Convert MemoryUtil.cpp to Unix-style line endings

This commit is contained in:
Tillmann Karras 2014-02-23 08:22:32 +01:00
parent 1a428de189
commit 5f0a8008f4

View File

@ -1,199 +1,199 @@
// Copyright 2013 Dolphin Emulator Project // Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2 // Licensed under GPLv2
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <cstddef> #include <cstddef>
#include <cstdlib> #include <cstdlib>
#include <string> #include <string>
#include "Common/Common.h" #include "Common/Common.h"
#ifdef _WIN32 #ifdef _WIN32
#include <windows.h> #include <windows.h>
#include <psapi.h> #include <psapi.h>
#include "Common/StringUtil.h" #include "Common/StringUtil.h"
#else #else
#include <stdio.h> #include <stdio.h>
#include <sys/mman.h> #include <sys/mman.h>
#endif #endif
#if !defined(_WIN32) && defined(__x86_64__) && !defined(MAP_32BIT) #if !defined(_WIN32) && defined(__x86_64__) && !defined(MAP_32BIT)
#include <unistd.h> #include <unistd.h>
#define PAGE_MASK (getpagesize() - 1) #define PAGE_MASK (getpagesize() - 1)
#define round_page(x) ((((unsigned long)(x)) + PAGE_MASK) & ~(PAGE_MASK)) #define round_page(x) ((((unsigned long)(x)) + PAGE_MASK) & ~(PAGE_MASK))
#endif #endif
// This is purposely not a full wrapper for virtualalloc/mmap, but it // This is purposely not a full wrapper for virtualalloc/mmap, but it
// provides exactly the primitive operations that Dolphin needs. // provides exactly the primitive operations that Dolphin needs.
void* AllocateExecutableMemory(size_t size, bool low) void* AllocateExecutableMemory(size_t size, bool low)
{ {
#if defined(_WIN32) #if defined(_WIN32)
void* ptr = VirtualAlloc(0, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE); void* ptr = VirtualAlloc(0, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
#else #else
static char *map_hint = 0; static char *map_hint = 0;
#if defined(__x86_64__) && !defined(MAP_32BIT) #if defined(__x86_64__) && !defined(MAP_32BIT)
// This OS has no flag to enforce allocation below the 4 GB boundary, // This OS has no flag to enforce allocation below the 4 GB boundary,
// but if we hint that we want a low address it is very likely we will // but if we hint that we want a low address it is very likely we will
// get one. // get one.
// An older version of this code used MAP_FIXED, but that has the side // An older version of this code used MAP_FIXED, but that has the side
// effect of discarding already mapped pages that happen to be in the // effect of discarding already mapped pages that happen to be in the
// requested virtual memory range (such as the emulated RAM, sometimes). // requested virtual memory range (such as the emulated RAM, sometimes).
