Merge pull request #9377 from lioncash/analyzer

DSPAnalyzer: Migrate off file-scope state
This commit is contained in:
Léo Lam 2020-12-29 18:04:54 +01:00 committed by GitHub
commit ee048ad83c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 156 additions and 80 deletions

View File

@ -12,15 +12,8 @@
#include "Core/DSP/DSPCore.h"
#include "Core/DSP/DSPTables.h"
namespace DSP::Analyzer
namespace DSP
{
namespace
{
constexpr size_t ISPACE = 65536;
// Holds data about all instructions in RAM.
std::array<u8, ISPACE> code_flags;
// Good candidates for idle skipping is mail wait loops. If we're time slicing
// between the main CPU and the DSP, if the DSP runs into one of these, it might
// as well give up its time slice immediately, after executing once.
@ -65,18 +58,38 @@ constexpr u16 idle_skip_sigs[NUM_IDLE_SIGS][MAX_IDLE_SIG_SIZE + 1] = {
{0x00da, 0x0352, // LR $AX0.H, @0x0352
0x8600, // TSTAXH $AX0.H
0x0295, 0xFFFF, // JZ 0x????
0, 0}};
0, 0},
};
void Reset()
Analyzer::Analyzer() = default;
Analyzer::~Analyzer() = default;
void Analyzer::Analyze(const SDSP& dsp)
{
code_flags.fill(0);
Reset();
AnalyzeRange(dsp, 0x0000, 0x1000); // IRAM
AnalyzeRange(dsp, 0x8000, 0x9000); // IROM
}
void AnalyzeRange(const SDSP& dsp, u16 start_addr, u16 end_addr)
void Analyzer::Reset()
{
m_code_flags.fill(0);
}
void Analyzer::AnalyzeRange(const SDSP& dsp, u16 start_addr, u16 end_addr)
{
// First we run an extremely simplified version of a disassembler to find
// where all instructions start.
FindInstructionStarts(dsp, start_addr, end_addr);
// Next, we'll scan for potential idle skips.
FindIdleSkips(dsp, start_addr, end_addr);
INFO_LOG_FMT(DSPLLE, "Finished analysis.");
}
void Analyzer::FindInstructionStarts(const SDSP& dsp, u16 start_addr, u16 end_addr)
{
// This may not be 100% accurate in case of jump tables!
// It could get desynced, which would be bad. We'll see if that's an issue.
u16 last_arithmetic = 0;
@ -89,20 +102,20 @@ void AnalyzeRange(const SDSP& dsp, u16 start_addr, u16 end_addr)
addr++;
continue;
}
code_flags[addr] |= CODE_START_OF_INST;
m_code_flags[addr] |= CODE_START_OF_INST;
// Look for loops.
if ((inst & 0xffe0) == 0x0060 || (inst & 0xff00) == 0x1100)
{
// BLOOP, BLOOPI
const u16 loop_end = dsp.ReadIMEM(addr + 1);
code_flags[addr] |= CODE_LOOP_START;
code_flags[loop_end] |= CODE_LOOP_END;
m_code_flags[addr] |= CODE_LOOP_START;
m_code_flags[loop_end] |= CODE_LOOP_END;
}
else if ((inst & 0xffe0) == 0x0040 || (inst & 0xff00) == 0x1000)
{
// LOOP, LOOPI
code_flags[addr] |= CODE_LOOP_START;
code_flags[static_cast<u16>(addr + 1u)] |= CODE_LOOP_END;
m_code_flags[addr] |= CODE_LOOP_START;
m_code_flags[static_cast<u16>(addr + 1u)] |= CODE_LOOP_END;
}
// Mark the last arithmetic/multiplier instruction before a branch.
@ -114,7 +127,7 @@ void AnalyzeRange(const SDSP& dsp, u16 start_addr, u16 end_addr)
if (opcode->branch && !opcode->uncond_branch)
{
code_flags[last_arithmetic] |= CODE_UPDATE_SR;
m_code_flags[last_arithmetic] |= CODE_UPDATE_SR;
}
// If an instruction potentially raises exceptions, mark the following
@ -122,12 +135,16 @@ void AnalyzeRange(const SDSP& dsp, u16 start_addr, u16 end_addr)
if (opcode->opcode == 0x00c0 || opcode->opcode == 0x1800 || opcode->opcode == 0x1880 ||
opcode->opcode == 0x1900 || opcode->opcode == 0x1980 || opcode->opcode == 0x2000 ||
opcode->extended)
code_flags[static_cast<u16>(addr + opcode->size)] |= CODE_CHECK_INT;
{
m_code_flags[static_cast<u16>(addr + opcode->size)] |= CODE_CHECK_EXC;
}
addr += opcode->size;
}
}
// Next, we'll scan for potential idle skips.
void Analyzer::FindIdleSkips(const SDSP& dsp, u16 start_addr, u16 end_addr)
{
for (size_t s = 0; s < NUM_IDLE_SIGS; s++)
{
for (u16 addr = start_addr; addr < end_addr; addr++)
@ -145,24 +162,9 @@ void AnalyzeRange(const SDSP& dsp, u16 start_addr, u16 end_addr)
if (found)
{
INFO_LOG_FMT(DSPLLE, "Idle skip location found at {:02x} (sigNum:{})", addr, s + 1);
code_flags[addr] |= CODE_IDLE_SKIP;
m_code_flags[addr] |= CODE_IDLE_SKIP;
}
}
}
INFO_LOG_FMT(DSPLLE, "Finished analysis.");
}
} // Anonymous namespace
void Analyze(const SDSP& dsp)
{
Reset();
AnalyzeRange(dsp, 0x0000, 0x1000); // IRAM
AnalyzeRange(dsp, 0x8000, 0x9000); // IROM
}
u8 GetCodeFlags(u16 address)
{
return code_flags[address];
}
} // namespace DSP::Analyzer
} // namespace DSP

