Common: Clean up brace placements

This commit is contained in:
Lioncash 2014-08-30 16:14:56 -04:00
parent 77aef014a0
commit ba4934b75e
14 changed files with 344 additions and 160 deletions

View File

@ -26,34 +26,43 @@
namespace ArmGen
{
inline u32 RotR(u32 a, int amount) {
inline u32 RotR(u32 a, int amount)
{
if (!amount) return a;
return (a >> amount) | (a << (32 - amount));
}
inline u32 RotL(u32 a, int amount) {
inline u32 RotL(u32 a, int amount)
{
if (!amount) return a;
return (a << amount) | (a >> (32 - amount));
}
bool TryMakeOperand2(u32 imm, Operand2 &op2) {
bool TryMakeOperand2(u32 imm, Operand2 &op2)
{
// Just brute force it.
for (int i = 0; i < 16; i++) {
for (int i = 0; i < 16; i++)
{
int mask = RotR(0xFF, i * 2);
if ((imm & mask) == imm) {
if ((imm & mask) == imm)
{
op2 = Operand2((u8)(RotL(imm, i * 2)), (u8)i);
return true;
}
}
return false;
}
bool TryMakeOperand2_AllowInverse(u32 imm, Operand2 &op2, bool *inverse)
{
if (!TryMakeOperand2(imm, op2)) {
if (!TryMakeOperand2(imm, op2))
{
*inverse = true;
return TryMakeOperand2(~imm, op2);
} else {
}
else
{
*inverse = false;
return true;
}
@ -61,16 +70,20 @@ bool TryMakeOperand2_AllowInverse(u32 imm, Operand2 &op2, bool *inverse)
bool TryMakeOperand2_AllowNegation(s32 imm, Operand2 &op2, bool *negated)
{
if (!TryMakeOperand2(imm, op2)) {
if (!TryMakeOperand2(imm, op2))
{
*negated = true;
return TryMakeOperand2(-imm, op2);
} else {
}
else
{
*negated = false;
return true;
}
}
Operand2 AssumeMakeOperand2(u32 imm) {
Operand2 AssumeMakeOperand2(u32 imm)
{
Operand2 op2;
bool result = TryMakeOperand2(imm, op2);
(void) result;
@ -93,10 +106,12 @@ bool ARMXEmitter::TrySetValue_TwoOp(ARMReg reg, u32 val)
return false;
bool first = true;
for (int i = 0; i < 16; i++, val >>=2) {
if (val & 0x3) {
for (int i = 0; i < 16; i++, val >>=2)
{
if (val & 0x3)
{
first ? MOV(reg, Operand2((u8)val, (u8)((16-i) & 0xF)))
: ORR(reg, reg, Operand2((u8)val, (u8)((16-i) & 0xF)));
: ORR(reg, reg, Operand2((u8)val, (u8)((16-i) & 0xF)));
first = false;
i+=3;
val >>= 6;
@ -138,12 +153,15 @@ void ARMXEmitter::ADDI2R(ARMReg rd, ARMReg rs, u32 val, ARMReg scratch)
{
Operand2 op2;
bool negated;
if (TryMakeOperand2_AllowNegation(val, op2, &negated)) {
if (TryMakeOperand2_AllowNegation(val, op2, &negated))
{
if (!negated)
ADD(rd, rs, op2);
else
SUB(rd, rs, op2);
} else {
}
else
{
MOVI2R(scratch, val);
ADD(rd, rs, scratch);
}
@ -153,13 +171,19 @@ void ARMXEmitter::ANDI2R(ARMReg rd, ARMReg rs, u32 val, ARMReg scratch)
{
Operand2 op2;
bool inverse;
if (TryMakeOperand2_AllowInverse(val, op2, &inverse)) {
if (!inverse) {
if (TryMakeOperand2_AllowInverse(val, op2, &inverse))
{
if (!inverse)
{
AND(rd, rs, op2);
} else {
}
else
{
BIC(rd, rs, op2);
}
} else {
}
else
{
MOVI2R(scratch, val);
AND(rd, rs, scratch);
}
@ -169,12 +193,15 @@ void ARMXEmitter::CMPI2R(ARMReg rs, u32 val, ARMReg scratch)
{
Operand2 op2;
bool negated;
if (TryMakeOperand2_AllowNegation(val, op2, &negated)) {
if (TryMakeOperand2_AllowNegation(val, op2, &negated))
{
if (!negated)
CMP(rs, op2);
else
CMN(rs, op2);
} else {
}
else
{
MOVI2R(scratch, val);
CMP(rs, scratch);
}
@ -183,9 +210,12 @@ void ARMXEmitter::CMPI2R(ARMReg rs, u32 val, ARMReg scratch)
void ARMXEmitter::ORI2R(ARMReg rd, ARMReg rs, u32 val, ARMReg scratch)
{
Operand2 op2;
if (TryMakeOperand2(val, op2)) {
if (TryMakeOperand2(val, op2))
{
ORR(rd, rs, op2);
} else {
}
else
{
MOVI2R(scratch, val);
ORR(rd, rs, scratch);
}
@ -193,9 +223,11 @@ void ARMXEmitter::ORI2R(ARMReg rd, ARMReg rs, u32 val, ARMReg scratch)
void ARMXEmitter::FlushLitPool()
{
for (LiteralPool& pool : currentLitPool) {
for (LiteralPool& pool : currentLitPool)
{
// Search for duplicates
for (LiteralPool& old_pool : currentLitPool) {
