v("preposting waitq %p (0x%llx) to set 0x%llx",
(void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq),
waitq->waitq_prepost_id, wqset->wqset_id);
if (wqset->wqset_prepost_id == 0) {
/* the set has no previous preposts */
wqset->wqset_prepost_id = waitq->waitq_prepost_id;
return;
}
wqp_head = wq_prepost_get(wqset->wqset_prepost_id);
if (!wqp_head) {
/* the previous prepost has become invalid */
wqset->wqset_prepost_id = waitq->waitq_prepost_id;
return;
}
assert(wqp_head->wqp_prepostid.id == wqset->wqset_prepost_id);
/*
* If we get here, we're going to need at least one new wq_prepost
* object. If the previous wqset_prepost_id points to a WQP_WQ, we
* actually need to allocate 2 wq_prepost objects because the WQP_WQ
* is tied to the waitq and shared across all sets.
*/
wqp_post = wq_get_prepost_obj(reserved, WQP_POST);
wqp_post->wqp_post.wqp_wq_id = waitq->waitq_prepost_id;
wqdbg_v("POST 0x%llx :: WQ 0x%llx", wqp_post->wqp_prepostid.id,
waitq->waitq_prepost_id);
if (wqp_type(wqp_head) == WQP_WQ) {
/*
* We must replace the wqset_prepost_id with a pointer
* to two new WQP_POST objects
*/
uint64_t wqp_id = wqp_head->wqp_prepostid.id;
wqdbg_v("set 0x%llx previous had 1 WQ prepost (0x%llx): "
"replacing with two POST preposts",
wqset->wqset_id, wqp_id);
/* drop the old reference */
wq_prepost_put(wqp_head);
/* grab another new object (the 2nd of two) */
wqp_head = wq_get_prepost_obj(reserved, WQP_POST);
/* point this one to the original WQP_WQ object */
wqp_head->wqp_post.wqp_wq_id = wqp_id;
wqdbg_v("POST 0x%llx :: WQ 0x%llx",
wqp_head->wqp_prepostid.id, wqp_id);
/* link it to the new wqp_post object allocated earlier */
wqp_head->wqp_post.wqp_next_id = wqp_post->wqp_prepostid.id;
/* make the list a double-linked and circular */
wq_prepost_rlink(wqp_head, wqp_post);
/*
* Finish setting up the new prepost: point it back to the
* POST object we allocated to replace the original wqset
* WQ prepost object
*/
wqp_post->wqp_post.wqp_next_id = wqp_head->wqp_prepostid.id;
wq_prepost_rlink(wqp_post, wqp_head);
/* mark objects valid, and reset the wqset prepost list head */
wqp_set_valid(wqp_head);
wqp_set_valid(wqp_post);
wqset->wqset_prepost_id = wqp_head->wqp_prepostid.id;
/* release both references */
wq_prepost_put(wqp_head);
wq_prepost_put(wqp_post);
wqdbg_v("set 0x%llx: 0x%llx/0x%llx -> 0x%llx/0x%llx -> 0x%llx",
wqset->wqset_id, wqset->wqset_prepost_id,
wqp_head->wqp_prepostid.id, wqp_head->wqp_post.wqp_next_id,
wqp_post->wqp_prepostid.id,
wqp_post->wqp_post.wqp_next_id);
return;
}
assert(wqp_type(wqp_head) == WQP_POST);
/*
* Add the new prepost to the end of the prepost list
*/
wqp_tail = wq_prepost_get_rnext(wqp_head);
assert(wqp_tail != NULL);
assert(wqp_tail->wqp_post.wqp_next_id == wqset->wqset_prepost_id);
/*
* link the head to the new tail
* NOTE: this needs to happen first in case wqp_tail == wqp_head
*/
wq_prepost_reset_rnext(wqp_head);
wq_prepost_rlink(wqp_head, wqp_post);
/* point the new object to the list head, and list tail */
wqp_post->wqp_post.wqp_next_id = wqp_head->wqp_prepostid.id;
wq_prepost_rlink(wqp_post, wqp_tail);
/* point the last item in the waitq set's list to the new object */
wqp_tail->wqp_post.wqp_next_id = wqp_post->wqp_prepostid.id;
wqp_set_valid(wqp_post);
wq_prepost_put(wqp_head);
wq_prepost_put(wqp_tail);
wq_prepost_put(wqp_post);
wqdbg_v("set 0x%llx (wqp:0x%llx) last_prepost:0x%llx, "
"new_prepost:0x%llx->0x%llx", wqset->wqset_id,
wqset->wqset_prepost_id, wqp_head->wqp_prepostid.id,
wqp_post->wqp_prepostid.id, wqp_post->wqp_post.wqp_next_id);
return;
}
/* ----------------------------------------------------------------------
*
* Stats collection / reporting
*
* ---------------------------------------------------------------------- */
#if CONFIG_LTABLE_STATS && CONFIG_WAITQ_STATS
static void
wq_table_stats(struct link_table *table, struct wq_table_stats *stats)
{
stats->version = WAITQ_STATS_VERSION;
stats->table_elements = table->nelem;
stats->table_used_elems = table->used_elem;
stats->table_elem_sz = table->elem_sz;
stats->table_slabs = table->nslabs;
stats->table_slab_sz = table->slab_sz;
stats->table_num_allocs = table->nallocs;
stats->table_num_preposts = table->npreposts;
stats->table_num_reservations = table->nreservations;
stats->table_max_used = table->max_used;
stats->table_avg_used = table->avg_used;
stats->table_max_reservations = table->max_reservations;
stats->table_avg_reservations = table->avg_reservations;
}
void
waitq_link_stats(struct wq_table_stats *stats)
{
if (!stats) {
return;
}
wq_table_stats(&g_wqlinktable, stats);
}
void
waitq_prepost_stats(struct wq_table_stats *stats)
{
wq_table_stats(&g_prepost_table, stats);
}
#endif
/* ----------------------------------------------------------------------
*
* Global Wait Queues
*
* ---------------------------------------------------------------------- */
static struct waitq g_boot_waitq;
static struct waitq *global_waitqs = &g_boot_waitq;
static uint32_t g_num_waitqs = 1;
/*
* Zero out the used MSBs of the event.
*/
#define _CAST_TO_EVENT_MASK(event) ((uintptr_t)(event) & ((1ul << _EVENT_MASK_BITS) - 1ul))
static __inline__ uint32_t
waitq_hash(char *key, size_t length)
{
uint32_t hash = os_hash_jenkins(key, length);
hash &= (g_num_waitqs - 1);
return hash;
}
/* return a global waitq pointer corresponding to the given event */
struct waitq *
_global_eventq(char *event, size_t event_length)
{
return &global_waitqs[waitq_hash(event, event_length)];
}
/* return an indexed global waitq pointer */
struct waitq *
global_waitq(int index)
{
return &global_waitqs[index % g_num_waitqs];
}
#if CONFIG_LTABLE_STATS || CONFIG_WAITQ_STATS
/* this global is for lldb */
const uint32_t g_nwaitq_btframes = NWAITQ_BTFRAMES;
static __inline__ void
waitq_grab_backtrace(uintptr_t bt[NWAITQ_BTFRAMES], int skip)
{
uintptr_t buf[NWAITQ_BTFRAMES + skip];
if (skip < 0) {
skip = 0;
}
memset(buf, 0, (NWAITQ_BTFRAMES + skip) * sizeof(uintptr_t));
backtrace(buf, g_nwaitq_btframes + skip, NULL);
memcpy(&bt[0], &buf[skip], NWAITQ_BTFRAMES * sizeof(uintptr_t));
}
#else /* no stats */
#define waitq_grab_backtrace(...)
#endif
#if CONFIG_WAITQ_STATS
struct wq_stats g_boot_stats;
struct wq_stats *g_waitq_stats = &g_boot_stats;
static __inline__ struct wq_stats *
waitq_global_stats(struct waitq *waitq)
{
struct wq_stats *wqs;
uint32_t idx;
if (!waitq_is_global(waitq)) {
return NULL;
}
idx = (uint32_t)(((uintptr_t)waitq - (uintptr_t)global_waitqs) / sizeof(*waitq));
assert(idx < g_num_waitqs);
wqs = &g_waitq_stats[idx];
return wqs;
}
static __inline__ void
waitq_stats_count_wait(struct waitq *waitq)
{
struct wq_stats *wqs = waitq_global_stats(waitq);
if (wqs != NULL) {
wqs->waits++;
waitq_grab_backtrace(wqs->last_wait, 2);
}
}
static __inline__ void
waitq_stats_count_wakeup(struct waitq *waitq)
{
struct wq_stats *wqs = waitq_global_stats(waitq);
if (wqs != NULL) {
wqs->wakeups++;
waitq_grab_backtrace(wqs->last_wakeup, 2);
}
}
static __inline__ void
waitq_stats_count_clear_wakeup(struct waitq *waitq)
{
struct wq_stats *wqs = waitq_global_stats(waitq);
if (wqs != NULL) {
wqs->wakeups++;
wqs->clears++;
waitq_grab_backtrace(wqs->last_wakeup, 2);
}
}
static __inline__ void
waitq_stats_count_fail(struct waitq *waitq)
{
struct wq_stats *wqs = waitq_global_stats(waitq);
if (wqs != NULL) {
wqs->failed_wakeups++;
waitq_grab_backtrace(wqs->last_failed_wakeup, 2);
}
}
#else /* !CONFIG_WAITQ_STATS */
#define waitq_stats_count_wait(q) do { } while (0)
#define waitq_stats_count_wakeup(q) do { } while (0)
#define waitq_stats_count_clear_wakeup(q) do { } while (0)
#define waitq_stats_count_fail(q) do { } while (0)
#endif
int
waitq_is_valid(struct waitq *waitq)
{
return (waitq != NULL) && waitq->waitq_isvalid;
}
int
waitq_set_is_valid(struct waitq_set *wqset)
{
return (wqset != NULL) && wqset->wqset_q.waitq_isvalid && waitqs_is_set(wqset);
}
int
waitq_is_global(struct waitq *waitq)
{
if (waitq >= global_waitqs && waitq < global_waitqs + g_num_waitqs) {
return 1;
}
return 0;
}
int
waitq_irq_safe(struct waitq *waitq)
{
/* global wait queues have this bit set on initialization */
return waitq->waitq_irq;
}
static inline bool
waitq_empty(struct waitq *wq)
{
if (waitq_is_turnstile_queue(wq)) {
return priority_queue_empty(&wq->waitq_prio_queue);
} else if (waitq_is_turnstile_proxy(wq)) {
struct turnstile *ts = wq->waitq_ts;
return ts == TURNSTILE_NULL ||
priority_queue_empty(&ts->ts_waitq.waitq_prio_queue);
} else {
return queue_empty(&wq->waitq_queue);
}
}
static struct waitq *
waitq_get_safeq(struct waitq *waitq)
{
/* Check if it's a port waitq */
if (waitq_is_turnstile_proxy(waitq)) {
struct turnstile *ts = waitq->waitq_ts;
return ts ? &ts->ts_waitq : NULL;
}
return global_eventq(waitq);
}
static uint32_t
waitq_hash_size(void)
{
uint32_t hsize, queues;
if (PE_parse_boot_argn("wqsize", &hsize, sizeof(hsize))) {
return hsize;
}
queues = thread_max / 5;
hsize = P2ROUNDUP(queues * sizeof(struct waitq), PAGE_SIZE);
return hsize;
}
/*
* Since the priority ordered waitq uses basepri as the
* ordering key assert that this value fits in a uint8_t.
*/
static_assert(MAXPRI <= UINT8_MAX);
static inline void
waitq_thread_insert(struct waitq *wq,
thread_t thread, boolean_t fifo)
{
if (waitq_is_turnstile_queue(wq)) {
turnstile_stats_update(0, TSU_TURNSTILE_BLOCK_COUNT, NULL);
turnstile_waitq_add_thread_priority_queue(wq, thread);
} else {
turnstile_stats_update(0, TSU_REGULAR_WAITQ_BLOCK_COUNT, NULL);
if (fifo) {
enqueue_tail(&wq->waitq_queue, &thread->wait_links);
} else {
enqueue_head(&wq->waitq_queue, &thread->wait_links);
}
}
}
static inline void
waitq_thread_remove(struct waitq *wq,
thread_t thread)
{
if (waitq_is_turnstile_queue(wq)) {
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
(TURNSTILE_CODE(TURNSTILE_HEAP_OPERATIONS, (THREAD_REMOVED_FROM_TURNSTILE_WAITQ))) | DBG_FUNC_NONE,
VM_KERNEL_UNSLIDE_OR_PERM(waitq_to_turnstile(wq)),
thread_tid(thread),
0, 0, 0);
priority_queue_remove(&wq->waitq_prio_queue, &thread->wait_prioq_links);
} else {
remqueue(&(thread->wait_links));
}
}
void
waitq_bootstrap(void)
{
kern_return_t kret;
uint32_t whsize, qsz, tmp32;
g_min_free_table_elem = DEFAULT_MIN_FREE_TABLE_ELEM;
if (PE_parse_boot_argn("wqt_min_free", &tmp32, sizeof(tmp32)) == TRUE) {
g_min_free_table_elem = tmp32;
}
wqdbg("Minimum free table elements: %d", tmp32);
/*
* Determine the amount of memory we're willing to reserve for
* the waitqueue hash table
*/
whsize = waitq_hash_size();
/* Determine the number of waitqueues we can fit. */
qsz = sizeof(struct waitq);
whsize = ROUNDDOWN(whsize, qsz);
g_num_waitqs = whsize / qsz;
/*
* The hash algorithm requires that this be a power of 2, so we
* just mask off all the low-order bits.