View File

@ -4,6 +4,7 @@
#pragma once
#include <array>
#include "Common/CommonTypes.h"
namespace DSP
@ -11,31 +12,98 @@ namespace DSP
struct SDSP;
}
// Basic code analysis.
namespace DSP::Analyzer
namespace DSP
{
// Useful things to detect:
// * Loop endpoints - so that we can avoid checking for loops every cycle.
enum
class Analyzer
{
CODE_START_OF_INST = 1,
CODE_IDLE_SKIP = 2,
CODE_LOOP_START = 4,
CODE_LOOP_END = 8,
CODE_UPDATE_SR = 16,
CODE_CHECK_INT = 32,
public:
explicit Analyzer();
~Analyzer();
Analyzer(const Analyzer&) = default;
Analyzer& operator=(const Analyzer&) = default;
Analyzer(Analyzer&&) = default;
Analyzer& operator=(Analyzer&&) = default;
// This one should be called every time IRAM changes - which is basically
// every time that a new ucode gets uploaded, and never else. At that point,
// we can do as much static analysis as we want - but we should always throw
// all old analysis away. Luckily the entire address space is only 64K code
// words and the actual code space 8K instructions in total, so we can do
// some pretty expensive analysis if necessary.
void Analyze(const SDSP& dsp);
// Whether or not the given address indicates the start of an instruction.
[[nodiscard]] bool IsStartOfInstruction(u16 address) const
{
return (GetCodeFlags(address) & CODE_START_OF_INST) != 0;
}
// Whether or not the address indicates an idle skip location.
[[nodiscard]] bool IsIdleSkip(u16 address) const
{
return (GetCodeFlags(address) & CODE_IDLE_SKIP) != 0;
}
// Whether or not the address indicates the start of a loop.
[[nodiscard]] bool IsLoopStart(u16 address) const
{
return (GetCodeFlags(address) & CODE_LOOP_START) != 0;
}
// Whether or not the address indicates the end of a loop.
[[nodiscard]] bool IsLoopEnd(u16 address) const
{
return (GetCodeFlags(address) & CODE_LOOP_END) != 0;
}
// Whether or not the address describes an instruction that requires updating the SR register.
[[nodiscard]] bool IsUpdateSR(u16 address) const
{
return (GetCodeFlags(address) & CODE_UPDATE_SR) != 0;
}
// Whether or not the address describes instructions that potentially raise exceptions.
[[nodiscard]] bool IsCheckExceptions(u16 address) const
{
return (GetCodeFlags(address) & CODE_CHECK_EXC) != 0;
}
private:
enum CodeFlags : u8
{
CODE_NONE = 0,
CODE_START_OF_INST = 1,
CODE_IDLE_SKIP = 2,
CODE_LOOP_START = 4,
CODE_LOOP_END = 8,
CODE_UPDATE_SR = 16,
CODE_CHECK_EXC = 32,
};
// Flushes all analyzed state.
void Reset();
// Analyzes a region of DSP memory.
// Note: start is inclusive, end is exclusive.
void AnalyzeRange(const SDSP& dsp, u16 start_addr, u16 end_addr);
// Finds addresses in the range [start_addr, end_addr) that are the start of an
// instruction. During this process other attributes may be detected as well
// for relevant instructions (loop start/end, etc).
void FindInstructionStarts(const SDSP& dsp, u16 start_addr, u16 end_addr);
// Finds locations within the range [start_addr, end_addr) that may contain idle skips.
void FindIdleSkips(const SDSP& dsp, u16 start_addr, u16 end_addr);
// Retrieves the flags set during analysis for code in memory.
[[nodiscard]] u8 GetCodeFlags(u16 address) const { return m_code_flags[address]; }
// Holds data about all instructions in RAM.
std::array<u8, 65536> m_code_flags{};
};
// This one should be called every time IRAM changes - which is basically
// every time that a new ucode gets uploaded, and never else. At that point,
// we can do as much static analysis as we want - but we should always throw
// all old analysis away. Luckily the entire address space is only 64K code
// words and the actual code space 8K instructions in total, so we can do
// some pretty expensive analysis if necessary.
void Analyze(const SDSP& dsp);
// Retrieves the flags set during analysis for code in memory.
u8 GetCodeFlags(u16 address);
} // namespace DSP::Analyzer
} // namespace DSP