for (LiteralPool& old_pool : currentLitPool)
{
if (old_pool.val == pool.val)
pool.loc = old_pool.loc;
}
@ -235,16 +267,21 @@ void ARMXEmitter::MOVI2R(ARMReg reg, u32 val, bool optimize)
MOVW(reg, val & 0xFFFF);
MOVT(reg, val, true);
}
else if (TryMakeOperand2_AllowInverse(val, op2, &inverse)) {
else if (TryMakeOperand2_AllowInverse(val, op2, &inverse))
{
inverse ? MVN(reg, op2) : MOV(reg, op2);
} else {
}
else
{
if (cpu_info.bArmV7)
{
// Use MOVW+MOVT for ARMv7+
MOVW(reg, val & 0xFFFF);
if (val & 0xFFFF0000)
MOVT(reg, val, true);
} else if (!TrySetValue_TwoOp(reg,val)) {
}
else if (!TrySetValue_TwoOp(reg,val))
{
// Use literal pool for ARMv6.
AddNewLit(val);
LDR(reg, _PC); // To be backpatched later
@ -252,10 +289,14 @@ void ARMXEmitter::MOVI2R(ARMReg reg, u32 val, bool optimize)
}
}
void ARMXEmitter::QuickCallFunction(ARMReg reg, void *func) {
if (BLInRange(func)) {
void ARMXEmitter::QuickCallFunction(ARMReg reg, void *func)
{
if (BLInRange(func))
{
BL(func);
} else {
}
else
{
MOVI2R(reg, (u32)(func));
BL(reg);
}
@ -327,7 +368,8 @@ void ARMXEmitter::SetCC(CCFlags cond)
void ARMXEmitter::NOP(int count)
{
for (int i = 0; i < count; i++) {
for (int i = 0; i < count; i++)
{
Write32(condition | 0x01A00000);
}
}
@ -418,7 +460,8 @@ void ARMXEmitter::B(ARMReg src)
Write32(condition | 0x12FFF10 | src);
}
bool ARMXEmitter::BLInRange(const void *fnptr) {
bool ARMXEmitter::BLInRange(const void *fnptr)
{
s32 distance = (s32)fnptr - (s32(code) + 8);
if (distance <= -0x2000000 || distance > 0x2000000)
return false;
@ -602,7 +645,8 @@ void ARMXEmitter::MULS(ARMReg dest, ARMReg src, ARMReg op2)
Write32(condition | (1 << 20) | (dest << 16) | (src << 8) | (9 << 4) | op2);
}
void ARMXEmitter::Write4OpMultiply(u32 op, ARMReg destLo, ARMReg destHi, ARMReg rm, ARMReg rn) {
void ARMXEmitter::Write4OpMultiply(u32 op, ARMReg destLo, ARMReg destHi, ARMReg rm, ARMReg rn)
{
Write32(condition | (op << 20) | (destHi << 16) | (destLo << 12) | (rm << 8) | (9 << 4) | rn);
}
@ -1057,10 +1101,13 @@ void ARMXEmitter::VSTR(ARMReg Src, ARMReg Base, s16 offset)
}
}
void ARMXEmitter::VMRS(ARMReg Rt) {
void ARMXEmitter::VMRS(ARMReg Rt)
{
Write32(condition | (0xEF << 20) | (1 << 16) | (Rt << 12) | 0xA10);
}
void ARMXEmitter::VMSR(ARMReg Rt) {
void ARMXEmitter::VMSR(ARMReg Rt)
{
Write32(condition | (0xEE << 20) | (1 << 16) | (Rt << 12) | 0xA10);
}
@ -1191,26 +1238,33 @@ void ARMXEmitter::VCVT(ARMReg Dest, ARMReg Source, int flags)
{
Write32(condition | (0x1D << 23) | ((Dest & 0x10) << 18) | (0x7 << 19) \
| ((Dest & 0xF) << 12) | (op << 7) | (0x2D << 6) | ((Source & 0x1) << 5) | (Source >> 1));
} else {
}
else
{
Write32(condition | (0x1D << 23) | ((Dest & 0x1) << 22) | (0x7 << 19) | ((flags & TO_INT) << 18) | (op2 << 16) \
| ((Dest & 0x1E) << 11) | (op << 7) | (0x2D << 6) | ((Source & 0x10) << 1) | (Source & 0xF));
}
}
// F32<->F64
else {
else // F32<->F64
{
if (single_to_double)
{
Write32(condition | (0x1D << 23) | ((Dest & 0x10) << 18) | (0x3 << 20) | (0x7 << 16) \
| ((Dest & 0xF) << 12) | (0x2B << 6) | ((Source & 0x1) << 5) | (Source >> 1));
} else {
}
else
{
Write32(condition | (0x1D << 23) | ((Dest & 0x1) << 22) | (0x3 << 20) | (0x7 << 16) \
| ((Dest & 0x1E) << 11) | (0x2F << 6) | ((Source & 0x10) << 1) | (Source & 0xF));
}
}
} else if (single_reg) {
} else if (single_reg)
{
Write32(condition | (0x1D << 23) | ((Dest & 0x1) << 22) | (0x7 << 19) | ((flags & TO_INT) << 18) | (op2 << 16) \
| ((Dest & 0x1E) << 11) | (op << 7) | (0x29 << 6) | ((Source & 0x1) << 5) | (Source >> 1));
} else {
}
else
{
Write32(condition | (0x1D << 23) | ((Dest & 0x10) << 18) | (0x7 << 19) | ((flags & TO_INT) << 18) | (op2 << 16) \
| ((Dest & 0xF) << 12) | (1 << 8) | (op << 7) | (0x29 << 6) | ((Source & 0x10) << 1) | (Source & 0xF));
}