*/
for (uint32_t i = 0; i < 31; i++) {
uint32_t bit = (1 << i);
if ((g_num_waitqs & bit) == g_num_waitqs) {
break;
}
g_num_waitqs &= ~bit;
}
assert(g_num_waitqs > 0);
/* Now determine how much memory we really need. */
whsize = P2ROUNDUP(g_num_waitqs * qsz, PAGE_SIZE);
wqdbg("allocating %d global queues (%d bytes)", g_num_waitqs, whsize);
kret = kernel_memory_allocate(kernel_map, (vm_offset_t *)&global_waitqs,
whsize, 0, KMA_KOBJECT | KMA_NOPAGEWAIT, VM_KERN_MEMORY_WAITQ);
if (kret != KERN_SUCCESS || global_waitqs == NULL) {
panic("kernel_memory_allocate() failed to alloc global_waitqs"
", error: %d, whsize: 0x%x", kret, whsize);
}
#if CONFIG_WAITQ_STATS
whsize = P2ROUNDUP(g_num_waitqs * sizeof(struct wq_stats), PAGE_SIZE);
kret = kernel_memory_allocate(kernel_map, (vm_offset_t *)&g_waitq_stats,
whsize, 0, KMA_KOBJECT | KMA_NOPAGEWAIT, VM_KERN_MEMORY_WAITQ);
if (kret != KERN_SUCCESS || global_waitqs == NULL) {
panic("kernel_memory_allocate() failed to alloc g_waitq_stats"
", error: %d, whsize: 0x%x", kret, whsize);
}
memset(g_waitq_stats, 0, whsize);
#endif
for (uint32_t i = 0; i < g_num_waitqs; i++) {
waitq_init(&global_waitqs[i], SYNC_POLICY_FIFO | SYNC_POLICY_DISABLE_IRQ);
}
/* initialize the global waitq link table */
wql_init();
/* initialize the global waitq prepost table */
wqp_init();
}
/* ----------------------------------------------------------------------
*
* Wait Queue Implementation
*
* ---------------------------------------------------------------------- */
/*
* Double the standard lock timeout, because wait queues tend
* to iterate over a number of threads - locking each. If there is
* a problem with a thread lock, it normally times out at the wait
* queue level first, hiding the real problem.
*/
/* For x86, the hardware timeout is in TSC units. */
#if defined(__i386__) || defined(__x86_64__)
#define hwLockTimeOut LockTimeOutTSC
#else
#define hwLockTimeOut LockTimeOut
#endif
void
waitq_lock(struct waitq *wq)
{
if (__improbable(waitq_lock_to(wq,
hwLockTimeOut * 2) == 0)) {
boolean_t wql_acquired = FALSE;
while (machine_timeout_suspended()) {
mp_enable_preemption();
wql_acquired = waitq_lock_to(wq,
hwLockTimeOut * 2);
if (wql_acquired) {
break;
}
}
if (wql_acquired == FALSE) {
panic("waitq deadlock - waitq=%p, cpu=%d\n",
wq, cpu_number());
}
}
#if defined(__x86_64__)
pltrace(FALSE);
#endif
assert(waitq_held(wq));
}
void
waitq_unlock(struct waitq *wq)
{
assert(waitq_held(wq));
#if defined(__x86_64__)
pltrace(TRUE);
#endif
waitq_lock_unlock(wq);
}
/**
* clear the thread-related waitq state
*
* Conditions:
* 'thread' is locked
*/
static inline void
thread_clear_waitq_state(thread_t thread)
{
thread->waitq = NULL;
thread->wait_event = NO_EVENT64;
thread->at_safe_point = FALSE;
}
typedef thread_t (*waitq_select_cb)(void *ctx, struct waitq *waitq,
int is_global, thread_t thread);
struct waitq_select_args {
/* input parameters */
struct waitq *posted_waitq;
struct waitq *waitq;
event64_t event;
waitq_select_cb select_cb;
void *select_ctx;
int priority;
uint64_t *reserved_preposts;
/* output parameters */
queue_t threadq;
int max_threads;
int *nthreads;
spl_t *spl;
};
static void do_waitq_select_n_locked(struct waitq_select_args *args);
/**
* callback invoked once for every waitq set to which a waitq belongs
*
* Conditions:
* ctx->posted_waitq is locked
* 'link' points to a valid waitq set
*
* Notes:
* Takes the waitq set lock on the set pointed to by 'link'
* Calls do_waitq_select_n_locked() which could recurse back into
* this function if the waitq set is a member of other sets.
* If no threads were selected, it preposts the input waitq
* onto the waitq set pointed to by 'link'.
*/
static int
waitq_select_walk_cb(struct waitq *waitq, void *ctx,
struct waitq_link *link)
{
int ret = WQ_ITERATE_CONTINUE;
struct waitq_select_args args = *((struct waitq_select_args *)ctx);
struct waitq_set *wqset;
(void)waitq;
assert(wql_type(link) == WQL_WQS);
wqset = link->wql_wqs.wql_set;
args.waitq = &wqset->wqset_q;
assert(!waitq_irq_safe(waitq));
assert(!waitq_irq_safe(&wqset->wqset_q));
waitq_set_lock(wqset);
/*
* verify that the link wasn't invalidated just before
* we were able to take the lock.
*/
if (wqset->wqset_id != link->wql_setid.id) {
goto out_unlock;
}
assert(waitqs_is_linked(wqset));
/*
* Find any threads waiting on this wait queue set,
* and recurse into any waitq set to which this set belongs.
*/
do_waitq_select_n_locked(&args);
if (*args.nthreads > 0 || (args.threadq && !queue_empty(args.threadq))) {
/* at least 1 thread was selected and returned: don't prepost */
if (args.max_threads > 0 && *args.nthreads >= args.max_threads) {
/* break out of the setid walk */
ret = WQ_ITERATE_FOUND;
}
} else if (args.event == NO_EVENT64) {
/*
* No thread selected: prepost 'waitq' to 'wqset'
* if wqset can handle preposts and the event is set to 0.
* We also make sure to not post waitq sets to other sets.
*
* If the set doesn't support preposts, but does support
* prepost callout/hook interaction, invoke the predefined
* callout function and pass the set's 'prepost_hook.' This
* could potentially release another thread to handle events.
*/
if (waitq_set_can_prepost(wqset)) {
wq_prepost_do_post_locked(
wqset, waitq, args.reserved_preposts);
} else if (waitq_set_has_prepost_hook(wqset)) {
waitq_set_prepost_hook_t *hook = wqset->wqset_prepost_hook;
/*
* When calling out to the prepost hook,
* we drop the waitq lock, to allow for the kevent
* subsytem to call into the waitq subsystem again,
* without risking a deadlock.
*
* However, we need to guard against wqset going away,
* so we increment the prepost hook use count
* while the lock is dropped.
*
* This lets waitq_set_deinit() know to wait for the
* prepost hook call to be done before it can proceed.
*
* Note: we need to keep preemption disabled the whole
* time as waitq_set_deinit will spin on this.
*/
disable_preemption();
os_atomic_add(hook, (uint16_t)1, relaxed);
waitq_set_unlock(wqset);
waitq_set__CALLING_PREPOST_HOOK__(hook);
/* Note: after this decrement, the wqset may be deallocated */
os_atomic_add(hook, (uint16_t)-1, relaxed);
enable_preemption();
return ret;
}
}
out_unlock:
waitq_set_unlock(wqset);
return ret;
}
/**
* Routine to iterate over the waitq for non-priority ordered waitqs
*
* Conditions:
* args->waitq (and args->posted_waitq) is locked
*
* Notes:
* Uses the optional select callback function to refine the selection
* of one or more threads from a waitq. The select callback is invoked
* once for every thread that is found to be waiting on the input args->waitq.
*
* If one or more threads are selected, this may disable interrupts.
* The previous interrupt state is returned in args->spl and should
* be used in a call to splx() if threads are returned to the caller.
*/
static thread_t
waitq_queue_iterate_locked(struct waitq *safeq, struct waitq *waitq,
spl_t spl, struct waitq_select_args *args,
uint32_t *remaining_eventmask)
{
int max_threads = args->max_threads;
int *nthreads = args->nthreads;
thread_t thread = THREAD_NULL;
thread_t first_thread = THREAD_NULL;
qe_foreach_element_safe(thread, &safeq->waitq_queue, wait_links) {
thread_t t = THREAD_NULL;
assert_thread_magic(thread);
/*
* For non-priority ordered waitqs, we allow multiple events to be
* mux'ed into the same waitq. Also safeqs may contain threads from
* multiple waitqs. Only pick threads that match the
* requested wait event.
*/
if (thread->waitq == waitq && thread->wait_event == args->event) {
t = thread;
if (first_thread == THREAD_NULL) {
first_thread = thread;
}
/* allow the caller to futher refine the selection */
if (args->select_cb) {
t = args->select_cb(args->select_ctx, waitq,
waitq_is_global(waitq), thread);
}
if (t != THREAD_NULL) {
*nthreads += 1;
if (args->threadq) {
/* if output queue, add locked thread to it */
if (*nthreads == 1) {
*(args->spl) = (safeq != waitq) ? spl : splsched();
}
thread_lock(t);
thread_clear_waitq_state(t);
re_queue_tail(args->threadq, &t->wait_links);
}
/* only enqueue up to 'max' threads */
if (*nthreads >= max_threads && max_threads > 0) {
break;
}
}
}
/* thread wasn't selected so track it's event */
if (t == THREAD_NULL) {
*remaining_eventmask |= (thread->waitq != safeq) ?
_CAST_TO_EVENT_MASK(thread->waitq) : _CAST_TO_EVENT_MASK(thread->wait_event);
}
}
return first_thread;
}
/**
* Routine to iterate and remove threads from priority ordered waitqs
*
* Conditions:
* args->waitq (and args->posted_waitq) is locked
*
* Notes:
* The priority ordered waitqs only support maximum priority element removal.
*
* Also, the implementation makes sure that all threads in a priority ordered
* waitq are waiting on the same wait event. This is not necessarily true for
* non-priority ordered waitqs. If one or more threads are selected, this may
* disable interrupts. The previous interrupt state is returned in args->spl
* and should be used in a call to splx() if threads are returned to the caller.
*
* In the future, we could support priority ordered waitqs with multiple wait
* events in the same queue. The way to implement that would be to keep removing
* elements from the waitq and if the event does not match the requested one,
* add it to a local list. This local list of elements needs to be re-inserted
* into the priority queue at the end and the select_cb return value &
* remaining_eventmask would need to be handled appropriately. The implementation
* is not very efficient but would work functionally.
*/
static thread_t
waitq_prioq_iterate_locked(struct waitq *safeq, struct waitq *waitq,
spl_t spl, struct waitq_select_args *args,
uint32_t *remaining_eventmask)
{
int max_threads = args->max_threads;
int *nthreads = args->nthreads;
thread_t first_thread = THREAD_NULL;
thread_t thread = THREAD_NULL;
/*
* The waitq select routines need to handle two cases:
* Case 1: Peek at maximum priority thread in the waitq (remove_op = 0)
* Get the maximum priority thread from the waitq without removing it.
* In that case args->threadq == NULL and max_threads == 1.
* Case 2: Remove 'n' highest priority threads from waitq (remove_op = 1)
* Get max_threads (if available) while removing them from the waitq.
* In that case args->threadq != NULL and max_threads is one of {-1, 1}.
*
* The only possible values for remaining_eventmask for the priority queue
* waitq are either 0 (for the remove all threads case) or the original
* safeq->waitq_eventmask (for the lookup/remove one thread cases).
*/
*remaining_eventmask = safeq->waitq_eventmask;
boolean_t remove_op = !!(args->threadq);
while ((max_threads <= 0) || (*nthreads < max_threads)) {
if (priority_queue_empty(&(safeq->waitq_prio_queue))) {
*remaining_eventmask = 0;
break;
}
if (remove_op) {
thread = priority_queue_remove_max(&safeq->waitq_prio_queue,
struct thread, wait_prioq_links);
} else {
/* For the peek operation, the only valid value for max_threads is 1 */
assert(max_threads == 1);
thread = priority_queue_max(&safeq->waitq_prio_queue,
struct thread, wait_prioq_links);
}
/*
* Ensure the wait event matches since priority ordered waitqs do not
* support multiple events in the same waitq.
*/
assert((thread->waitq == waitq) && (thread->wait_event == args->event));
if (args->select_cb) {
/*
* Call the select_cb passed into the waitq_select args. The callback
* updates the select_ctx with information about the highest priority
* thread which is eventually used by the caller.
*/
thread_t __assert_only ret_thread = args->select_cb(args->select_ctx, waitq,
waitq_is_global(waitq), thread);
if (!remove_op) {
/* For the peek operation, the thread should not be selected for addition */
assert(ret_thread == THREAD_NULL);
} else {
/*
* For the remove operation, the select routine should always return a valid
* thread for priority waitqs. Since all threads in a prioq are equally
* eligible, it should match the thread removed from the prioq. If this
* invariant changes, the implementation would need to handle the
* remaining_eventmask here correctly.
*/
assert(ret_thread == thread);
}
}
if (first_thread == THREAD_NULL) {
first_thread = thread;
/*
* turnstile_kernel_update_inheritor_on_wake_locked will lock
* first_thread, so call it before locking it.
*/
if (args->priority == WAITQ_PROMOTE_ON_WAKE && first_thread != THREAD_NULL && waitq_is_turnstile_queue(safeq)) {
turnstile_kernel_update_inheritor_on_wake_locked(waitq_to_turnstile(safeq), (turnstile_inheritor_t)first_thread, TURNSTILE_INHERITOR_THREAD);
}
}
/* For the peek operation, break out early */
if (!remove_op) {
break;
}
/* Add the thread to the result thread list */
*nthreads += 1;
if (*nthreads == 1) {
*(args->spl) = (safeq != waitq) ? spl : splsched();
}
thread_lock(thread);
thread_clear_waitq_state(thread);
enqueue_tail(args->threadq, &(thread->wait_links));
}
return first_thread;
}
/**
* generic thread selection from a waitq (and sets to which the waitq belongs)
*
* Conditions:
* args->waitq (and args->posted_waitq) is locked
*
* Notes:
* Uses the optional select callback function to refine the selection
* of one or more threads from a waitq and any set to which the waitq
* belongs. The select callback is invoked once for every thread that
* is found to be waiting on the input args->waitq.
*
* If one or more threads are selected, this may disable interrupts.
* The previous interrupt state is returned in args->spl and should
* be used in a call to splx() if threads are returned to the caller.
*/
static void
do_waitq_select_n_locked(struct waitq_select_args *args)
{
struct waitq *waitq = args->waitq;
int max_threads = args->max_threads;
thread_t first_thread = THREAD_NULL;
struct waitq *safeq;
uint32_t remaining_eventmask = 0;
uint32_t eventmask;
int *nthreads = args->nthreads;
spl_t spl = 0;
assert(max_threads != 0);
if (!waitq_irq_safe(waitq)) {
/* JMM - add flag to waitq to avoid global lookup if no waiters */
eventmask = _CAST_TO_EVENT_MASK(waitq);
safeq = waitq_get_safeq(waitq);
if (safeq == NULL) {
/*
* in the WQT_TSPROXY case, if there's no turnstile,
* there's no queue and no waiters, so we can move straight
* to the waitq set recursion
*/
goto handle_waitq_set;
}
if (*nthreads == 0) {
spl = splsched();
}
waitq_lock(safeq);
} else {
eventmask = _CAST_TO_EVENT_MASK(args->event);
safeq = waitq;
}
/*
* If the safeq doesn't have an eventmask (not global) or the event
* we're looking for IS set in its eventmask, then scan the threads
* in that queue for ones that match the original <waitq,event> pair.