if (low && (!map_hint)) if (low && (!map_hint))
map_hint = (char*)round_page(512*1024*1024); /* 0.5 GB rounded up to the next page */ map_hint = (char*)round_page(512*1024*1024); /* 0.5 GB rounded up to the next page */
#endif #endif
void* ptr = mmap(map_hint, size, PROT_READ | PROT_WRITE | PROT_EXEC, void* ptr = mmap(map_hint, size, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_ANON | MAP_PRIVATE MAP_ANON | MAP_PRIVATE
#if defined(__x86_64__) && defined(MAP_32BIT) #if defined(__x86_64__) && defined(MAP_32BIT)
| (low ? MAP_32BIT : 0) | (low ? MAP_32BIT : 0)
#endif #endif
, -1, 0); , -1, 0);
#endif /* defined(_WIN32) */ #endif /* defined(_WIN32) */
// printf("Mapped executable memory at %p (size %ld)\n", ptr, // printf("Mapped executable memory at %p (size %ld)\n", ptr,
// (unsigned long)size); // (unsigned long)size);
#if defined(__FreeBSD__) #if defined(__FreeBSD__)
if (ptr == MAP_FAILED) if (ptr == MAP_FAILED)
{ {
ptr = NULL; ptr = NULL;
#else #else
if (ptr == NULL) if (ptr == NULL)
{ {
#endif #endif
PanicAlert("Failed to allocate executable memory"); PanicAlert("Failed to allocate executable memory");
} }
#if !defined(_WIN32) && defined(__x86_64__) && !defined(MAP_32BIT) #if !defined(_WIN32) && defined(__x86_64__) && !defined(MAP_32BIT)
else else
{ {
if (low) if (low)
{ {
map_hint += size; map_hint += size;
map_hint = (char*)round_page(map_hint); /* round up to the next page */ map_hint = (char*)round_page(map_hint); /* round up to the next page */
// printf("Next map will (hopefully) be at %p\n", map_hint); // printf("Next map will (hopefully) be at %p\n", map_hint);
} }
} }
#endif #endif
#if defined(_M_X64) #if defined(_M_X64)
if ((u64)ptr >= 0x80000000 && low == true) if ((u64)ptr >= 0x80000000 && low == true)
PanicAlert("Executable memory ended up above 2GB!"); PanicAlert("Executable memory ended up above 2GB!");
#endif #endif
return ptr; return ptr;
} }
void* AllocateMemoryPages(size_t size) void* AllocateMemoryPages(size_t size)
{ {
#ifdef _WIN32 #ifdef _WIN32
void* ptr = VirtualAlloc(0, size, MEM_COMMIT, PAGE_READWRITE); void* ptr = VirtualAlloc(0, size, MEM_COMMIT, PAGE_READWRITE);
#else #else
void* ptr = mmap(0, size, PROT_READ | PROT_WRITE, void* ptr = mmap(0, size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0); MAP_ANON | MAP_PRIVATE, -1, 0);
#endif #endif
// printf("Mapped memory at %p (size %ld)\n", ptr, // printf("Mapped memory at %p (size %ld)\n", ptr,
// (unsigned long)size); // (unsigned long)size);
if (ptr == NULL) if (ptr == NULL)
PanicAlert("Failed to allocate raw memory"); PanicAlert("Failed to allocate raw memory");
return ptr; return ptr;
} }
void* AllocateAlignedMemory(size_t size,size_t alignment) void* AllocateAlignedMemory(size_t size,size_t alignment)
{ {
#ifdef _WIN32 #ifdef _WIN32
void* ptr = _aligned_malloc(size,alignment); void* ptr = _aligned_malloc(size,alignment);
#else #else
void* ptr = NULL; void* ptr = NULL;
#ifdef ANDROID #ifdef ANDROID
ptr = memalign(alignment, size); ptr = memalign(alignment, size);
#else #else
if (posix_memalign(&ptr, alignment, size) != 0) if (posix_memalign(&ptr, alignment, size) != 0)
ERROR_LOG(MEMMAP, "Failed to allocate aligned memory"); ERROR_LOG(MEMMAP, "Failed to allocate aligned memory");
#endif #endif
#endif #endif
// printf("Mapped memory at %p (size %ld)\n", ptr, // printf("Mapped memory at %p (size %ld)\n", ptr,
// (unsigned long)size); // (unsigned long)size);
if (ptr == NULL) if (ptr == NULL)
PanicAlert("Failed to allocate aligned memory"); PanicAlert("Failed to allocate aligned memory");
return ptr; return ptr;
} }
void FreeMemoryPages(void* ptr, size_t size) void FreeMemoryPages(void* ptr, size_t size)
{ {
if (ptr) if (ptr)
{ {
#ifdef _WIN32 #ifdef _WIN32
if (!VirtualFree(ptr, 0, MEM_RELEASE)) if (!VirtualFree(ptr, 0, MEM_RELEASE))
PanicAlert("FreeMemoryPages failed!\n%s", GetLastErrorMsg()); PanicAlert("FreeMemoryPages failed!\n%s", GetLastErrorMsg());
ptr = NULL; // Is this our responsibility? ptr = NULL; // Is this our responsibility?