View File

@ -25,23 +25,28 @@
namespace Common
{
inline void AtomicAdd(volatile u32& target, u32 value) {
inline void AtomicAdd(volatile u32& target, u32 value)
{
__sync_add_and_fetch(&target, value);
}
inline void AtomicAnd(volatile u32& target, u32 value) {
inline void AtomicAnd(volatile u32& target, u32 value)
{
__sync_and_and_fetch(&target, value);
}
inline void AtomicDecrement(volatile u32& target) {
inline void AtomicDecrement(volatile u32& target)
{
__sync_add_and_fetch(&target, -1);
}
inline void AtomicIncrement(volatile u32& target) {
inline void AtomicIncrement(volatile u32& target)
{
__sync_add_and_fetch(&target, 1);
}
inline void AtomicOr(volatile u32& target, u32 value) {
inline void AtomicOr(volatile u32& target, u32 value)
{
__sync_or_and_fetch(&target, value);
}
@ -63,27 +68,32 @@ _Atomic(T)* ToC11Atomic(volatile T* loc)
#endif
template <typename T>
inline T AtomicLoad(volatile T& src) {
inline T AtomicLoad(volatile T& src)
{
return __atomic_load_n(&src, __ATOMIC_RELAXED);
}
template <typename T>
inline T AtomicLoadAcquire(volatile T& src) {
inline T AtomicLoadAcquire(volatile T& src)
{
return __atomic_load_n(&src, __ATOMIC_ACQUIRE);
}
template <typename T, typename U>
inline void AtomicStore(volatile T& dest, U value) {
inline void AtomicStore(volatile T& dest, U value)
{
__atomic_store_n(&dest, value, __ATOMIC_RELAXED);
}
template <typename T, typename U>
inline void AtomicStoreRelease(volatile T& dest, U value) {
inline void AtomicStoreRelease(volatile T& dest, U value)
{
__atomic_store_n(&dest, value, __ATOMIC_RELEASE);
}
template <typename T, typename U>
inline T* AtomicExchangeAcquire(T* volatile& loc, U newval) {
inline T* AtomicExchangeAcquire(T* volatile& loc, U newval)
{
return __atomic_exchange_n(&loc, newval, __ATOMIC_ACQ_REL);
}

View File

@ -32,51 +32,61 @@
namespace Common
{
inline void AtomicAdd(volatile u32& target, u32 value) {
inline void AtomicAdd(volatile u32& target, u32 value)
{
_InterlockedExchangeAdd((volatile LONG*)&target, (LONG)value);
}
inline void AtomicAnd(volatile u32& target, u32 value) {
inline void AtomicAnd(volatile u32& target, u32 value)
{
_InterlockedAnd((volatile LONG*)&target, (LONG)value);
}
inline void AtomicIncrement(volatile u32& target) {
inline void AtomicIncrement(volatile u32& target)
{
_InterlockedIncrement((volatile LONG*)&target);
}
inline void AtomicDecrement(volatile u32& target) {
inline void AtomicDecrement(volatile u32& target)
{
_InterlockedDecrement((volatile LONG*)&target);
}
inline void AtomicOr(volatile u32& target, u32 value) {
inline void AtomicOr(volatile u32& target, u32 value)
{
_InterlockedOr((volatile LONG*)&target, (LONG)value);
}
template <typename T>
inline T AtomicLoad(volatile T& src) {
inline T AtomicLoad(volatile T& src)
{
return src; // 32-bit reads are always atomic.
}
template <typename T>
inline T AtomicLoadAcquire(volatile T& src) {
inline T AtomicLoadAcquire(volatile T& src)
{
T result = src; // 32-bit reads are always atomic.
_ReadBarrier(); // Compiler instruction only. x86 loads always have acquire semantics.
return result;
}
template <typename T, typename U>
inline void AtomicStore(volatile T& dest, U value) {
inline void AtomicStore(volatile T& dest, U value)
{
dest = (T) value; // 32-bit writes are always atomic.
}
template <typename T, typename U>
inline void AtomicStoreRelease(volatile T& dest, U value) {
inline void AtomicStoreRelease(volatile T& dest, U value)
{
_WriteBarrier(); // Compiler instruction only. x86 stores always have release semantics.
dest = (T) value; // 32-bit writes are always atomic.
}
template <typename T, typename U>
inline T* AtomicExchangeAcquire(T* volatile& loc, U newval) {
inline T* AtomicExchangeAcquire(T* volatile& loc, U newval)
{
return (T*) _InterlockedExchangePointer_acq((void* volatile*) &loc, (void*) newval);
}

View File

@ -20,11 +20,13 @@ struct TBreakPoint
struct TMemCheck
{
TMemCheck() {
TMemCheck()
{
numHits = 0;
StartAddress = EndAddress = 0;
bRange = OnRead = OnWrite = Log = Break = false;
}
u32 StartAddress;
u32 EndAddress;