*/
if (!waitq_is_global(safeq) ||
(safeq->waitq_eventmask & eventmask) == eventmask) {
if (waitq_is_turnstile_queue(safeq)) {
first_thread = waitq_prioq_iterate_locked(safeq, waitq,
spl, args,
&remaining_eventmask);
} else {
first_thread = waitq_queue_iterate_locked(safeq, waitq,
spl, args,
&remaining_eventmask);
}
/*
* Update the eventmask of global queues we just scanned:
* - If we selected all the threads in the queue, we can clear its
* eventmask.
*
* - If we didn't find enough threads to fill our needs, then we can
* assume we looked at every thread in the queue and the mask we
* computed is complete - so reset it.
*/
if (waitq_is_global(safeq)) {
if (waitq_empty(safeq)) {
safeq->waitq_eventmask = 0;
} else if (max_threads < 0 || *nthreads < max_threads) {
safeq->waitq_eventmask = remaining_eventmask;
}
}
}
/*
* Grab the first thread in the queue if no other thread was selected.
* We can guarantee that no one has manipulated this thread because
* it's waiting on the given waitq, and we have that waitq locked.
*/
if (*nthreads == 0 && first_thread != THREAD_NULL && args->threadq) {
/* we know this is the first (and only) thread */
++(*nthreads);
*(args->spl) = (safeq != waitq) ? spl : splsched();
thread_lock(first_thread);
thread_clear_waitq_state(first_thread);
waitq_thread_remove(safeq, first_thread);
enqueue_tail(args->threadq, &(first_thread->wait_links));
/* update the eventmask on [now] empty global queues */
if (waitq_is_global(safeq) && waitq_empty(safeq)) {
safeq->waitq_eventmask = 0;
}
}
/* unlock the safe queue if we locked one above */
if (safeq != waitq) {
waitq_unlock(safeq);
if (*nthreads == 0) {
splx(spl);
}
}
if (max_threads > 0 && *nthreads >= max_threads) {
return;
}
handle_waitq_set:
/*
* wait queues that are not in any sets
* are the bottom of the recursion
*/
if (!waitq->waitq_set_id) {
return;
}
/* check to see if the set ID for this wait queue is valid */
struct waitq_link *link = wql_get_link(waitq->waitq_set_id);
if (!link) {
/* the waitq set to which this waitq belonged, has been invalidated */
waitq->waitq_set_id = 0;
return;
}
wql_put_link(link);
/*
* If this waitq is a member of any wait queue sets, we need to look
* for waiting thread(s) in any of those sets, and prepost all sets that
* don't have active waiters.
*
* Note that we do a local walk of this waitq's links - we manually
* recurse down wait queue set's with non-zero wqset_q.waitq_set_id
*/
(void)walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id,
WQL_WQS, (void *)args, waitq_select_walk_cb);
}
/**
* main entry point for thread selection from a waitq
*
* Conditions:
* waitq is locked
*
* Returns:
* The number of threads waiting on 'waitq' for 'event' which have
* been placed onto the input 'threadq'
*
* Notes:
* The 'select_cb' function is invoked for every thread found waiting on
* 'waitq' for 'event'. The thread is _not_ locked upon callback
* invocation. This parameter may be NULL.
*
* If one or more threads are returned in 'threadq' then the caller is
* responsible to call splx() using the returned 'spl' value. Each
* returned thread is locked.
*/
static __inline__ int
waitq_select_n_locked(struct waitq *waitq,
event64_t event,
waitq_select_cb select_cb,
void *select_ctx,
uint64_t *reserved_preposts,
queue_t threadq,
int max_threads, spl_t *spl,
int priority)
{
int nthreads = 0;
struct waitq_select_args args = {
.posted_waitq = waitq,
.waitq = waitq,
.event = event,
.select_cb = select_cb,
.select_ctx = select_ctx,
.priority = priority,
.reserved_preposts = reserved_preposts,
.threadq = threadq,
.max_threads = max_threads,
.nthreads = &nthreads,
.spl = spl,
};
do_waitq_select_n_locked(&args);
return nthreads;
}
/**
* select from a waitq a single thread waiting for a given event
*
* Conditions:
* 'waitq' is locked
*
* Returns:
* A locked thread that's been removed from the waitq, but has not
* yet been put on a run queue. Caller is responsible to call splx
* with the '*spl' value.
*/
static thread_t
waitq_select_one_locked(struct waitq *waitq, event64_t event,
uint64_t *reserved_preposts,
int priority, spl_t *spl)
{
int nthreads;
queue_head_t threadq;
queue_init(&threadq);
nthreads = waitq_select_n_locked(waitq, event, NULL, NULL,
reserved_preposts, &threadq, 1, spl, priority);
/* if we selected a thread, return it (still locked) */
if (!queue_empty(&threadq)) {
thread_t t;
queue_entry_t qe = dequeue_head(&threadq);
t = qe_element(qe, struct thread, wait_links);
assert(queue_empty(&threadq)); /* there should be 1 entry */
/* t has been locked and removed from all queues */
return t;
}
return THREAD_NULL;
}
struct select_thread_ctx {
thread_t thread;
event64_t event;
spl_t *spl;
};
/**
* link walk callback invoked once for each set to which a waitq belongs
*
* Conditions:
* initial waitq is locked
* ctx->thread is unlocked
*
* Notes:
* This may disable interrupts and early-out of the full DAG link walk by
* returning KERN_ALREADY_IN_SET. In this case, the returned thread has
* been removed from the waitq, it's waitq state has been reset, and the
* caller is responsible to call splx() with the returned interrupt state
* in ctx->spl.
*/
static int
waitq_select_thread_cb(struct waitq *waitq, void *ctx,
struct waitq_link *link)
{
struct select_thread_ctx *stctx = (struct select_thread_ctx *)ctx;
struct waitq_set *wqset;
struct waitq *wqsetq;
struct waitq *safeq;
spl_t s;
(void)waitq;
thread_t thread = stctx->thread;
event64_t event = stctx->event;
if (wql_type(link) != WQL_WQS) {
return WQ_ITERATE_CONTINUE;
}
wqset = link->wql_wqs.wql_set;
wqsetq = &wqset->wqset_q;
assert(!waitq_irq_safe(waitq));
assert(!waitq_irq_safe(wqsetq));
waitq_set_lock(wqset);
s = splsched();
/* find and lock the interrupt-safe waitq the thread is thought to be on */
safeq = waitq_get_safeq(wqsetq);
waitq_lock(safeq);
thread_lock(thread);
if ((thread->waitq == wqsetq) && (thread->wait_event == event)) {
waitq_thread_remove(wqsetq, thread);
if (waitq_empty(safeq)) {
safeq->waitq_eventmask = 0;
}
thread_clear_waitq_state(thread);
waitq_unlock(safeq);
waitq_set_unlock(wqset);
/*
* thread still locked,
* return non-zero to break out of WQS walk
*/
*(stctx->spl) = s;
return WQ_ITERATE_FOUND;
}
thread_unlock(thread);
waitq_set_unlock(wqset);
waitq_unlock(safeq);
splx(s);
return WQ_ITERATE_CONTINUE;
}
/**
* returns KERN_SUCCESS and locks 'thread' if-and-only-if 'thread' is waiting
* on 'waitq' (or any set to which waitq belongs) for 'event'
*
* Conditions:
* 'waitq' is locked
* 'thread' is unlocked
*/
static kern_return_t
waitq_select_thread_locked(struct waitq *waitq,
event64_t event,
thread_t thread, spl_t *spl)
{
struct waitq *safeq;
struct waitq_link *link;
struct select_thread_ctx ctx;
kern_return_t kr;
spl_t s;
/* Find and lock the interrupts disabled queue the thread is actually on */
if (!waitq_irq_safe(waitq)) {
safeq = waitq_get_safeq(waitq);
if (safeq == NULL) {
/*
* in the WQT_TSPROXY case, if there's no turnstile,
* there's no queue and no waiters, so we can move straight
* to the waitq set recursion
*/
goto handle_waitq_set;
}
s = splsched();
waitq_lock(safeq);
} else {
s = splsched();
safeq = waitq;
}
thread_lock(thread);
if ((thread->waitq == waitq) && (thread->wait_event == event)) {
waitq_thread_remove(safeq, thread);
if (waitq_empty(safeq)) {
safeq->waitq_eventmask = 0;
}
thread_clear_waitq_state(thread);
*spl = s;
/* thread still locked */
return KERN_SUCCESS;
}
thread_unlock(thread);
if (safeq != waitq) {
waitq_unlock(safeq);
}
splx(s);
handle_waitq_set:
if (!waitq->waitq_set_id) {
return KERN_NOT_WAITING;
}
/* check to see if the set ID for this wait queue is valid */
link = wql_get_link(waitq->waitq_set_id);
if (!link) {
/* the waitq to which this set belonged, has been invalidated */
waitq->waitq_set_id = 0;
return KERN_NOT_WAITING;
}
/*
* The thread may be waiting on a wait queue set to which
* the input 'waitq' belongs. Go look for the thread in
* all wait queue sets. If it's there, we'll remove it
* because it's equivalent to waiting directly on the input waitq.
*/
ctx.thread = thread;
ctx.event = event;
ctx.spl = spl;
kr = walk_waitq_links(LINK_WALK_FULL_DAG, waitq, waitq->waitq_set_id,
WQL_WQS, (void *)&ctx, waitq_select_thread_cb);
wql_put_link(link);
/* we found a thread, return success */
if (kr == WQ_ITERATE_FOUND) {
return KERN_SUCCESS;
}
return KERN_NOT_WAITING;
}
static int
prepost_exists_cb(struct waitq_set __unused *wqset,
void __unused *ctx,
struct wq_prepost __unused *wqp,
struct waitq __unused *waitq)
{
/* if we get here, then we know that there is a valid prepost object! */
return WQ_ITERATE_FOUND;
}
/**
* declare a thread's intent to wait on 'waitq' for 'wait_event'
*
* Conditions:
* 'waitq' is locked
*/
wait_result_t
waitq_assert_wait64_locked(struct waitq *waitq,
event64_t wait_event,
wait_interrupt_t interruptible,
wait_timeout_urgency_t urgency,
uint64_t deadline,
uint64_t leeway,
thread_t thread)
{
wait_result_t wait_result;
int realtime = 0;
struct waitq *safeq;
uintptr_t eventmask;
spl_t s;
/*
* Warning: Do _not_ place debugging print statements here.
* The waitq is locked!
*/
assert(!thread->started || thread == current_thread());
if (thread->waitq != NULL) {
panic("thread already waiting on %p", thread->waitq);
}
if (waitq_is_set(waitq)) {
struct waitq_set *wqset = (struct waitq_set *)waitq;
/*
* early-out if the thread is waiting on a wait queue set
* that has already been pre-posted.
*/
if (wait_event == NO_EVENT64 && waitq_set_maybe_preposted(wqset)) {
int ret;
/*
* Run through the list of potential preposts. Because
* this is a hot path, we short-circuit the iteration
* if we find just one prepost object.
*/
ret = wq_prepost_foreach_locked(wqset, NULL,
prepost_exists_cb);
if (ret == WQ_ITERATE_FOUND) {
s = splsched();
thread_lock(thread);
thread->wait_result = THREAD_AWAKENED;
thread_unlock(thread);
splx(s);
return THREAD_AWAKENED;
}
}
}
s = splsched();
/*
* If already dealing with an irq safe wait queue, we are all set.
* Otherwise, determine a global queue to use and lock it.
*/
if (!waitq_irq_safe(waitq)) {
safeq = waitq_get_safeq(waitq);
if (__improbable(safeq == NULL)) {
panic("Trying to assert_wait on a turnstile proxy "
"that hasn't been donated one (waitq: %p)", waitq);
}
eventmask = _CAST_TO_EVENT_MASK(waitq);
waitq_lock(safeq);
} else {
safeq = waitq;
eventmask = _CAST_TO_EVENT_MASK(wait_event);
}
/* lock the thread now that we have the irq-safe waitq locked */
thread_lock(thread);
/*
* Realtime threads get priority for wait queue placements.
* This allows wait_queue_wakeup_one to prefer a waiting
* realtime thread, similar in principle to performing
* a wait_queue_wakeup_all and allowing scheduler prioritization
* to run the realtime thread, but without causing the
* lock contention of that scenario.
*/
if (thread->sched_pri >= BASEPRI_REALTIME) {
realtime = 1;
}
/*
* This is the extent to which we currently take scheduling attributes
* into account. If the thread is vm priviledged, we stick it at
* the front of the queue. Later, these queues will honor the policy
* value set at waitq_init time.
*/
wait_result = thread_mark_wait_locked(thread, interruptible);
/* thread->wait_result has been set */
if (wait_result == THREAD_WAITING) {
if (!safeq->waitq_fifo
|| (thread->options & TH_OPT_VMPRIV) || realtime) {
waitq_thread_insert(safeq, thread, false);
} else {
waitq_thread_insert(safeq, thread, true);
}
/* mark the event and real waitq, even if enqueued on a global safeq */
thread->wait_event = wait_event;
thread->waitq = waitq;
if (deadline != 0) {
boolean_t act;
act = timer_call_enter_with_leeway(&thread->wait_timer,
NULL,
deadline, leeway,
urgency, FALSE);
if (!act) {
thread->wait_timer_active++;
}
thread->wait_timer_is_set = TRUE;
}
if (waitq_is_global(safeq)) {
safeq->waitq_eventmask |= eventmask;
}
waitq_stats_count_wait(waitq);
}
/* unlock the thread */
thread_unlock(thread);
/* update the inheritor's thread priority if the waitq is embedded in turnstile */
if (waitq_is_turnstile_queue(safeq) && wait_result == THREAD_WAITING) {
turnstile_recompute_priority_locked(waitq_to_turnstile(safeq));
turnstile_update_inheritor_locked(waitq_to_turnstile(safeq));
}
/* unlock the safeq if we locked it here */
if (safeq != waitq) {
waitq_unlock(safeq);
}
splx(s);
return wait_result;
}
/**
* remove 'thread' from its current blocking state on 'waitq'
*
* Conditions:
* 'thread' is locked
*
* Notes:
* This function is primarily used by clear_wait_internal in
* sched_prim.c from the thread timer wakeup path
* (i.e. the thread was waiting on 'waitq' with a timeout that expired)
*/
int
waitq_pull_thread_locked(struct waitq *waitq, thread_t thread)
{
struct waitq *safeq;
assert_thread_magic(thread);
assert(thread->waitq == waitq);
/* Find the interrupts disabled queue thread is waiting on */
if (!waitq_irq_safe(waitq)) {
safeq = waitq_get_safeq(waitq);
if (__improbable(safeq == NULL)) {
panic("Trying to clear_wait on a turnstile proxy "
"that hasn't been donated one (waitq: %p)", waitq);
}
} else {
safeq = waitq;
}
/* thread is already locked so have to try for the waitq lock */
if (!waitq_lock_try(safeq)) {
return 0;
}
waitq_thread_remove(safeq, thread);
thread_clear_waitq_state(thread);
waitq_stats_count_clear_wakeup(waitq);
/* clear the global event mask if this was the last thread there! */
if (waitq_is_global(safeq) && waitq_empty(safeq)) {
safeq->waitq_eventmask = 0;
/* JMM - also mark no-waiters on waitq (if not the same as the safeq) */
}
waitq_unlock(safeq);
return 1;
}
static __inline__
void
maybe_adjust_thread_pri(thread_t thread,
int priority,
__kdebug_only struct waitq *waitq)
{
/*
* If the caller is requesting the waitq subsystem to promote the
* priority of the awoken thread, then boost the thread's priority to
* the default WAITQ_BOOST_PRIORITY (if it's not already equal or
* higher priority). This boost must be removed via a call to
* waitq_clear_promotion_locked before the thread waits again.