#else #else
munmap(ptr, size); munmap(ptr, size);
#endif #endif
} }
} }
void FreeAlignedMemory(void* ptr) void FreeAlignedMemory(void* ptr)
{ {
if (ptr) if (ptr)
{ {
#ifdef _WIN32 #ifdef _WIN32
_aligned_free(ptr); _aligned_free(ptr);
#else #else
free(ptr); free(ptr);
#endif #endif
} }
} }
void WriteProtectMemory(void* ptr, size_t size, bool allowExecute) void WriteProtectMemory(void* ptr, size_t size, bool allowExecute)
{ {
#ifdef _WIN32 #ifdef _WIN32
DWORD oldValue; DWORD oldValue;
if (!VirtualProtect(ptr, size, allowExecute ? PAGE_EXECUTE_READ : PAGE_READONLY, &oldValue)) if (!VirtualProtect(ptr, size, allowExecute ? PAGE_EXECUTE_READ : PAGE_READONLY, &oldValue))
PanicAlert("WriteProtectMemory failed!\n%s", GetLastErrorMsg()); PanicAlert("WriteProtectMemory failed!\n%s", GetLastErrorMsg());
#else #else
mprotect(ptr, size, allowExecute ? (PROT_READ | PROT_EXEC) : PROT_READ); mprotect(ptr, size, allowExecute ? (PROT_READ | PROT_EXEC) : PROT_READ);
#endif #endif
} }
void UnWriteProtectMemory(void* ptr, size_t size, bool allowExecute) void UnWriteProtectMemory(void* ptr, size_t size, bool allowExecute)
{ {
#ifdef _WIN32 #ifdef _WIN32
DWORD oldValue; DWORD oldValue;
if (!VirtualProtect(ptr, size, allowExecute ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE, &oldValue)) if (!VirtualProtect(ptr, size, allowExecute ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE, &oldValue))
PanicAlert("UnWriteProtectMemory failed!\n%s", GetLastErrorMsg()); PanicAlert("UnWriteProtectMemory failed!\n%s", GetLastErrorMsg());
#else #else
mprotect(ptr, size, allowExecute ? (PROT_READ | PROT_WRITE | PROT_EXEC) : PROT_WRITE | PROT_READ); mprotect(ptr, size, allowExecute ? (PROT_READ | PROT_WRITE | PROT_EXEC) : PROT_WRITE | PROT_READ);
#endif #endif
} }
std::string MemUsage() std::string MemUsage()
{ {
#ifdef _WIN32 #ifdef _WIN32
#pragma comment(lib, "psapi") #pragma comment(lib, "psapi")
DWORD processID = GetCurrentProcessId(); DWORD processID = GetCurrentProcessId();
HANDLE hProcess; HANDLE hProcess;
PROCESS_MEMORY_COUNTERS pmc; PROCESS_MEMORY_COUNTERS pmc;
std::string Ret; std::string Ret;
// Print information about the memory usage of the process. // Print information about the memory usage of the process.
hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, processID); hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, processID);
if (NULL == hProcess) return "MemUsage Error"; if (NULL == hProcess) return "MemUsage Error";
if (GetProcessMemoryInfo(hProcess, &pmc, sizeof(pmc))) if (GetProcessMemoryInfo(hProcess, &pmc, sizeof(pmc)))
Ret = StringFromFormat("%s K", ThousandSeparate(pmc.WorkingSetSize / 1024, 7).c_str()); Ret = StringFromFormat("%s K", ThousandSeparate(pmc.WorkingSetSize / 1024, 7).c_str());
CloseHandle(hProcess); CloseHandle(hProcess);
return Ret; return Ret;
#else #else
return ""; return "";
#endif #endif
} }