View File

@ -74,25 +74,29 @@ _mm_shuffle_epi8(__m128i a, __m128i mask)
// GCC 4.8 defines all the rotate functions now
// Small issue with GCC's lrotl/lrotr intrinsics is they are still 32bit while we require 64bit
#ifndef _rotl
inline u32 _rotl(u32 x, int shift) {
inline u32 _rotl(u32 x, int shift)
{
shift &= 31;
if (!shift) return x;
return (x << shift) | (x >> (32 - shift));
}
inline u32 _rotr(u32 x, int shift) {
inline u32 _rotr(u32 x, int shift)
{
shift &= 31;
if (!shift) return x;
return (x >> shift) | (x << (32 - shift));
}
#endif
inline u64 _rotl64(u64 x, unsigned int shift){
inline u64 _rotl64(u64 x, unsigned int shift)
{
unsigned int n = shift % 64;
return (x << n) | (x >> (64 - n));
}
inline u64 _rotr64(u64 x, unsigned int shift){
inline u64 _rotr64(u64 x, unsigned int shift)
{
unsigned int n = shift % 64;
return (x >> n) | (x << (64 - n));
}

View File

@ -92,7 +92,8 @@ static void InitSymbolPath( PSTR lpszSymbolPath, PCSTR lpszIniPath )
}
// Uninitialize the loaded symbol files
BOOL UninitSymInfo() {
BOOL UninitSymInfo()
{
return SymCleanup( GetCurrentProcess() );
}

View File

@ -95,7 +95,8 @@ bool IsDirectory(const std::string &filename)
int result = stat64(copy.c_str(), &file_info);
#endif
if (result < 0) {
if (result < 0)
{
WARN_LOG(COMMON, "IsDirectory: stat failed on %s: %s",
filename.c_str(), GetLastErrorMsg());
return false;
@ -133,7 +134,8 @@ bool Delete(const std::string &filename)
return false;
}
#else
if (unlink(filename.c_str()) == -1) {
if (unlink(filename.c_str()) == -1)
{
WARN_LOG(COMMON, "Delete: unlink failed on %s: %s",
filename.c_str(), GetLastErrorMsg());
return false;
@ -413,7 +415,8 @@ u64 GetSize(const std::string &filename)
u64 GetSize(const int fd)
{
struct stat64 buf;
if (fstat64(fd, &buf) != 0) {
if (fstat64(fd, &buf) != 0)
{
ERROR_LOG(COMMON, "GetSize: stat failed %i: %s",
fd, GetLastErrorMsg());
return 0;
@ -426,17 +429,21 @@ u64 GetSize(FILE *f)
{
// can't use off_t here because it can be 32-bit
u64 pos = ftello(f);
if (fseeko(f, 0, SEEK_END) != 0) {
if (fseeko(f, 0, SEEK_END) != 0)
{
ERROR_LOG(COMMON, "GetSize: seek failed %p: %s",
f, GetLastErrorMsg());
return 0;
}
u64 size = ftello(f);
if ((size != pos) && (fseeko(f, pos, SEEK_SET) != 0)) {
if ((size != pos) && (fseeko(f, pos, SEEK_SET) != 0))
{
ERROR_LOG(COMMON, "GetSize: seek failed %p: %s",
f, GetLastErrorMsg());
return 0;
}
return size;
}
@ -658,8 +665,8 @@ std::string GetCurrentDir()
{
char *dir;
// Get the current working directory (getcwd uses malloc)
if (!(dir = __getcwd(nullptr, 0))) {
if (!(dir = __getcwd(nullptr, 0)))
{
ERROR_LOG(COMMON, "GetCurrentDirectory failed: %s",
GetLastErrorMsg());
return nullptr;

View File

@ -36,13 +36,15 @@ public:
delete [] storage;
}
void clear() {
void clear()
{
head = 0;
tail = 0;
count = 0;
}
void push(T t) {
void push(T t)
{
storage[tail] = t;
tail++;
if (tail == N)
@ -50,14 +52,16 @@ public:
count++;
}
void pop() {
void pop()
{
head++;
if (head == N)
head = 0;
count--;
}
T pop_front() {
T pop_front()
{
const T &temp = storage[head];
pop();
return temp;
@ -66,7 +70,8 @@ public:
T &front() { return storage[head]; }
const T &front() const { return storage[head]; }
size_t size() const {
size_t size() const
{
return count;
}
};

View File

@ -40,24 +40,31 @@ public:
bool Get(const std::string& key, std::string* value, const std::string& defaultValue = NULL_STRING);
void Set(const std::string& key, u32 newValue) {
void Set(const std::string& key, u32 newValue)
{
Set(key, StringFromFormat("0x%08x", newValue));
}
void Set(const std::string& key, float newValue) {
void Set(const std::string& key, float newValue)
{
Set(key, StringFromFormat("%f", newValue));
}
void Set(const std::string& key, const float newValue, const float defaultValue);
void Set(const std::string& key, double newValue) {
void Set(const std::string& key, double newValue)
{
Set(key, StringFromFormat("%f", newValue));
}
void Set(const std::string& key, int newValue, int defaultValue);
void Set(const std::string& key, int newValue) {
void Set(const std::string& key, int newValue)
{
Set(key, StringFromInt(newValue));
}
void Set(const std::string& key, bool newValue, bool defaultValue);
void Set(const std::string& key, bool newValue) {
void Set(const std::string& key, bool newValue)
{
Set(key, StringFromBool(newValue));
}
void Set(const std::string& key, const std::vector<std::string>& newValues);
@ -69,7 +76,8 @@ public:
bool Get(const std::string& key, double* value, double defaultValue = false);
bool Get(const std::string& key, std::vector<std::string>* values);
bool operator < (const Section& other) const {
bool operator < (const Section& other) const
{
return name < other.name;
}