*
* WAITQ_PROMOTE_PRIORITY is -2.
* Anything above 0 represents a mutex promotion.
* The default 'no action' value is -1.
* TODO: define this in a header
*/
if (priority == WAITQ_PROMOTE_PRIORITY) {
uintptr_t trace_waitq = 0;
if (__improbable(kdebug_enable)) {
trace_waitq = VM_KERNEL_UNSLIDE_OR_PERM(waitq);
}
sched_thread_promote_reason(thread, TH_SFLAG_WAITQ_PROMOTED, trace_waitq);
}
}
/*
* Clear a potential thread priority promotion from a waitq wakeup
* with WAITQ_PROMOTE_PRIORITY.
*
* This must be called on the thread which was woken up with TH_SFLAG_WAITQ_PROMOTED.
*/
void
waitq_clear_promotion_locked(struct waitq *waitq, thread_t thread)
{
spl_t s;
assert(waitq_held(waitq));
assert(thread != THREAD_NULL);
assert(thread == current_thread());
/* This flag is only cleared by the thread itself, so safe to check outside lock */
if ((thread->sched_flags & TH_SFLAG_WAITQ_PROMOTED) != TH_SFLAG_WAITQ_PROMOTED) {
return;
}
if (!waitq_irq_safe(waitq)) {
s = splsched();
}
thread_lock(thread);
sched_thread_unpromote_reason(thread, TH_SFLAG_WAITQ_PROMOTED, 0);
thread_unlock(thread);
if (!waitq_irq_safe(waitq)) {
splx(s);
}
}
/**
* wakeup all threads waiting on 'waitq' for 'wake_event'
*
* Conditions:
* 'waitq' is locked
*
* Notes:
* May temporarily disable and re-enable interrupts
* and re-adjust thread priority of each awoken thread.
*
* If the input 'lock_state' == WAITQ_UNLOCK then the waitq will have
* been unlocked before calling thread_go() on any returned threads, and
* is guaranteed to be unlocked upon function return.
*/
kern_return_t
waitq_wakeup64_all_locked(struct waitq *waitq,
event64_t wake_event,
wait_result_t result,
uint64_t *reserved_preposts,
int priority,
waitq_lock_state_t lock_state)
{
kern_return_t ret;
thread_t thread;
spl_t th_spl;
int nthreads;
queue_head_t wakeup_queue;
assert(waitq_held(waitq));
queue_init(&wakeup_queue);
nthreads = waitq_select_n_locked(waitq, wake_event, NULL, NULL,
reserved_preposts,
&wakeup_queue, -1, &th_spl, priority);
/* set each thread running */
ret = KERN_NOT_WAITING;
#if CONFIG_WAITQ_STATS
qe_foreach_element(thread, &wakeup_queue, wait_links)
waitq_stats_count_wakeup(waitq);
#endif
if (lock_state == WAITQ_UNLOCK) {
waitq_unlock(waitq);
}
qe_foreach_element_safe(thread, &wakeup_queue, wait_links) {
assert_thread_magic(thread);
remqueue(&thread->wait_links);
maybe_adjust_thread_pri(thread, priority, waitq);
ret = thread_go(thread, result, WQ_OPTION_NONE);
assert(ret == KERN_SUCCESS);
thread_unlock(thread);
}
if (nthreads > 0) {
splx(th_spl);
} else {
waitq_stats_count_fail(waitq);
}
return ret;
}
/**
* wakeup one thread waiting on 'waitq' for 'wake_event'
*
* Conditions:
* 'waitq' is locked
*
* Notes:
* May temporarily disable and re-enable interrupts.
*/
kern_return_t
waitq_wakeup64_one_locked(struct waitq *waitq,
event64_t wake_event,
wait_result_t result,
uint64_t *reserved_preposts,
int priority,
waitq_lock_state_t lock_state,
waitq_options_t option)
{
thread_t thread;
spl_t th_spl;
assert(waitq_held(waitq));
thread = waitq_select_one_locked(waitq, wake_event,
reserved_preposts,
priority, &th_spl);
if (thread != THREAD_NULL) {
waitq_stats_count_wakeup(waitq);
} else {
waitq_stats_count_fail(waitq);
}
if (lock_state == WAITQ_UNLOCK) {
waitq_unlock(waitq);
}
if (thread != THREAD_NULL) {
maybe_adjust_thread_pri(thread, priority, waitq);
kern_return_t ret = thread_go(thread, result, option);
assert(ret == KERN_SUCCESS);
thread_unlock(thread);
splx(th_spl);
return ret;
}
return KERN_NOT_WAITING;
}
/**
* wakeup one thread waiting on 'waitq' for 'wake_event'
*
* Conditions:
* 'waitq' is locked
*
* Returns:
* A locked, runnable thread.
* If return value is non-NULL, interrupts have also
* been disabled, and the caller is responsible to call
* splx() with the returned '*spl' value.
*/
thread_t
waitq_wakeup64_identify_locked(struct waitq *waitq,
event64_t wake_event,
wait_result_t result,
spl_t *spl,
uint64_t *reserved_preposts,
int priority,
waitq_lock_state_t lock_state)
{
thread_t thread;
assert(waitq_held(waitq));
thread = waitq_select_one_locked(waitq, wake_event,
reserved_preposts,
priority, spl);
if (thread != THREAD_NULL) {
waitq_stats_count_wakeup(waitq);
} else {
waitq_stats_count_fail(waitq);
}
if (lock_state == WAITQ_UNLOCK) {
waitq_unlock(waitq);
}
if (thread != THREAD_NULL) {
kern_return_t __assert_only ret;
ret = thread_go(thread, result, WQ_OPTION_NONE);
assert(ret == KERN_SUCCESS);
}
return thread; /* locked if not NULL (caller responsible for spl) */
}
/**
* wakeup a specific thread iff it's waiting on 'waitq' for 'wake_event'
*
* Conditions:
* 'waitq' is locked
* 'thread' is unlocked
*
* Notes:
* May temporarily disable and re-enable interrupts
*
* If the input lock_state == WAITQ_UNLOCK then the waitq will have been
* unlocked before calling thread_go() if 'thread' is to be awoken, and
* is guaranteed to be unlocked upon function return.
*/
kern_return_t
waitq_wakeup64_thread_locked(struct waitq *waitq,
event64_t wake_event,
thread_t thread,
wait_result_t result,
waitq_lock_state_t lock_state)
{
kern_return_t ret;
spl_t th_spl;
assert(waitq_held(waitq));
assert_thread_magic(thread);
/*
* See if the thread was still waiting there. If so, it got
* dequeued and returned locked.
*/
ret = waitq_select_thread_locked(waitq, wake_event, thread, &th_spl);
if (ret == KERN_SUCCESS) {
waitq_stats_count_wakeup(waitq);
} else {
waitq_stats_count_fail(waitq);
}
if (lock_state == WAITQ_UNLOCK) {
waitq_unlock(waitq);
}
if (ret != KERN_SUCCESS) {
return KERN_NOT_WAITING;
}
ret = thread_go(thread, result, WQ_OPTION_NONE);
assert(ret == KERN_SUCCESS);
thread_unlock(thread);
splx(th_spl);
return ret;
}
/* ----------------------------------------------------------------------
*
* In-Kernel API
*
* ---------------------------------------------------------------------- */
/**
* initialize a waitq object
*/
kern_return_t
waitq_init(struct waitq *waitq, int policy)
{
assert(waitq != NULL);
/* only FIFO and LIFO for now */
if ((policy & SYNC_POLICY_FIXED_PRIORITY) != 0) {
return KERN_INVALID_ARGUMENT;
}
waitq->waitq_fifo = ((policy & SYNC_POLICY_REVERSED) == 0);
waitq->waitq_irq = !!(policy & SYNC_POLICY_DISABLE_IRQ);
waitq->waitq_prepost = 0;
if (policy & SYNC_POLICY_TURNSTILE_PROXY) {
waitq->waitq_type = WQT_TSPROXY;
} else {
waitq->waitq_type = WQT_QUEUE;
}
waitq->waitq_turnstile = !!(policy & SYNC_POLICY_TURNSTILE);
waitq->waitq_eventmask = 0;
waitq->waitq_set_id = 0;
waitq->waitq_prepost_id = 0;
waitq_lock_init(waitq);
if (waitq_is_turnstile_queue(waitq)) {
/* For turnstile, initialize it as a priority queue */
priority_queue_init(&waitq->waitq_prio_queue);
assert(waitq->waitq_fifo == 0);
} else if (policy & SYNC_POLICY_TURNSTILE_PROXY) {
waitq->waitq_ts = TURNSTILE_NULL;
waitq->waitq_tspriv = NULL;
} else {
queue_init(&waitq->waitq_queue);
}
waitq->waitq_isvalid = 1;
return KERN_SUCCESS;
}
struct wq_unlink_ctx {
struct waitq *unlink_wq;
struct waitq_set *unlink_wqset;
};
static int waitq_unlink_prepost_cb(struct waitq_set __unused *wqset, void *ctx,
struct wq_prepost *wqp, struct waitq *waitq);
/**
* walk_waitq_links callback to invalidate 'link' parameter
*
* Conditions:
* Called from walk_waitq_links.
* Note that unlink other callbacks, this one make no assumptions about
* the 'waitq' parameter, specifically it does not have to be locked or
* even valid.
*/
static int
waitq_unlink_all_cb(struct waitq *waitq, void *ctx,
struct waitq_link *link)
{
(void)waitq;
(void)ctx;
if (wql_type(link) == WQL_LINK && wql_is_valid(link)) {
wql_invalidate(link);
}
if (wql_type(link) == WQL_WQS) {
struct waitq_set *wqset;
struct wq_unlink_ctx ulctx;
/*
* When destroying the waitq, take the time to clear out any
* preposts it may have made. This could potentially save time
* on the IPC send path which would otherwise have to iterate
* over lots of dead port preposts.
*/
if (waitq->waitq_prepost_id == 0) {
goto out;
}
wqset = link->wql_wqs.wql_set;
assert(wqset != NULL);
assert(!waitq_irq_safe(&wqset->wqset_q));
waitq_set_lock(wqset);
if (!waitq_set_is_valid(wqset)) {
/* someone raced us to teardown */
goto out_unlock;
}
if (!waitq_set_maybe_preposted(wqset)) {
goto out_unlock;
}
ulctx.unlink_wq = waitq;
ulctx.unlink_wqset = wqset;
(void)wq_prepost_iterate(wqset->wqset_prepost_id, &ulctx,
waitq_unlink_prepost_cb);
out_unlock:
waitq_set_unlock(wqset);
}
out:
return WQ_ITERATE_CONTINUE;
}
/**
* cleanup any link/prepost table resources associated with a waitq
*/
void
waitq_deinit(struct waitq *waitq)
{
spl_t s;
assert(waitq);
if (!waitq_is_valid(waitq)) {
return;
}
if (!waitq_is_queue(waitq) && !waitq_is_turnstile_proxy(waitq)) {
return;
}
if (waitq_irq_safe(waitq)) {
s = splsched();
}
waitq_lock(waitq);
if (waitq_valid(waitq)) {
waitq->waitq_isvalid = 0;
if (!waitq_irq_safe(waitq)) {
waitq_unlink_all_unlock(waitq);
/* waitq unlocked and set links deallocated */
goto out;
}
}
waitq_unlock(waitq);
if (waitq_irq_safe(waitq)) {
splx(s);
}
out:
#if MACH_ASSERT
if (waitq_is_turnstile_queue(waitq)) {
assert(priority_queue_empty(&waitq->waitq_prio_queue));
} else if (waitq_is_turnstile_proxy(waitq)) {
assert(waitq->waitq_ts == TURNSTILE_NULL);
} else {
assert(queue_empty(&waitq->waitq_queue));
}
#else
(void)0;
#endif // MACH_ASSERT
}
void
waitq_invalidate_locked(struct waitq *waitq)
{
assert(waitq_held(waitq));
assert(waitq_is_valid(waitq));
waitq->waitq_isvalid = 0;
}
/**
* invalidate the given wq_prepost object
*
* Conditions:
* Called from wq_prepost_iterate (_not_ from wq_prepost_foreach_locked!)
*/
static int
wqset_clear_prepost_chain_cb(struct waitq_set __unused *wqset,
void __unused *ctx,
struct wq_prepost *wqp,
struct waitq __unused *waitq)
{
if (wqp_type(wqp) == WQP_POST) {
wq_prepost_invalidate(wqp);
}
return WQ_ITERATE_CONTINUE;
}
/**
* allocate and initialize a waitq set object
*
* Conditions:
* may block
*
* Returns:
* allocated / initialized waitq_set object.
* the waits_set object returned does not have
* a waitq_link associated.
*
* NULL on failure
*/
struct waitq_set *
waitq_set_alloc(int policy, waitq_set_prepost_hook_t *prepost_hook)
{
struct waitq_set *wqset;
wqset = (struct waitq_set *)zalloc(waitq_set_zone);
if (!wqset) {
panic("Can't allocate a new waitq set from zone %p", waitq_set_zone);
}
kern_return_t ret;
ret = waitq_set_init(wqset, policy, NULL, prepost_hook);
if (ret != KERN_SUCCESS) {
zfree(waitq_set_zone, wqset);
wqset = NULL;
}
return wqset;
}
/**
* initialize a waitq set object
*
* if no 'reserved_link' object is passed
* the waitq_link will be lazily allocated
* on demand through waitq_set_lazy_init_link.