View File

@ -152,7 +152,8 @@ u8* MemArena::Find4GBBase()
#endif
const u32 MemSize = 0x31000000;
void* base = mmap(0, MemSize, PROT_NONE, flags, -1, 0);
if (base == MAP_FAILED) {
if (base == MAP_FAILED)
{
PanicAlert("Failed to map 1 GB of memory space: %s", strerror(errno));
return 0;
}
@ -170,7 +171,8 @@ u8* MemArena::Find4GBBase()
continue; \
static bool Memory_TryBase(u8 *base, const MemoryView *views, int num_views, u32 flags, MemArena *arena) {
static bool Memory_TryBase(u8 *base, const MemoryView *views, int num_views, u32 flags, MemArena *arena)
{
// OK, we know where to find free space. Now grab it!
// We just mimic the popular BAT setup.
u32 position = 0;
@ -189,9 +191,12 @@ static bool Memory_TryBase(u8 *base, const MemoryView *views, int num_views, u32
for (i = 0; i < num_views; i++)
{
SKIP(flags, views[i].flags);
if (views[i].flags & MV_MIRROR_PREVIOUS) {
if (views[i].flags & MV_MIRROR_PREVIOUS)
{
position = last_position;
} else {
}
else
{
*(views[i].out_ptr_low) = (u8*)arena->CreateView(position, views[i].size);
if (!*views[i].out_ptr_low)
goto bail;
@ -200,10 +205,13 @@ static bool Memory_TryBase(u8 *base, const MemoryView *views, int num_views, u32
*views[i].out_ptr = (u8*)arena->CreateView(
position, views[i].size, base + views[i].virtual_address);
#else
if (views[i].flags & MV_MIRROR_PREVIOUS) {
if (views[i].flags & MV_MIRROR_PREVIOUS)
{
// No need to create multiple identical views.
*views[i].out_ptr = *views[i - 1].out_ptr;
} else {
}
else
{
*views[i].out_ptr = (u8*)arena->CreateView(
position, views[i].size, base + (views[i].virtual_address & 0x3FFFFFFF));
if (!*views[i].out_ptr)

View File

@ -84,13 +84,15 @@ void SettingsHandler::Reset()
void SettingsHandler::AddSetting(const std::string& key, const std::string& value)
{
for (const char& c : key) {
for (const char& c : key)
{
WriteByte(c);
}
WriteByte('=');
for (const char& c : value) {
for (const char& c : value)
{
WriteByte(c);
}

View File

@ -10,22 +10,28 @@ using namespace Gen;
// Shared code between Win64 and Unix64
unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize, bool noProlog) {
unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize, bool noProlog)
{
frameSize = noProlog ? 0x28 : 0;
return frameSize;
}
void XEmitter::ABI_AlignStack(unsigned int frameSize, bool noProlog) {
unsigned int fillSize =
ABI_GetAlignedFrameSize(frameSize, noProlog) - frameSize;
if (fillSize != 0) {
void XEmitter::ABI_AlignStack(unsigned int frameSize, bool noProlog)
{
unsigned int fillSize = ABI_GetAlignedFrameSize(frameSize, noProlog) - frameSize;
if (fillSize != 0)
{
SUB(64, R(RSP), Imm8(fillSize));
}
}
void XEmitter::ABI_RestoreStack(unsigned int frameSize, bool noProlog) {
void XEmitter::ABI_RestoreStack(unsigned int frameSize, bool noProlog)
{
unsigned int alignedSize = ABI_GetAlignedFrameSize(frameSize, noProlog);
if (alignedSize != 0) {
if (alignedSize != 0)
{
ADD(64, R(RSP), Imm8(alignedSize));
}
}
@ -101,7 +107,8 @@ void XEmitter::ABI_PopRegistersAndAdjustStack(u32 mask, bool noProlog)
}
// Common functions
void XEmitter::ABI_CallFunction(void *func) {
void XEmitter::ABI_CallFunction(void *func)
{
ABI_AlignStack(0);
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL &&
@ -118,7 +125,8 @@ void XEmitter::ABI_CallFunction(void *func) {
ABI_RestoreStack(0);
}
void XEmitter::ABI_CallFunctionC16(void *func, u16 param1) {
void XEmitter::ABI_CallFunctionC16(void *func, u16 param1)
{
ABI_AlignStack(0);
MOV(32, R(ABI_PARAM1), Imm32((u32)param1));
u64 distance = u64(func) - (u64(code) + 5);
@ -136,7 +144,8 @@ void XEmitter::ABI_CallFunctionC16(void *func, u16 param1) {
ABI_RestoreStack(0);
}
void XEmitter::ABI_CallFunctionCC16(void *func, u32 param1, u16 param2) {
void XEmitter::ABI_CallFunctionCC16(void *func, u32 param1, u16 param2)
{
ABI_AlignStack(0);
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32((u32)param2));
@ -155,7 +164,8 @@ void XEmitter::ABI_CallFunctionCC16(void *func, u32 param1, u16 param2) {
ABI_RestoreStack(0);
}
void XEmitter::ABI_CallFunctionC(void *func, u32 param1) {
void XEmitter::ABI_CallFunctionC(void *func, u32 param1)
{
ABI_AlignStack(0);
MOV(32, R(ABI_PARAM1), Imm32(param1));
u64 distance = u64(func) - (u64(code) + 5);
@ -173,7 +183,8 @@ void XEmitter::ABI_CallFunctionC(void *func, u32 param1) {
ABI_RestoreStack(0);
}
void XEmitter::ABI_CallFunctionCC(void *func, u32 param1, u32 param2) {
void XEmitter::ABI_CallFunctionCC(void *func, u32 param1, u32 param2)
{
ABI_AlignStack(0);
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
@ -192,7 +203,8 @@ void XEmitter::ABI_CallFunctionCC(void *func, u32 param1, u32 param2) {
ABI_RestoreStack(0);
}
void XEmitter::ABI_CallFunctionCP(void *func, u32 param1, void *param2) {
void XEmitter::ABI_CallFunctionCP(void *func, u32 param1, void *param2)
{
ABI_AlignStack(0);
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(64, R(ABI_PARAM2), Imm64((u64)param2));
@ -211,7 +223,8 @@ void XEmitter::ABI_CallFunctionCP(void *func, u32 param1, void *param2) {
ABI_RestoreStack(0);
}
void XEmitter::ABI_CallFunctionCCC(void *func, u32 param1, u32 param2, u32 param3) {
void XEmitter::ABI_CallFunctionCCC(void *func, u32 param1, u32 param2, u32 param3)
{
ABI_AlignStack(0);
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
@ -231,7 +244,8 @@ void XEmitter::ABI_CallFunctionCCC(void *func, u32 param1, u32 param2, u32 param
ABI_RestoreStack(0);
}
void XEmitter::ABI_CallFunctionCCP(void *func, u32 param1, u32 param2, void *param3) {
void XEmitter::ABI_CallFunctionCCP(void *func, u32 param1, u32 param2, void *param3)
{
ABI_AlignStack(0);
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
@ -251,7 +265,8 @@ void XEmitter::ABI_CallFunctionCCP(void *func, u32 param1, u32 param2, void *par
ABI_RestoreStack(0);
}
void XEmitter::ABI_CallFunctionCCCP(void *func, u32 param1, u32 param2, u32 param3, void *param4) {
void XEmitter::ABI_CallFunctionCCCP(void *func, u32 param1, u32 param2, u32 param3, void *param4)
{
ABI_AlignStack(0);
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
@ -272,7 +287,8 @@ void XEmitter::ABI_CallFunctionCCCP(void *func, u32 param1, u32 param2, u32 para
ABI_RestoreStack(0);
}
void XEmitter::ABI_CallFunctionPC(void *func, void *param1, u32 param2) {
void XEmitter::ABI_CallFunctionPC(void *func, void *param1, u32 param2)
{
ABI_AlignStack(0);
MOV(64, R(ABI_PARAM1), Imm64((u64)param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
@ -291,7 +307,8 @@ void XEmitter::ABI_CallFunctionPC(void *func, void *param1, u32 param2) {
ABI_RestoreStack(0);
}
void XEmitter::ABI_CallFunctionPPC(void *func, void *param1, void *param2, u32 param3) {
void XEmitter::ABI_CallFunctionPPC(void *func, void *param1, void *param2, u32 param3)
{
ABI_AlignStack(0);
MOV(64, R(ABI_PARAM1), Imm64((u64)param1));
MOV(64, R(ABI_PARAM2), Imm64((u64)param2));
@ -312,7 +329,8 @@ void XEmitter::ABI_CallFunctionPPC(void *func, void *param1, void *param2, u32 p
}
// Pass a register as a parameter.
void XEmitter::ABI_CallFunctionR(void *func, X64Reg reg1) {
void XEmitter::ABI_CallFunctionR(void *func, X64Reg reg1)
{
ABI_AlignStack(0);
if (reg1 != ABI_PARAM1)
MOV(32, R(ABI_PARAM1), R(reg1));
@ -332,7 +350,8 @@ void XEmitter::ABI_CallFunctionR(void *func, X64Reg reg1) {
}
// Pass two registers as parameters.
void XEmitter::ABI_CallFunctionRR(void *func, X64Reg reg1, X64Reg reg2, bool noProlog) {
void XEmitter::ABI_CallFunctionRR(void *func, X64Reg reg1, X64Reg reg2, bool noProlog)
{
ABI_AlignStack(0, noProlog);
if (reg2 != ABI_PARAM1)
{
@ -407,7 +426,8 @@ void XEmitter::ABI_CallFunctionA(void *func, const Gen::OpArg &arg1)
#ifdef _WIN32
// Win64 Specific Code
void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack()
{
//we only want to do this once
PUSH(RBP);
MOV(64, R(RBP), R(RSP));
@ -422,7 +442,8 @@ void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
//TODO: Also preserve XMM0-3?
}
void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack()
{
ADD(64, R(RSP), Imm8(0x28));
POP(R15);
POP(R14);
@ -437,7 +458,8 @@ void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
#else
// Unix64 Specific Code
void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack()
{
PUSH(RBP);
MOV(64, R(RBP), R(RSP));
PUSH(RBX);
@ -448,7 +470,8 @@ void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
SUB(64, R(RSP), Imm8(8));
}
void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack()
{
ADD(64, R(RSP), Imm8(8));
POP(R15);
POP(R14);