*/
kern_return_t
waitq_set_init(struct waitq_set *wqset,
int policy, uint64_t *reserved_link,
waitq_set_prepost_hook_t *prepost_hook)
{
struct waitq_link *link;
kern_return_t ret;
memset(wqset, 0, sizeof(*wqset));
ret = waitq_init(&wqset->wqset_q, policy);
if (ret != KERN_SUCCESS) {
return ret;
}
wqset->wqset_q.waitq_type = WQT_SET;
if (policy & SYNC_POLICY_PREPOST) {
wqset->wqset_q.waitq_prepost = 1;
wqset->wqset_prepost_id = 0;
assert(prepost_hook == NULL);
} else {
wqset->wqset_q.waitq_prepost = 0;
wqset->wqset_prepost_hook = prepost_hook;
}
if (reserved_link && *reserved_link != 0) {
link = wql_get_reserved(*reserved_link, WQL_WQS);
if (!link) {
panic("Can't allocate link object for waitq set: %p", wqset);
}
/* always consume the caller's reference */
*reserved_link = 0;
link->wql_wqs.wql_set = wqset;
wql_mkvalid(link);
wqset->wqset_id = link->wql_setid.id;
wql_put_link(link);
} else {
/*
* Lazy allocate the link only when an actual id is needed.
*/
wqset->wqset_id = WQSET_NOT_LINKED;
}
return KERN_SUCCESS;
}
#if DEVELOPMENT || DEBUG
int
sysctl_helper_waitq_set_nelem(void)
{
return ltable_nelem(&g_wqlinktable);
}
#endif
/**
* initialize a waitq set link.
*
* Conditions:
* may block
* locks and unlocks the waiq set lock
*
*/
void
waitq_set_lazy_init_link(struct waitq_set *wqset)
{
struct waitq_link *link;
assert(get_preemption_level() == 0 && waitq_wait_possible(current_thread()));
waitq_set_lock(wqset);
if (!waitq_set_should_lazy_init_link(wqset)) {
waitq_set_unlock(wqset);
return;
}
assert(wqset->wqset_id == WQSET_NOT_LINKED);
waitq_set_unlock(wqset);
link = wql_alloc_link(WQL_WQS);
if (!link) {
panic("Can't allocate link object for waitq set: %p", wqset);
}
link->wql_wqs.wql_set = wqset;
waitq_set_lock(wqset);
if (waitq_set_should_lazy_init_link(wqset)) {
wql_mkvalid(link);
wqset->wqset_id = link->wql_setid.id;
}
assert(wqset->wqset_id != 0);
assert(wqset->wqset_id != WQSET_NOT_LINKED);
waitq_set_unlock(wqset);
wql_put_link(link);
return;
}
/**
* checks if a waitq set needs to be linked.
*
*/
boolean_t
waitq_set_should_lazy_init_link(struct waitq_set *wqset)
{
if (waitqs_is_linked(wqset) || wqset->wqset_id == 0) {
return FALSE;
}
return TRUE;
}
/**
* clear out / release any resources associated with a waitq set
*
* Conditions:
* may block
* Note:
* This will render the waitq set invalid, and it must
* be re-initialized with waitq_set_init before it can be used again
*/
void
waitq_set_deinit(struct waitq_set *wqset)
{
struct waitq_link *link = NULL;
uint64_t set_id, prepost_id;
if (!waitqs_is_set(wqset)) {
panic("trying to de-initialize an invalid wqset @%p", wqset);
}
assert(!waitq_irq_safe(&wqset->wqset_q));
waitq_set_lock(wqset);
if (waitq_set_has_prepost_hook(wqset)) {
waitq_set_prepost_hook_t *hook = wqset->wqset_prepost_hook;
/*
* If the wqset_prepost_hook value is non 0,
* then another core is currently posting to this waitq set
* and we need for it to finish what it's doing.
*/
while (os_atomic_load(hook, relaxed) != 0) {
waitq_set_unlock(wqset);
delay(1);
waitq_set_lock(wqset);
}
}
set_id = wqset->wqset_id;
if (waitqs_is_linked(wqset) || set_id == 0) {
/* grab the set's link object */
link = wql_get_link(set_id);
if (link) {
wql_invalidate(link);
}
/* someone raced us to deinit */
if (!link || wqset->wqset_id != set_id || set_id != link->wql_setid.id) {
if (link) {
wql_put_link(link);
}
waitq_set_unlock(wqset);
return;
}
/* the link should be a valid link object at this point */
assert(link != NULL && wql_type(link) == WQL_WQS);
wqset->wqset_id = 0;
}
/*
* This set may have a lot of preposts, or may have been a member of
* many other sets. To minimize spinlock hold times, we clear out the
* waitq set data structure under the lock-hold, but don't clear any
* table objects. We keep handles to the prepost and set linkage
* objects and free those outside the critical section.
*/
prepost_id = 0;
if (wqset->wqset_q.waitq_prepost && wqset->wqset_prepost_id) {
assert(link != NULL);
prepost_id = wqset->wqset_prepost_id;
}
/* else { TODO: notify kqueue subsystem? } */
wqset->wqset_prepost_id = 0;
wqset->wqset_q.waitq_fifo = 0;
wqset->wqset_q.waitq_prepost = 0;
wqset->wqset_q.waitq_isvalid = 0;
/* don't clear the 'waitq_irq' bit: it's used in locking! */
wqset->wqset_q.waitq_eventmask = 0;
waitq_unlink_all_unlock(&wqset->wqset_q);
/* wqset->wqset_q unlocked and set links deallocated */
if (link) {
/*
* walk_waitq_links may race with us for access to the waitq set.
* If walk_waitq_links has a reference to the set, then we should wait
* until the link's refcount goes to 1 (our reference) before we exit
* this function. That way we ensure that the waitq set memory will
* remain valid even though it's been cleared out.
*/
while (wql_refcnt(link) > 1) {
delay(1);
}
wql_put_link(link);
}
/* drop / unlink all the prepost table objects */
/* JMM - can this happen before the delay? */
if (prepost_id) {
(void)wq_prepost_iterate(prepost_id, NULL,
wqset_clear_prepost_chain_cb);
}
}
/**
* de-initialize and free an allocated waitq set object
*
* Conditions:
* may block
*/
kern_return_t
waitq_set_free(struct waitq_set *wqset)
{
waitq_set_deinit(wqset);
memset(wqset, 0, sizeof(*wqset));
zfree(waitq_set_zone, wqset);
return KERN_SUCCESS;
}
#if DEVELOPMENT || DEBUG
#if CONFIG_WAITQ_DEBUG
/**
* return the set ID of 'wqset'
*/
uint64_t
wqset_id(struct waitq_set *wqset)
{
if (!wqset) {
return 0;
}
assert(waitqs_is_set(wqset));
if (!waitqs_is_linked(wqset)) {
waitq_set_lazy_init_link(wqset);
}
return wqset->wqset_id;
}
/**
* returns a pointer to the waitq object embedded in 'wqset'
*/
struct waitq *
wqset_waitq(struct waitq_set *wqset)
{
if (!wqset) {
return NULL;
}
assert(waitqs_is_set(wqset));
return &wqset->wqset_q;
}
#endif /* CONFIG_WAITQ_DEBUG */
#endif /* DEVELOPMENT || DEBUG */
/**
* clear all preposts originating from 'waitq'
*
* Conditions:
* 'waitq' locked
* may (rarely) spin waiting for another on-core thread to
* release the last reference to the waitq's prepost link object
*
* NOTE:
* If this function needs to spin, it will drop the waitq lock!
* The return value of the function indicates whether or not this
* happened: 1 == lock was dropped, 0 == lock held
*/
int
waitq_clear_prepost_locked(struct waitq *waitq)
{
struct wq_prepost *wqp;
int dropped_lock = 0;
assert(!waitq_irq_safe(waitq));
if (waitq->waitq_prepost_id == 0) {
return 0;
}
wqp = wq_prepost_get(waitq->waitq_prepost_id);
waitq->waitq_prepost_id = 0;
if (wqp) {
uint64_t wqp_id = wqp->wqp_prepostid.id;
wqdbg_v("invalidate prepost 0x%llx (refcnt:%d)",
wqp->wqp_prepostid.id, wqp_refcnt(wqp));
wq_prepost_invalidate(wqp);
while (wqp_refcnt(wqp) > 1) {
/*
* Some other thread must have raced us to grab a link
* object reference before we invalidated it. This
* means that they are probably trying to access the
* waitq to which the prepost object points. We need
* to wait here until the other thread drops their
* reference. We know that no one else can get a
* reference (the object has been invalidated), and
* that prepost references are short-lived (dropped on
* a call to wq_prepost_put). We also know that no one
* blocks while holding a reference therefore the
* other reference holder must be on-core. We'll just
* sit and wait for the other reference to be dropped.
*/
disable_preemption();
waitq_unlock(waitq);
dropped_lock = 1;
/*
* don't yield here, just spin and assume the other
* consumer is already on core...
*/
delay(1);
waitq_lock(waitq);
enable_preemption();
}
if (wqp_refcnt(wqp) > 0 && wqp->wqp_prepostid.id == wqp_id) {
wq_prepost_put(wqp);
}
}
return dropped_lock;
}
/**
* clear all preposts originating from 'waitq'
*
* Conditions:
* 'waitq' is not locked
* may disable and re-enable interrupts
*/
void
waitq_clear_prepost(struct waitq *waitq)
{
assert(waitq_valid(waitq));
assert(!waitq_irq_safe(waitq));
waitq_lock(waitq);
/* it doesn't matter to us if the lock is dropped here */
(void)waitq_clear_prepost_locked(waitq);
waitq_unlock(waitq);
}
/**
* return a the waitq's prepost object ID (allocate if necessary)
*
* Conditions:
* 'waitq' is unlocked
*/
uint64_t
waitq_get_prepost_id(struct waitq *waitq)
{
struct wq_prepost *wqp;
uint64_t wqp_id = 0;
if (!waitq_valid(waitq)) {
return 0;
}
assert(!waitq_irq_safe(waitq));
waitq_lock(waitq);
if (!waitq_valid(waitq)) {
goto out_unlock;
}
if (waitq->waitq_prepost_id) {
wqp_id = waitq->waitq_prepost_id;
goto out_unlock;
}
/* don't hold a spinlock while allocating a prepost object */
waitq_unlock(waitq);
wqp = wq_prepost_alloc(WQP_WQ, 1);
if (!wqp) {
return 0;
}
/* re-acquire the waitq lock */
waitq_lock(waitq);
if (!waitq_valid(waitq)) {
wq_prepost_put(wqp);
wqp_id = 0;
goto out_unlock;
}
if (waitq->waitq_prepost_id) {
/* we were beat by someone else */
wq_prepost_put(wqp);
wqp_id = waitq->waitq_prepost_id;
goto out_unlock;
}
wqp->wqp_wq.wqp_wq_ptr = waitq;
wqp_set_valid(wqp);
wqp_id = wqp->wqp_prepostid.id;
waitq->waitq_prepost_id = wqp_id;
wq_prepost_put(wqp);
out_unlock:
waitq_unlock(waitq);
return wqp_id;
}
static int
waitq_inset_cb(struct waitq *waitq, void *ctx, struct waitq_link *link)
{
uint64_t setid = *(uint64_t *)ctx;
int wqltype = wql_type(link);
(void)waitq;
if (wqltype == WQL_WQS && link->wql_setid.id == setid) {
wqdbg_v(" waitq already in set 0x%llx", setid);
return WQ_ITERATE_FOUND;
} else if (wqltype == WQL_LINK) {
/*
* break out early if we see a link that points to the setid
* in question. This saves us a step in the
* iteration/recursion
*/
wqdbg_v(" waitq already in set 0x%llx (WQL_LINK)", setid);
if (link->wql_link.left_setid == setid ||
link->wql_link.right_setid == setid) {
return WQ_ITERATE_FOUND;
}
}
return WQ_ITERATE_CONTINUE;
}
/**
* determine if 'waitq' is a member of 'wqset'
*
* Conditions:
* neither 'waitq' nor 'wqset' is not locked
* may disable and re-enable interrupts while locking 'waitq'
*/
boolean_t
waitq_member(struct waitq *waitq, struct waitq_set *wqset)
{
kern_return_t kr = WQ_ITERATE_SUCCESS;
uint64_t setid;
if (!waitq_valid(waitq)) {
panic("Invalid waitq: %p", waitq);
}
assert(!waitq_irq_safe(waitq));
if (!waitqs_is_set(wqset)) {
return FALSE;
}
waitq_lock(waitq);
if (!waitqs_is_linked(wqset)) {
goto out_unlock;
}
setid = wqset->wqset_id;
/* fast path: most waitqs are members of only 1 set */
if (waitq->waitq_set_id == setid) {
waitq_unlock(waitq);
return TRUE;
}
/* walk the link table and look for the Set ID of wqset */
kr = walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id,
WQL_ALL, (void *)&setid, waitq_inset_cb);
out_unlock:
waitq_unlock(waitq);
return kr == WQ_ITERATE_FOUND;
}
/**
* Returns true is the given waitq is a member of at least 1 set
*/
boolean_t
waitq_in_set(struct waitq *waitq)
{
struct waitq_link *link;
boolean_t inset = FALSE;
if (waitq_irq_safe(waitq)) {
return FALSE;
}
waitq_lock(waitq);
if (!waitq->waitq_set_id) {
goto out_unlock;
}
link = wql_get_link(waitq->waitq_set_id);
if (link) {
/* if we get here, the waitq is in _at_least_one_ set */
inset = TRUE;
wql_put_link(link);
} else {
/* we can just optimize this for next time */
waitq->waitq_set_id = 0;
}
out_unlock:
waitq_unlock(waitq);
return inset;
}
/**
* pre-allocate a waitq link structure from the link table
*
* Conditions:
* 'waitq' is not locked
* may (rarely) block if link table needs to grow
*/
uint64_t
waitq_link_reserve(struct waitq *waitq)
{
struct waitq_link *link;
uint64_t reserved_id = 0;
assert(get_preemption_level() == 0 && waitq_wait_possible(current_thread()));
/*
* We've asserted that the caller can block, so we enforce a
* minimum-free table element policy here.
*/
wql_ensure_free_space();
(void)waitq;
link = wql_alloc_link(LT_RESERVED);
if (!link) {
return 0;
}
reserved_id = link->wql_setid.id;
return reserved_id;
}
/**
* release a pre-allocated waitq link structure
*/
void
waitq_link_release(uint64_t id)
{
struct waitq_link *link;
if (id == 0) {
return;
}
link = wql_get_reserved(id, WQL_LINK);
if (!link) {
return;
}
/*
* if we successfully got a link object, then we know
* it's not been marked valid, and can be released with
* a standard wql_put_link() which should free the element.