View File

@ -142,8 +142,9 @@ void OpArg::WriteRex(XEmitter *emit, int opBits, int bits, int customOp) const
// Write REX if wr have REX bits to write, or if the operation accesses
// SIL, DIL, BPL, or SPL.
if (op != 0x40 ||
(scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) ||
(opBits == 8 && (customOp & 0x10c) == 4)) {
(scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) ||
(opBits == 8 && (customOp & 0x10c) == 4))
{
emit->Write8(op);
// Check the operation doesn't access AH, BH, CH, or DH.
_dbg_assert_(DYNA_REC, (offsetOrBaseReg & 0x100) == 0);
@ -773,7 +774,8 @@ void XEmitter::BSR(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,de
void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src)
{
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "MOVSX - Imm argument");
if (dbits == sbits) {
if (dbits == sbits)
{
MOV(dbits, R(dest), src);
return;
}
@ -804,7 +806,8 @@ void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src)
void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src)
{
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "MOVZX - Imm argument");
if (dbits == sbits) {
if (dbits == sbits)
{
MOV(dbits, R(dest), src);
return;
}
@ -1181,14 +1184,18 @@ void XEmitter::XCHG(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(t
void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a1, OpArg a2)
{
if (bits == 8) {
if (bits == 8)
{
_assert_msg_(DYNA_REC, 0, "IMUL - illegal bit size!");
return;
}
if (a1.IsImm()) {
if (a1.IsImm())
{
_assert_msg_(DYNA_REC, 0, "IMUL - second arg cannot be imm!");
return;
}
if (!a2.IsImm())
{
_assert_msg_(DYNA_REC, 0, "IMUL - third arg must be imm!");
@ -1201,20 +1208,27 @@ void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a1, OpArg a2)
if (a2.GetImmBits() == 8 ||
(a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) ||
(a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset)) {
(a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset))
{
Write8(0x6B);
a1.WriteRest(this, 1, regOp);
Write8((u8)a2.offset);
} else {
}
else
{
Write8(0x69);
if (a2.GetImmBits() == 16 && bits == 16) {
if (a2.GetImmBits() == 16 && bits == 16)
{
a1.WriteRest(this, 2, regOp);
Write16((u16)a2.offset);
} else if (a2.GetImmBits() == 32 &&
(bits == 32 || bits == 64)) {
a1.WriteRest(this, 4, regOp);
Write32((u32)a2.offset);
} else {
}
else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64))
{
a1.WriteRest(this, 4, regOp);
Write32((u32)a2.offset);
}
else
{
_assert_msg_(DYNA_REC, 0, "IMUL - unhandled case!");
}
}
@ -1222,10 +1236,12 @@ void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a1, OpArg a2)
void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a)
{
if (bits == 8) {
if (bits == 8)
{
_assert_msg_(DYNA_REC, 0, "IMUL - illegal bit size!");
return;
}
if (a.IsImm())
{
IMUL(bits, regOp, R(regOp), a) ;
@ -1283,7 +1299,8 @@ void XEmitter::WriteAVXOp(int size, u16 sseOp, bool packed, X64Reg regOp1, X64Re
void XEmitter::MOVD_xmm(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x6E, true, dest, arg, 0);}
void XEmitter::MOVD_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(64, 0x7E, true, src, arg, 0);}
void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg) {
void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg)
{
// Alternate encoding
// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
arg.operandReg = dest;
@ -1294,7 +1311,8 @@ void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg) {
arg.WriteRest(this, 0);
}
void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src) {
void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src)
{
if (src > 7 || arg.IsSimpleReg())
{
// Alternate encoding
@ -1305,7 +1323,9 @@ void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src) {
Write8(0x0f);
Write8(0x7E);
arg.WriteRest(this, 0);
} else {
}
else
{
arg.operandReg = src;
arg.WriteRex(this, 0, 0);
Write8(0x66);
@ -1466,42 +1486,50 @@ void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x61, tr
void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x62, true, dest, arg);}
//void PUNPCKLQDQ(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x60, true, dest, arg);}
void XEmitter::PSRLW(X64Reg reg, int shift) {
void XEmitter::PSRLW(X64Reg reg, int shift)
{
WriteSSEOp(64, 0x71, true, (X64Reg)2, R(reg));
Write8(shift);
}
void XEmitter::PSRLD(X64Reg reg, int shift) {
void XEmitter::PSRLD(X64Reg reg, int shift)
{
WriteSSEOp(64, 0x72, true, (X64Reg)2, R(reg));
Write8(shift);
}
void XEmitter::PSRLQ(X64Reg reg, int shift) {
void XEmitter::PSRLQ(X64Reg reg, int shift)
{
WriteSSEOp(64, 0x73, true, (X64Reg)2, R(reg));
Write8(shift);
}
void XEmitter::PSRLQ(X64Reg reg, OpArg arg) {
void XEmitter::PSRLQ(X64Reg reg, OpArg arg)
{
WriteSSEOp(64, 0xd3, true, reg, arg);
}
void XEmitter::PSLLW(X64Reg reg, int shift) {
void XEmitter::PSLLW(X64Reg reg, int shift)
{
WriteSSEOp(64, 0x71, true, (X64Reg)6, R(reg));
Write8(shift);
}
void XEmitter::PSLLD(X64Reg reg, int shift) {
void XEmitter::PSLLD(X64Reg reg, int shift)
{
WriteSSEOp(64, 0x72, true, (X64Reg)6, R(reg));
Write8(shift);
}
void XEmitter::PSLLQ(X64Reg reg, int shift) {
void XEmitter::PSLLQ(X64Reg reg, int shift)
{
WriteSSEOp(64, 0x73, true, (X64Reg)6, R(reg));
Write8(shift);
}
// WARNING not REX compatible
void XEmitter::PSRAW(X64Reg reg, int shift) {
void XEmitter::PSRAW(X64Reg reg, int shift)
{
if (reg > 7)
PanicAlert("The PSRAW-emitter does not support regs above 7");
Write8(0x66);
@ -1512,7 +1540,8 @@ void XEmitter::PSRAW(X64Reg reg, int shift) {
}
// WARNING not REX compatible
void XEmitter::PSRAD(X64Reg reg, int shift) {
void XEmitter::PSRAD(X64Reg reg, int shift)
{
if (reg > 7)
PanicAlert("The PSRAD-emitter does not support regs above 7");
Write8(0x66);
@ -1632,11 +1661,14 @@ void XEmitter::FWAIT()
void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, OpArg arg)
{
int mf = 0;
switch (bits) {
case 32: mf = 0; break;
case 64: mf = 2; break;
default: _assert_msg_(DYNA_REC, 0, "WriteFloatLoadStore: bits is not 32 or 64");
switch (bits)
{
case 32: mf = 0; break;
case 64: mf = 2; break;
default: _assert_msg_(DYNA_REC, 0, "WriteFloatLoadStore: bits is not 32 or 64");
}
Write8(0xd9 | (mf << 1));
// x87 instructions use the reg field of the ModR/M byte as opcode:
arg.WriteRest(this, 0, (X64Reg) op);
@ -1727,20 +1759,23 @@ void XEmitter::CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32
}
// See header
void XEmitter::___CallCdeclImport3(void* impptr, u32 arg0, u32 arg1, u32 arg2) {
void XEmitter::___CallCdeclImport3(void* impptr, u32 arg0, u32 arg1, u32 arg2)
{
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
CALLptr(M(impptr));
}
void XEmitter::___CallCdeclImport4(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3) {
void XEmitter::___CallCdeclImport4(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3)
{
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
MOV(32, R(R9), Imm32(arg3));
CALLptr(M(impptr));
}
void XEmitter::___CallCdeclImport5(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4) {
void XEmitter::___CallCdeclImport5(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4)
{
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
@ -1748,7 +1783,8 @@ void XEmitter::___CallCdeclImport5(void* impptr, u32 arg0, u32 arg1, u32 arg2, u
MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
CALLptr(M(impptr));
}
void XEmitter::___CallCdeclImport6(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5) {
void XEmitter::___CallCdeclImport6(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5)
{
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));

View File

@ -134,7 +134,8 @@ struct OpArg
void WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const;
bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;}
bool IsSimpleReg() const {return scale == SCALE_NONE;}
bool IsSimpleReg(X64Reg reg) const {
bool IsSimpleReg(X64Reg reg) const
{
if (!IsSimpleReg())
return false;
return GetSimpleReg() == reg;
@ -175,21 +176,30 @@ private:
inline OpArg M(const void *ptr) {return OpArg((u64)ptr, (int)SCALE_RIP);}
inline OpArg R(X64Reg value) {return OpArg(0, SCALE_NONE, value);}
inline OpArg MatR(X64Reg value) {return OpArg(0, SCALE_ATREG, value);}
inline OpArg MDisp(X64Reg value, int offset) {
inline OpArg MDisp(X64Reg value, int offset)
{
return OpArg((u32)offset, SCALE_ATREG, value);
}
inline OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset) {
inline OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset)
{
return OpArg(offset, scale, base, scaled);
}
inline OpArg MScaled(X64Reg scaled, int scale, int offset) {
inline OpArg MScaled(X64Reg scaled, int scale, int offset)
{
if (scale == SCALE_1)
return OpArg(offset, SCALE_ATREG, scaled);
else
return OpArg(offset, scale | 0x20, RAX, scaled);
}
inline OpArg MRegSum(X64Reg base, X64Reg offset) {
inline OpArg MRegSum(X64Reg base, X64Reg offset)
{
return MComplex(base, offset, 1, 0);
}
inline OpArg Imm8 (u8 imm) {return OpArg(imm, SCALE_IMM8);}
inline OpArg Imm16(u16 imm) {return OpArg(imm, SCALE_IMM16);} //rarely used
inline OpArg Imm32(u32 imm) {return OpArg(imm, SCALE_IMM32);}
@ -199,14 +209,18 @@ inline OpArg ImmPtr(const void* imm) {return Imm64((u64)imm);}
#else
inline OpArg ImmPtr(const void* imm) {return Imm32((u32)imm);}
#endif
inline u32 PtrOffset(void* ptr, void* base) {
inline u32 PtrOffset(void* ptr, void* base)
{
#ifdef _ARCH_64
s64 distance = (s64)ptr-(s64)base;
if (distance >= 0x80000000LL ||
distance < -0x80000000LL) {
distance < -0x80000000LL)
{
_assert_msg_(DYNA_REC, 0, "pointer offset out of range");
return 0;
}
return (u32)distance;
#else
return (u32)ptr-(u32)base;