*/
wql_put_link(link);
#if CONFIG_LTABLE_STATS
g_wqlinktable.nreserved_releases += 1;
#endif
}
/**
* link 'waitq' to the set identified by 'setid' using the 'link' structure
*
* Conditions:
* 'waitq' is locked
* caller should have a reference to the 'link' object
*/
static kern_return_t
waitq_link_internal(struct waitq *waitq,
uint64_t setid, struct waitq_link *link)
{
struct waitq_link *qlink;
kern_return_t kr;
assert(waitq_held(waitq));
assert(setid != 0);
assert(setid != WQSET_NOT_LINKED);
/*
* If the waitq_set_id field is empty, then this waitq is not
* a member of any other set. All we have to do is update the
* field.
*/
if (!waitq->waitq_set_id) {
waitq->waitq_set_id = setid;
return KERN_SUCCESS;
}
qlink = wql_get_link(waitq->waitq_set_id);
if (!qlink) {
/*
* The set to which this wait queue belonged has been
* destroyed / invalidated. We can re-use the waitq field.
*/
waitq->waitq_set_id = setid;
return KERN_SUCCESS;
}
wql_put_link(qlink);
/*
* Check to see if it's already a member of the set.
*
* TODO: check for cycles!
*/
kr = walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id,
WQL_ALL, (void *)&setid, waitq_inset_cb);
if (kr == WQ_ITERATE_FOUND) {
return KERN_ALREADY_IN_SET;
}
/*
* This wait queue is a member of at least one set already,
* and _not_ a member of the given set. Use our previously
* allocated link object, and hook it up to the wait queue.
* Note that it's possible that one or more of the wait queue sets to
* which the wait queue belongs was invalidated before we allocated
* this link object. That's OK because the next time we use that
* object we'll just ignore it.
*/
link->wql_link.left_setid = setid;
link->wql_link.right_setid = waitq->waitq_set_id;
wql_mkvalid(link);
waitq->waitq_set_id = link->wql_setid.id;
return KERN_SUCCESS;
}
/**
* link 'waitq' to 'wqset'
*
* Conditions:
* if 'lock_state' contains WAITQ_SHOULD_LOCK, 'waitq' must be unlocked.
* Otherwise, 'waitq' must be locked.
*
* may (rarely) block on link table allocation if the table has to grow,
* and no 'reserved_link' object is passed.
*
* may block and acquire wqset lock if the wqset passed has no link.
*
* Notes:
* The caller can guarantee that this function will never block by
* - pre-allocating a link table object and passing its ID in 'reserved_link'
* - and pre-allocating the waitq set link calling waitq_set_lazy_init_link.
* It is not possible to provide a reserved_link without having also linked
* the wqset.
*/
kern_return_t
waitq_link(struct waitq *waitq, struct waitq_set *wqset,
waitq_lock_state_t lock_state, uint64_t *reserved_link)
{
kern_return_t kr;
struct waitq_link *link;
int should_lock = (lock_state == WAITQ_SHOULD_LOCK);
if (!waitq_valid(waitq) || waitq_irq_safe(waitq)) {
panic("Invalid waitq: %p", waitq);
}
if (!waitqs_is_set(wqset)) {
return KERN_INVALID_ARGUMENT;
}
if (!reserved_link || *reserved_link == 0) {
if (!waitqs_is_linked(wqset)) {
waitq_set_lazy_init_link(wqset);
}
}
wqdbg_v("Link waitq %p to wqset 0x%llx",
(void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq), wqset->wqset_id);
/*
* We _might_ need a new link object here, so we'll grab outside
* the lock because the alloc call _might_ block.
*
* If the caller reserved a link beforehand, then wql_get_link
* is guaranteed not to block because the caller holds an extra
* reference to the link which, in turn, hold a reference to the
* link table.
*/
if (reserved_link && *reserved_link != 0) {
link = wql_get_reserved(*reserved_link, WQL_LINK);
/* always consume the caller's reference */
*reserved_link = 0;
} else {
link = wql_alloc_link(WQL_LINK);
}
if (!link) {
return KERN_NO_SPACE;
}
if (should_lock) {
waitq_lock(waitq);
}
kr = waitq_link_internal(waitq, wqset->wqset_id, link);
if (should_lock) {
waitq_unlock(waitq);
}
wql_put_link(link);
return kr;
}
/**
* helper: unlink 'waitq' from waitq set identified by 'setid'
* this function also prunes invalid objects from the tree
*
* Conditions:
* MUST be called from walk_waitq_links link table walk
* 'waitq' is locked
*
* Notes:
* This is a helper function which compresses the link table by culling
* unused or unnecessary links. See comments below for different
* scenarios.
*/
static inline int
waitq_maybe_remove_link(struct waitq *waitq,
uint64_t setid,
struct waitq_link *parent,
struct waitq_link *left,
struct waitq_link *right)
{
uint64_t *wq_setid = &waitq->waitq_set_id;
/*
* There are two scenarios:
*
* Scenario 1:
* --------------------------------------------------------------------
* waitq->waitq_set_id == parent
*
* parent(LINK)
* / \
* / \
* / \
* L(LINK/WQS_l) R(LINK/WQS_r)
*
* In this scenario, we assert that the original waitq points to the
* parent link we were passed in. If WQS_l (or WQS_r) is the waitq
* set we're looking for, we can set the corresponding parent
* link id (left or right) to 0. To compress the tree, we can reset the
* waitq_set_id of the original waitq to point to the side of the
* parent that is still valid. We then discard the parent link object.
*/
if (*wq_setid == parent->wql_setid.id) {
if (!left && !right) {
/* completely invalid children */
wql_invalidate(parent);
wqdbg_v("S1, L+R");
*wq_setid = 0;
return WQ_ITERATE_INVALID;
} else if (!left || left->wql_setid.id == setid) {
/*
* left side matches we know it points either to the
* WQS we're unlinking, or to an invalid object:
* no need to invalidate it
*/
*wq_setid = right ? right->wql_setid.id : 0;
wql_invalidate(parent);
wqdbg_v("S1, L");
return left ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID;
} else if (!right || right->wql_setid.id == setid) {
/*
* if right side matches we know it points either to the
* WQS we're unlinking, or to an invalid object:
* no need to invalidate it
*/
*wq_setid = left ? left->wql_setid.id : 0;
wql_invalidate(parent);
wqdbg_v("S1, R");
return right ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID;
}
}
/*
* the tree walk starts at the top-of-tree and moves down,
* so these are safe asserts.
*/
assert(left || right); /* one of them has to be valid at this point */
/*
* Scenario 2:
* --------------------------------------------------------------------
* waitq->waitq_set_id == ... (OR parent)
*
* ...
* |
* parent
* / \
* / \
* L(LINK) R(LINK)
* /\ /\
* / \ / \
* / \ Rl(*) Rr(*)
* Ll(WQS) Lr(WQS)
*
* In this scenario, a leaf node of either the left or right side
* could be the wait queue set we're looking to unlink. We also handle
* the case where one of these links is invalid. If a leaf node is
* invalid or it's the set we're looking for, we can safely remove the
* middle link (left or right) and point the parent link directly to
* the remaining leaf node.
*/
if (left && wql_type(left) == WQL_LINK) {
uint64_t Ll, Lr;
struct waitq_link *linkLl, *linkLr;
assert(left->wql_setid.id != setid);
Ll = left->wql_link.left_setid;
Lr = left->wql_link.right_setid;
linkLl = wql_get_link(Ll);
linkLr = wql_get_link(Lr);
if (!linkLl && !linkLr) {
/*
* The left object points to two invalid objects!
* We can invalidate the left w/o touching the parent.
*/
wql_invalidate(left);
wqdbg_v("S2, Ll+Lr");
return WQ_ITERATE_INVALID;
} else if (!linkLl || Ll == setid) {
/* Ll is invalid and/or the wait queue set we're looking for */
parent->wql_link.left_setid = Lr;
wql_invalidate(left);
wql_put_link(linkLl);
wql_put_link(linkLr);
wqdbg_v("S2, Ll");
return linkLl ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID;
} else if (!linkLr || Lr == setid) {
/* Lr is invalid and/or the wait queue set we're looking for */
parent->wql_link.left_setid = Ll;
wql_invalidate(left);
wql_put_link(linkLr);
wql_put_link(linkLl);
wqdbg_v("S2, Lr");
return linkLr ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID;
}
wql_put_link(linkLl);
wql_put_link(linkLr);
}
if (right && wql_type(right) == WQL_LINK) {
uint64_t Rl, Rr;
struct waitq_link *linkRl, *linkRr;
assert(right->wql_setid.id != setid);
Rl = right->wql_link.left_setid;
Rr = right->wql_link.right_setid;
linkRl = wql_get_link(Rl);
linkRr = wql_get_link(Rr);
if (!linkRl && !linkRr) {
/*
* The right object points to two invalid objects!
* We can invalidate the right w/o touching the parent.
*/
wql_invalidate(right);
wqdbg_v("S2, Rl+Rr");
return WQ_ITERATE_INVALID;
} else if (!linkRl || Rl == setid) {
/* Rl is invalid and/or the wait queue set we're looking for */
parent->wql_link.right_setid = Rr;
wql_invalidate(right);
wql_put_link(linkRl);
wql_put_link(linkRr);
wqdbg_v("S2, Rl");
return linkRl ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID;
} else if (!linkRr || Rr == setid) {
/* Rr is invalid and/or the wait queue set we're looking for */
parent->wql_link.right_setid = Rl;
wql_invalidate(right);
wql_put_link(linkRl);
wql_put_link(linkRr);
wqdbg_v("S2, Rr");
return linkRr ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID;
}
wql_put_link(linkRl);
wql_put_link(linkRr);
}
return WQ_ITERATE_CONTINUE;
}
/**
* link table walk callback that unlinks 'waitq' from 'ctx->setid'
*
* Conditions:
* called from walk_waitq_links
* 'waitq' is locked
*
* Notes:
* uses waitq_maybe_remove_link() to compress the linktable and
* perform the actual unlinking
*/
static int
waitq_unlink_cb(struct waitq *waitq, void *ctx,
struct waitq_link *link)
{
uint64_t setid = *((uint64_t *)ctx);
struct waitq_link *right, *left;
int ret = 0;
if (wql_type(link) != WQL_LINK) {
return WQ_ITERATE_CONTINUE;
}
do {
left = wql_get_link(link->wql_link.left_setid);
right = wql_get_link(link->wql_link.right_setid);
ret = waitq_maybe_remove_link(waitq, setid, link, left, right);
wql_put_link(left);
wql_put_link(right);
if (!wql_is_valid(link)) {
return WQ_ITERATE_INVALID;
}
/* A ret value of UNLINKED will break us out of table walk */
} while (ret == WQ_ITERATE_INVALID);
return ret;
}
/**
* undo/remove a prepost from 'ctx' (waitq) to 'wqset'
*
* Conditions:
* Called from wq_prepost_foreach_locked OR wq_prepost_iterate
* 'wqset' may be NULL
* (ctx)->unlink_wqset is locked
*/
static int
waitq_unlink_prepost_cb(struct waitq_set __unused *wqset, void *ctx,
struct wq_prepost *wqp, struct waitq *waitq)
{
struct wq_unlink_ctx *ulctx = (struct wq_unlink_ctx *)ctx;
if (waitq != ulctx->unlink_wq) {
return WQ_ITERATE_CONTINUE;
}
if (wqp_type(wqp) == WQP_WQ &&
wqp->wqp_prepostid.id == ulctx->unlink_wqset->wqset_prepost_id) {
/* this is the only prepost on this wait queue set */
wqdbg_v("unlink wqp (WQ) 0x%llx", wqp->wqp_prepostid.id);
ulctx->unlink_wqset->wqset_prepost_id = 0;
return WQ_ITERATE_BREAK;
}
assert(wqp_type(wqp) == WQP_POST);
/*
* The prepost object 'wqp' points to a waitq which should no longer
* be preposted to 'ulctx->unlink_wqset'. We can remove the prepost
* object from the list and break out of the iteration. Using the
* context object in this way allows this same callback function to be
* used from both wq_prepost_foreach_locked and wq_prepost_iterate.
*/
wq_prepost_remove(ulctx->unlink_wqset, wqp);
return WQ_ITERATE_BREAK;
}
/**
* unlink 'waitq' from 'wqset'
*
* Conditions:
* 'waitq' is locked
* 'wqset' is _not_ locked
* may (rarely) spin in prepost clear and drop/re-acquire 'waitq' lock
* (see waitq_clear_prepost_locked)
*/
static kern_return_t
waitq_unlink_locked(struct waitq *waitq,
struct waitq_set *wqset)
{
uint64_t setid;
kern_return_t kr;
assert(!waitq_irq_safe(waitq));
if (waitq->waitq_set_id == 0) {
/*
* TODO:
* it doesn't belong to anyone, and it has a prepost object?
* This is an artifact of not cleaning up after kqueues when
* they prepost into select sets...
*/
if (waitq->waitq_prepost_id != 0) {
(void)waitq_clear_prepost_locked(waitq);
}
return KERN_NOT_IN_SET;
}
if (!waitqs_is_linked(wqset)) {
/*
* No link has been allocated for the wqset,
* so no waitq could have been linked to it.
*/
return KERN_NOT_IN_SET;
}
setid = wqset->wqset_id;
if (waitq->waitq_set_id == setid) {
waitq->waitq_set_id = 0;
/*
* This was the only set to which the waitq belonged: we can
* safely release the waitq's prepost object. It doesn't
* matter if this function drops and re-acquires the lock
* because we're not manipulating waitq state any more.
*/
(void)waitq_clear_prepost_locked(waitq);
return KERN_SUCCESS;
}
/*
* The waitq was a member of more that 1 set, so we need to
* handle potentially compressing the link table, and
* adjusting the waitq->waitq_set_id value.
*
* Note: we can't free the waitq's associated prepost object (if any)
* because it may be in use by the one or more _other_ sets to
* which this queue belongs.
*
* Note: This function only handles a single level of the queue linkage.
* Removing a waitq from a set to which it does not directly
* belong is undefined. For example, if a waitq belonged to set
* A, and set A belonged to set B. You can't remove the waitq
* from set B.
*/
kr = walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id,
WQL_LINK, (void *)&setid, waitq_unlink_cb);
if (kr == WQ_ITERATE_UNLINKED) {
struct wq_unlink_ctx ulctx;
kr = KERN_SUCCESS; /* found it and dis-associated it */
/* don't look for preposts if it's not prepost-enabled */
if (!wqset->wqset_q.waitq_prepost) {
goto out;
}
assert(!waitq_irq_safe(&wqset->wqset_q));
waitq_set_lock(wqset);
/*
* clear out any prepost from waitq into wqset
* TODO: this could be more efficient than a linear search of
* the waitq set's prepost list.
*/
ulctx.unlink_wq = waitq;
ulctx.unlink_wqset = wqset;
(void)wq_prepost_iterate(wqset->wqset_prepost_id, (void *)&ulctx,
waitq_unlink_prepost_cb);
waitq_set_unlock(wqset);
} else {
kr = KERN_NOT_IN_SET; /* waitq is _not_ associated with wqset */
}
out:
return kr;
}
/**
* unlink 'waitq' from 'wqset'
*
* Conditions:
* neither 'waitq' nor 'wqset' is locked
* may disable and re-enable interrupts
* may (rarely) spin in prepost clear
* (see waitq_clear_prepost_locked)
*/
kern_return_t
waitq_unlink(struct waitq *waitq, struct waitq_set *wqset)
{
kern_return_t kr = KERN_SUCCESS;
assert(waitqs_is_set(wqset));
/*
* we allow the waitq to be invalid because the caller may be trying
* to clear out old/dirty state
*/
if (!waitq_valid(waitq)) {
return KERN_INVALID_ARGUMENT;
}
wqdbg_v("unlink waitq %p from set 0x%llx",
(void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq), wqset->wqset_id);
assert(!waitq_irq_safe(waitq));
waitq_lock(waitq);
kr = waitq_unlink_locked(waitq, wqset);
waitq_unlock(waitq);
return kr;
}
/**
* unlink a waitq from a waitq set, but reference the waitq by its prepost ID
*
* Conditions:
* 'wqset' is unlocked
* wqp_id may be valid or invalid
*/
void
waitq_unlink_by_prepost_id(uint64_t wqp_id, struct waitq_set *wqset)
{
struct wq_prepost *wqp;
disable_preemption();
wqp = wq_prepost_get(wqp_id);
if (wqp) {
struct waitq *wq;
wq = wqp->wqp_wq.wqp_wq_ptr;
/*
* lock the waitq, then release our prepost ID reference, then
* unlink the waitq from the wqset: this ensures that we don't
* hold a prepost ID reference during the unlink, but we also
* complete the unlink operation atomically to avoid a race
* with waitq_unlink[_all].
*/
assert(!waitq_irq_safe(wq));
waitq_lock(wq);
wq_prepost_put(wqp);
if (!waitq_valid(wq)) {
/* someone already tore down this waitq! */
waitq_unlock(wq);
enable_preemption();
return;
}
/* this _may_ drop the wq lock, but that's OK */
waitq_unlink_locked(wq, wqset);
waitq_unlock(wq);
}
enable_preemption();
return;
}
/**
* reference and lock a waitq by its prepost ID
*
* Conditions:
* wqp_id may be valid or invalid
*
* Returns:
* a locked waitq if wqp_id was valid
* NULL on failure
*/
struct waitq *
waitq_lock_by_prepost_id(uint64_t wqp_id)
{
struct waitq *wq = NULL;
struct wq_prepost *wqp;
disable_preemption();
wqp = wq_prepost_get(wqp_id);
if (wqp) {
wq = wqp->wqp_wq.wqp_wq_ptr;
assert(!waitq_irq_safe(wq));
waitq_lock(wq);
wq_prepost_put(wqp);
if (!waitq_valid(wq)) {
/* someone already tore down this waitq! */
waitq_unlock(wq);
enable_preemption();
return NULL;
}
}
enable_preemption();
return wq;
}
/**
* unlink 'waitq' from all sets to which it belongs
*
* Conditions:
* 'waitq' is locked on entry
* returns with waitq lock dropped
*
* Notes:
* may (rarely) spin (see waitq_clear_prepost_locked)
*/
kern_return_t
waitq_unlink_all_unlock(struct waitq *waitq)
{
uint64_t old_set_id = 0;
wqdbg_v("unlink waitq %p from all sets",
(void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq));
assert(!waitq_irq_safe(waitq));
/* it's not a member of any sets */
if (waitq->waitq_set_id == 0) {
waitq_unlock(waitq);
return KERN_SUCCESS;
}
old_set_id = waitq->waitq_set_id;
waitq->waitq_set_id = 0;
/*
* invalidate the prepost entry for this waitq.
* This may drop and re-acquire the waitq lock, but that's OK because
* if it was added to another set and preposted to that set in the
* time we drop the lock, the state will remain consistent.
*/
(void)waitq_clear_prepost_locked(waitq);
waitq_unlock(waitq);
if (old_set_id) {
/*
* Walk the link table and invalidate each LINK object that
* used to connect this waitq to one or more sets: this works
* because WQL_LINK objects are private to each wait queue
*/
(void)walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, old_set_id,
WQL_LINK, NULL, waitq_unlink_all_cb);
}
return KERN_SUCCESS;
}
/**
* unlink 'waitq' from all sets to which it belongs
*
* Conditions:
* 'waitq' is not locked
* may disable and re-enable interrupts
* may (rarely) spin
* (see waitq_unlink_all_locked, waitq_clear_prepost_locked)
*/
kern_return_t
waitq_unlink_all(struct waitq *waitq)
{
kern_return_t kr = KERN_SUCCESS;
if (!waitq_valid(waitq)) {
panic("Invalid waitq: %p", waitq);
}
assert(!waitq_irq_safe(waitq));
waitq_lock(waitq);
if (!waitq_valid(waitq)) {
waitq_unlock(waitq);
return KERN_SUCCESS;
}
kr = waitq_unlink_all_unlock(waitq);
/* waitq unlocked and set links deallocated */
return kr;
}
/**
* unlink all waitqs from 'wqset'
*
* Conditions:
* 'wqset' is locked on entry
* 'wqset' is unlocked on exit and spl is restored
*
* Note:
* may (rarely) spin/block (see waitq_clear_prepost_locked)
*/
kern_return_t
waitq_set_unlink_all_unlock(struct waitq_set *wqset)
{
struct waitq_link *link;
uint64_t prepost_id;
wqdbg_v("unlink all queues from set 0x%llx", wqset->wqset_id);
/*
* This operation does not require interaction with any of the set's
* constituent wait queues. All we have to do is invalidate the SetID
*/
if (waitqs_is_linked(wqset)) {
/* invalidate and re-alloc the link object first */
link = wql_get_link(wqset->wqset_id);
/* we may have raced with a waitq_set_deinit: handle this */
if (!link) {
waitq_set_unlock(wqset);
return KERN_SUCCESS;
}
wql_invalidate(link);
/* re-alloc the object to get a new generation ID */
wql_realloc_link(link, WQL_WQS);
link->wql_wqs.wql_set = wqset;
wqset->wqset_id = link->wql_setid.id;
wql_mkvalid(link);
wql_put_link(link);
}
/* clear any preposts attached to this set */
prepost_id = 0;
if (wqset->wqset_q.waitq_prepost && wqset->wqset_prepost_id) {
prepost_id = wqset->wqset_prepost_id;
}
/* else { TODO: notify kqueue subsystem? } */
wqset->wqset_prepost_id = 0;
/*
* clear set linkage and prepost object associated with this set:
* waitq sets may prepost to other sets if, for example, they are
* associated with a kqueue which is in a select set.
*
* This releases all the set link objects
* (links to other sets to which this set was previously added)
*/
waitq_unlink_all_unlock(&wqset->wqset_q);
/* wqset->wqset_q unlocked */
/* drop / unlink all the prepost table objects */
if (prepost_id) {
(void)wq_prepost_iterate(prepost_id, NULL,
wqset_clear_prepost_chain_cb);
}
return KERN_SUCCESS;
}
/**
* unlink all waitqs from 'wqset'
*
* Conditions:
* 'wqset' is not locked
* may (rarely) spin/block (see waitq_clear_prepost_locked)
*/
kern_return_t
waitq_set_unlink_all(struct waitq_set *wqset)
{
assert(waitqs_is_set(wqset));
assert(!waitq_irq_safe(&wqset->wqset_q));
waitq_set_lock(wqset);
return waitq_set_unlink_all_unlock(wqset);
/* wqset unlocked and set links and preposts deallocated */
}
static int
waitq_prepost_reserve_cb(struct waitq *waitq, void *ctx,
struct waitq_link *link)
{
uint32_t *num = (uint32_t *)ctx;
(void)waitq;
/*
* In the worst case, we'll have to allocate 2 prepost objects
* per waitq set (if the set was already preposted by another
* waitq).
*/
if (wql_type(link) == WQL_WQS) {
/*
* check to see if the associated waitq actually supports
* preposting
*/
if (waitq_set_can_prepost(link->wql_wqs.wql_set)) {
*num += 2;
}
}
return WQ_ITERATE_CONTINUE;
}
static int
waitq_alloc_prepost_reservation(int nalloc, struct waitq *waitq,
int *did_unlock, struct wq_prepost **wqp)
{
struct wq_prepost *tmp;
struct wqp_cache *cache;
*did_unlock = 0;
/*
* Before we unlock the waitq, check the per-processor prepost object
* cache to see if there's enough there for us. If so, do the
* allocation, keep the lock and save an entire iteration over the set
* linkage!
*/
if (waitq) {
disable_preemption();
cache = PERCPU_GET(wqp_cache);
if (nalloc <= (int)cache->avail) {
goto do_alloc;
}
enable_preemption();
/* unlock the waitq to perform the allocation */
*did_unlock = 1;
waitq_unlock(waitq);
}
do_alloc:
tmp = wq_prepost_alloc(LT_RESERVED, nalloc);
if (!tmp) {
panic("Couldn't reserve %d preposts for waitq @%p (wqp@%p)",
nalloc, waitq, *wqp);
}
if (*wqp) {
/* link the two lists */
int __assert_only rc;
rc = wq_prepost_rlink(tmp, *wqp);
assert(rc == nalloc);
}
*wqp = tmp;
/*
* If the caller can block, then enforce a minimum-free table element
* policy here. This helps ensure that we will have enough prepost
* objects for callers such as selwakeup() that can be called with
* spin locks held.
*/
if (get_preemption_level() == 0) {
wq_prepost_ensure_free_space();
}
if (waitq) {
if (*did_unlock == 0) {
/* decrement the preemption count if alloc from cache */
enable_preemption();
} else {
/* otherwise: re-lock the waitq */
waitq_lock(waitq);
}
}
return nalloc;
}
static int
waitq_count_prepost_reservation(struct waitq *waitq, int extra, int keep_locked)
{
int npreposts = 0;
/*
* If the waitq is not currently part of a set, and we're not asked to
* keep the waitq locked then we'll want to have 3 in reserve
* just-in-case it becomes part of a set while we unlock and reserve.
* We may need up to 1 object for the waitq, and 2 for the set.
*/
if (waitq->waitq_set_id == 0) {
npreposts = 3;
} else {
/* this queue has never been preposted before */
if (waitq->waitq_prepost_id == 0) {
npreposts = 3;
}
/*
* Walk the set of table linkages associated with this waitq
* and count the worst-case number of prepost objects that
* may be needed during a wakeup_all. We can walk this without
* locking each set along the way because the table-based IDs
* disconnect us from the set pointers themselves, and the
* table walking is careful to read the setid values only once.
* Locking each set up the chain also doesn't guarantee that
* their membership won't change between the time we unlock
* that set and when we actually go to prepost, so our
* situation is no worse than before and we've alleviated lock
* contention on any sets to which this waitq belongs.
*/
(void)walk_waitq_links(LINK_WALK_FULL_DAG_UNLOCKED,
waitq, waitq->waitq_set_id,
WQL_WQS, (void *)&npreposts,
waitq_prepost_reserve_cb);
}
if (extra > 0) {
npreposts += extra;
}
if (npreposts == 0 && !keep_locked) {
/*
* If we get here, we were asked to reserve some prepost
* objects for a waitq that's previously preposted, and is not
* currently a member of any sets. We have also been
* instructed to unlock the waitq when we're done. In this
* case, we pre-allocated enough reserved objects to handle
* the case where the waitq gets added to a single set when
* the lock is released.
*/
npreposts = 3;
}
return npreposts;
}
/**
* pre-allocate prepost objects for 'waitq'
*
* Conditions:
* 'waitq' is not locked
*
* Returns:
* panic on error
*
* 0 on success, '*reserved' is set to the head of a singly-linked
* list of pre-allocated prepost objects.
*
* Notes:
* If 'lock_state' is WAITQ_KEEP_LOCKED, this function performs the pre-allocation
* atomically and returns 'waitq' locked.
*
* This function attempts to pre-allocate precisely enough prepost
* objects based on the current set membership of 'waitq'. If the
* operation is performed atomically, then the caller
* is guaranteed to have enough pre-allocated prepost object to avoid
* any (rare) blocking in the wakeup path.
*/
uint64_t
waitq_prepost_reserve(struct waitq *waitq, int extra,
waitq_lock_state_t lock_state)
{
uint64_t reserved = 0;
uint64_t prev_setid = 0, prev_prepostid = 0;
struct wq_prepost *wqp = NULL;
int nalloc = 0, npreposts = 0;
int keep_locked = (lock_state == WAITQ_KEEP_LOCKED);
int unlocked = 0;
wqdbg_v("Attempting to reserve prepost linkages for waitq %p (extra:%d)",
(void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq), extra);
if (waitq == NULL && extra > 0) {
/*
* Simple prepost object allocation:
* we'll add 2 more because the waitq might need an object,
* and the set itself may need a new POST object in addition
* to the number of preposts requested by the caller
*/
nalloc = waitq_alloc_prepost_reservation(extra + 2, NULL,
&unlocked, &wqp);
assert(nalloc == extra + 2);
return wqp->wqp_prepostid.id;
}
assert(lock_state == WAITQ_KEEP_LOCKED || lock_state == WAITQ_UNLOCK);
assert(!waitq_irq_safe(waitq));
waitq_lock(waitq);
/* remember the set ID that we started with */
prev_setid = waitq->waitq_set_id;
prev_prepostid = waitq->waitq_prepost_id;
/*
* If the waitq is not part of a set, and we're asked to
* keep the set locked, then we don't have to reserve
* anything!
*/
if (prev_setid == 0 && keep_locked) {
goto out;
}
npreposts = waitq_count_prepost_reservation(waitq, extra, keep_locked);
/* nothing for us to do! */
if (npreposts == 0) {
if (keep_locked) {
goto out;
}
goto out_unlock;
}
try_alloc:
/* this _may_ unlock and relock the waitq! */
nalloc = waitq_alloc_prepost_reservation(npreposts, waitq,
&unlocked, &wqp);
if (!unlocked) {
/* allocation held the waitq lock: we'd done! */
if (keep_locked) {
goto out;
}
goto out_unlock;
}
/*
* Before we return, if the allocation had to unlock the waitq, we
* must check one more time to see if we have enough. If not, we'll
* try to allocate the difference. If the caller requests it, we'll
* also leave the waitq locked so that the use of the pre-allocated
* prepost objects can be guaranteed to be enough if a wakeup_all is
* performed before unlocking the waitq.
*/
/*
* If the waitq is no longer associated with a set, or if the waitq's
* set/prepostid has not changed since we first walked its linkage,
* we're done.
*/
if ((waitq->waitq_set_id == 0) ||
(waitq->waitq_set_id == prev_setid &&
waitq->waitq_prepost_id == prev_prepostid)) {
if (keep_locked) {
goto out;
}
goto out_unlock;
}
npreposts = waitq_count_prepost_reservation(waitq, extra, keep_locked);
if (npreposts > nalloc) {
prev_setid = waitq->waitq_set_id;
prev_prepostid = waitq->waitq_prepost_id;
npreposts = npreposts - nalloc; /* only allocate the diff */
goto try_alloc;
}
if (keep_locked) {
goto out;
}
out_unlock:
waitq_unlock(waitq);
out:
if (wqp) {
reserved = wqp->wqp_prepostid.id;
}
return reserved;
}
/**
* release a linked list of prepost objects allocated via _prepost_reserve
*
* Conditions:
* may (rarely) spin waiting for prepost table growth memcpy
*/
void
waitq_prepost_release_reserve(uint64_t id)
{
struct wq_prepost *wqp;
wqdbg_v("releasing reserved preposts starting at: 0x%llx", id);
wqp = wq_prepost_rfirst(id);
if (!wqp) {
return;
}
wq_prepost_release_rlist(wqp);
}
/**
* clear all preposts from 'wqset'
*
* Conditions:
* 'wqset' is not locked
*/
void
waitq_set_clear_preposts(struct waitq_set *wqset)
{
uint64_t prepost_id;
spl_t spl;
assert(waitqs_is_set(wqset));
if (!wqset->wqset_q.waitq_prepost || !wqset->wqset_prepost_id) {
return;
}
wqdbg_v("Clearing all preposted queues on waitq_set: 0x%llx",
wqset->wqset_id);
if (waitq_irq_safe(&wqset->wqset_q)) {
spl = splsched();
}
waitq_set_lock(wqset);
prepost_id = wqset->wqset_prepost_id;
wqset->wqset_prepost_id = 0;
waitq_set_unlock(wqset);
if (waitq_irq_safe(&wqset->wqset_q)) {
splx(spl);
}
/* drop / unlink all the prepost table objects */
if (prepost_id) {
(void)wq_prepost_iterate(prepost_id, NULL,
wqset_clear_prepost_chain_cb);
}
}
/* ----------------------------------------------------------------------
*
* Iteration: waitq -> sets / waitq_set -> preposts
*
* ---------------------------------------------------------------------- */
struct wq_it_ctx {
void *input;
void *ctx;
waitq_iterator_t it;
};
static int
waitq_iterate_sets_cb(struct waitq *waitq, void *ctx,
struct waitq_link *link)
{
struct wq_it_ctx *wctx = (struct wq_it_ctx *)(ctx);
struct waitq_set *wqset;
int ret;
(void)waitq;
assert(!waitq_irq_safe(waitq));
assert(wql_type(link) == WQL_WQS);
/*
* the waitq is locked, so we can just take the set lock
* and call the iterator function
*/
wqset = link->wql_wqs.wql_set;
assert(wqset != NULL);
assert(!waitq_irq_safe(&wqset->wqset_q));
waitq_set_lock(wqset);
ret = wctx->it(wctx->ctx, (struct waitq *)wctx->input, wqset);
waitq_set_unlock(wqset);
return ret;
}
/**
* call external iterator function for each prepost object in wqset
*
* Conditions:
* Called from wq_prepost_foreach_locked
* (wqset locked, waitq _not_ locked)
*/
static int
wqset_iterate_prepost_cb(struct waitq_set *wqset, void *ctx,
struct wq_prepost *wqp, struct waitq *waitq)
{
struct wq_it_ctx *wctx = (struct wq_it_ctx *)(ctx);
uint64_t wqp_id;
int ret;
(void)wqp;
/*
* This is a bit tricky. The 'wqset' is locked, but the 'waitq' is not.
* Taking the 'waitq' lock is a lock order violation, so we need to be
* careful. We also must realize that we may have taken a reference to
* the 'wqp' just as the associated waitq was being torn down (or
* clearing all its preposts) - see waitq_clear_prepost_locked(). If
* the 'wqp' is valid and we can get the waitq lock, then we are good
* to go. If not, we need to back off, check that the 'wqp' hasn't
* been invalidated, and try to re-take the locks.
*/
assert(!waitq_irq_safe(waitq));
if (waitq_lock_try(waitq)) {
goto call_iterator;
}
if (!wqp_is_valid(wqp)) {
return WQ_ITERATE_RESTART;
}
/* We are passed a prepost object with a reference on it. If neither
* the waitq set nor the waitq require interrupts disabled, then we
* may block on the delay(1) call below. We can't hold a prepost
* object reference while blocking, so we have to give that up as well
* and re-acquire it when we come back.
*/
wqp_id = wqp->wqp_prepostid.id;
wq_prepost_put(wqp);
waitq_set_unlock(wqset);
wqdbg_v("dropped set:%p lock waiting for wqp:%p (0x%llx -> wq:%p)",
wqset, wqp, wqp->wqp_prepostid.id, waitq);
delay(1);
waitq_set_lock(wqset);
wqp = wq_prepost_get(wqp_id);
if (!wqp) {
/* someone cleared preposts while we slept! */
return WQ_ITERATE_DROPPED;
}
/*
* TODO:
* This differs slightly from the logic in ipc_mqueue.c:
* ipc_mqueue_receive_on_thread(). There, if the waitq lock
* can't be obtained, the prepost link is placed on the back of
* the chain, and the iteration starts from the beginning. Here,
* we just restart from the beginning.
*/
return WQ_ITERATE_RESTART;
call_iterator:
if (!wqp_is_valid(wqp)) {
ret = WQ_ITERATE_RESTART;
goto out_unlock;
}
/* call the external callback */
ret = wctx->it(wctx->ctx, waitq, wqset);
if (ret == WQ_ITERATE_BREAK_KEEP_LOCKED) {
ret = WQ_ITERATE_BREAK;
goto out;
}
out_unlock:
waitq_unlock(waitq);
out:
return ret;
}
/**
* iterator over all sets to which the given waitq has been linked
*
* Conditions:
* 'waitq' is locked
*/
int
waitq_iterate_sets(struct waitq *waitq, void *ctx, waitq_iterator_t it)
{
int ret;
struct wq_it_ctx wctx = {
.input = (void *)waitq,
.ctx = ctx,
.it = it,
};
if (!it || !waitq) {
return KERN_INVALID_ARGUMENT;
}
ret = walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id,
WQL_WQS, (void *)&wctx, waitq_iterate_sets_cb);
if (ret == WQ_ITERATE_CONTINUE) {
ret = WQ_ITERATE_SUCCESS;
}
return ret;
}
/**
* iterator over all preposts in the given wqset
*
* Conditions:
* 'wqset' is locked
*/
int
waitq_set_iterate_preposts(struct waitq_set *wqset,
void *ctx, waitq_iterator_t it)
{
struct wq_it_ctx wctx = {
.input = (void *)wqset,
.ctx = ctx,
.it = it,
};
if (!it || !wqset) {
return WQ_ITERATE_INVALID;
}
assert(waitq_held(&wqset->wqset_q));
return wq_prepost_foreach_locked(wqset, (void *)&wctx,
wqset_iterate_prepost_cb);
}
/* ----------------------------------------------------------------------
*
* Higher-level APIs
*
* ---------------------------------------------------------------------- */
/**
* declare a thread's intent to wait on 'waitq' for 'wait_event'
*
* Conditions:
* 'waitq' is not locked
*/
wait_result_t
waitq_assert_wait64(struct waitq *waitq,
event64_t wait_event,
wait_interrupt_t interruptible,
uint64_t deadline)
{
thread_t thread = current_thread();
wait_result_t ret;
spl_t s;
if (!waitq_valid(waitq)) {
panic("Invalid waitq: %p", waitq);
}
if (waitq_irq_safe(waitq)) {
s = splsched();
}
waitq_lock(waitq);
ret = waitq_assert_wait64_locked(waitq, wait_event, interruptible,
TIMEOUT_URGENCY_SYS_NORMAL,
deadline, TIMEOUT_NO_LEEWAY, thread);
waitq_unlock(waitq);
if (waitq_irq_safe(waitq)) {
splx(s);
}
return ret;
}
/**
* declare a thread's intent to wait on 'waitq' for 'wait_event'
*
* Conditions:
* 'waitq' is not locked
* will disable and re-enable interrupts while locking current_thread()
*/
wait_result_t
waitq_assert_wait64_leeway(struct waitq *waitq,
event64_t wait_event,
wait_interrupt_t interruptible,
wait_timeout_urgency_t urgency,
uint64_t deadline,
uint64_t leeway)
{
wait_result_t ret;
thread_t thread = current_thread();
spl_t s;
if (!waitq_valid(waitq)) {
panic("Invalid waitq: %p", waitq);
}
if (waitq_irq_safe(waitq)) {
s = splsched();
}
waitq_lock(waitq);
ret = waitq_assert_wait64_locked(waitq, wait_event, interruptible,
urgency, deadline, leeway, thread);
waitq_unlock(waitq);
if (waitq_irq_safe(waitq)) {
splx(s);
}
return ret;
}
/**
* wakeup a single thread from a waitq that's waiting for a given event
*
* Conditions:
* 'waitq' is not locked
* may (rarely) block if 'waitq' is non-global and a member of 1 or more sets
* may disable and re-enable interrupts
*
* Notes:
* will _not_ block if waitq is global (or not a member of any set)
*/
kern_return_t
waitq_wakeup64_one(struct waitq *waitq, event64_t wake_event,
wait_result_t result, int priority)
{
kern_return_t kr;
uint64_t reserved_preposts = 0;
spl_t spl;
if (!waitq_valid(waitq)) {
panic("Invalid waitq: %p", waitq);
}
if (!waitq_irq_safe(waitq)) {
/* reserve preposts in addition to locking the waitq */
reserved_preposts = waitq_prepost_reserve(waitq, 0, WAITQ_KEEP_LOCKED);
} else {
spl = splsched();
waitq_lock(waitq);
}
/* waitq is locked upon return */
kr = waitq_wakeup64_one_locked(waitq, wake_event, result,
&reserved_preposts, priority, WAITQ_UNLOCK, WQ_OPTION_NONE);
if (waitq_irq_safe(waitq)) {
splx(spl);
}
/* release any left-over prepost object (won't block/lock anything) */
waitq_prepost_release_reserve(reserved_preposts);
return kr;
}
/**
* wakeup all threads from a waitq that are waiting for a given event
*
* Conditions:
* 'waitq' is not locked
* may (rarely) block if 'waitq' is non-global and a member of 1 or more sets
* may disable and re-enable interrupts
*
* Notes:
* will _not_ block if waitq is global (or not a member of any set)
*/
kern_return_t
waitq_wakeup64_all(struct waitq *waitq,
event64_t wake_event,
wait_result_t result,
int priority)
{
kern_return_t ret;
uint64_t reserved_preposts = 0;
spl_t s;
if (!waitq_valid(waitq)) {
panic("Invalid waitq: %p", waitq);
}
if (!waitq_irq_safe(waitq)) {
/* reserve preposts in addition to locking waitq */
reserved_preposts = waitq_prepost_reserve(waitq, 0,
WAITQ_KEEP_LOCKED);
} else {
s = splsched();
waitq_lock(waitq);
}
ret = waitq_wakeup64_all_locked(waitq, wake_event, result,
&reserved_preposts, priority,
WAITQ_UNLOCK);
if (waitq_irq_safe(waitq)) {
splx(s);
}
waitq_prepost_release_reserve(reserved_preposts);
return ret;
}
/**
* wakeup a specific thread iff it's waiting on 'waitq' for 'wake_event'
*
* Conditions:
* 'waitq' is not locked
*
* Notes:
* May temporarily disable and re-enable interrupts
*/
kern_return_t
waitq_wakeup64_thread(struct waitq *waitq,
event64_t wake_event,
thread_t thread,
wait_result_t result)
{
kern_return_t ret;
spl_t s, th_spl;
if (!waitq_valid(waitq)) {
panic("Invalid waitq: %p", waitq);
}
if (waitq_irq_safe(waitq)) {
s = splsched();
}
waitq_lock(waitq);
ret = waitq_select_thread_locked(waitq, wake_event, thread, &th_spl);
/* on success, returns 'thread' locked */
waitq_unlock(waitq);
if (ret == KERN_SUCCESS) {
ret = thread_go(thread, result, WQ_OPTION_NONE);
assert(ret == KERN_SUCCESS);
thread_unlock(thread);
splx(th_spl);
waitq_stats_count_wakeup(waitq);
} else {
ret = KERN_NOT_WAITING;
waitq_stats_count_fail(waitq);
}
if (waitq_irq_safe(waitq)) {
splx(s);
}
return ret;
}
/**
* wakeup a single thread from a waitq that's waiting for a given event
* and return a reference to that thread
* returns THREAD_NULL if no thread was waiting
*
* Conditions:
* 'waitq' is not locked
* may (rarely) block if 'waitq' is non-global and a member of 1 or more sets
* may disable and re-enable interrupts
*
* Notes:
* will _not_ block if waitq is global (or not a member of any set)
*/
thread_t
waitq_wakeup64_identify(struct waitq *waitq,
event64_t wake_event,
wait_result_t result,
int priority)
{
uint64_t reserved_preposts = 0;
spl_t thread_spl = 0;
thread_t thread;
spl_t spl;
if (!waitq_valid(waitq)) {
panic("Invalid waitq: %p", waitq);
}
if (!waitq_irq_safe(waitq)) {
/* reserve preposts in addition to locking waitq */
reserved_preposts = waitq_prepost_reserve(waitq, 0, WAITQ_KEEP_LOCKED);
} else {
spl = splsched();
waitq_lock(waitq);
}
thread = waitq_wakeup64_identify_locked(waitq, wake_event, result,
&thread_spl, &reserved_preposts,
priority, WAITQ_UNLOCK);
/* waitq is unlocked, thread is locked */
if (thread != THREAD_NULL) {
thread_reference(thread);
thread_unlock(thread);
splx(thread_spl);
}
if (waitq_irq_safe(waitq)) {
splx(spl);
}
/* release any left-over prepost object (won't block/lock anything) */
waitq_prepost_release_reserve(reserved_preposts);
/* returns +1 ref to running thread or THREAD_NULL */
return thread;
}