View File

@ -483,7 +483,7 @@ void DSPCore::Step()
void DSPCore::Reset()
{
m_dsp.Reset();
Analyzer::Analyze(m_dsp);
m_dsp.GetAnalyzer().Analyze(m_dsp);
}
void DSPCore::ClearIRAM()

View File

@ -12,6 +12,7 @@
#include <string>
#include "Common/Event.h"
#include "Core/DSP/DSPAnalyzer.h"
#include "Core/DSP/DSPBreakpoints.h"
#include "Core/DSP/DSPCaptureLogger.h"
@ -398,6 +399,10 @@ struct SDSP
// Saves and loads any necessary state.
void DoState(PointerWrap& p);
// DSP static analyzer.
Analyzer& GetAnalyzer() { return m_analyzer; }
const Analyzer& GetAnalyzer() const { return m_analyzer; }
DSP_Regs r{};
u16 pc = 0;
@ -451,6 +456,7 @@ private:
u16 ReadIFXImpl(u16 address);
DSPCore& m_dsp_core;
Analyzer m_analyzer;
};
enum class State

View File

@ -46,14 +46,16 @@ void Interpreter::ExecuteInstruction(const UDSPInstruction inst)
void Interpreter::Step()
{
m_dsp_core.CheckExceptions();
m_dsp_core.DSPState().step_counter++;
auto& state = m_dsp_core.DSPState();
const u16 opc = m_dsp_core.DSPState().FetchInstruction();
m_dsp_core.CheckExceptions();
state.step_counter++;
const u16 opc = state.FetchInstruction();
ExecuteInstruction(UDSPInstruction{opc});
const auto pc = m_dsp_core.DSPState().pc;
if ((Analyzer::GetCodeFlags(static_cast<u16>(pc - 1)) & Analyzer::CODE_LOOP_END) != 0)
const auto pc = state.pc;
if (state.GetAnalyzer().IsLoopEnd(static_cast<u16>(pc - 1)))
HandleLoop();
}
@ -117,8 +119,7 @@ int Interpreter::RunCyclesDebug(int cycles)
return cycles;
}
// Idle skipping.
if ((Analyzer::GetCodeFlags(state.pc) & Analyzer::CODE_IDLE_SKIP) != 0)
if (state.GetAnalyzer().IsIdleSkip(state.pc))
return 0;
Step();
@ -173,8 +174,7 @@ int Interpreter::RunCycles(int cycles)
if ((state.cr & CR_HALT) != 0)
return 0;
// Idle skipping.
if ((Analyzer::GetCodeFlags(state.pc) & Analyzer::CODE_IDLE_SKIP) != 0)
if (state.GetAnalyzer().IsIdleSkip(state.pc))
return 0;
Step();

View File

@ -128,9 +128,9 @@ void DSPEmitter::checkExceptions(u32 retval)
bool DSPEmitter::FlagsNeeded() const
{
const u8 flags = Analyzer::GetCodeFlags(m_compile_pc);
const auto& analyzer = m_dsp_core.DSPState().GetAnalyzer();
return !(flags & Analyzer::CODE_START_OF_INST) || (flags & Analyzer::CODE_UPDATE_SR);
return !analyzer.IsStartOfInstruction(m_compile_pc) || analyzer.IsUpdateSR(m_compile_pc);
}
static void FallbackThunk(Interpreter::Interpreter& interpreter, UDSPInstruction inst)
@ -242,9 +242,10 @@ void DSPEmitter::Compile(u16 start_addr)
bool fixup_pc = false;
m_block_size[start_addr] = 0;
auto& analyzer = m_dsp_core.DSPState().GetAnalyzer();
while (m_compile_pc < start_addr + MAX_BLOCK_SIZE)
{
if (Analyzer::GetCodeFlags(m_compile_pc) & Analyzer::CODE_CHECK_INT)
if (analyzer.IsCheckExceptions(m_compile_pc))
checkExceptions(m_block_size[start_addr]);
const UDSPInstruction inst = m_dsp_core.DSPState().ReadIMEM(m_compile_pc);
@ -262,7 +263,7 @@ void DSPEmitter::Compile(u16 start_addr)
// Handle loop condition, only if current instruction was flagged as a loop destination
// by the analyzer.
if (Analyzer::GetCodeFlags(static_cast<u16>(m_compile_pc - 1u)) & Analyzer::CODE_LOOP_END)
if (analyzer.IsLoopEnd(static_cast<u16>(m_compile_pc - 1u)))
{
MOVZX(32, 16, EAX, M_SDSP_r_st(2));
TEST(32, R(EAX), R(EAX));
@ -283,7 +284,7 @@ void DSPEmitter::Compile(u16 start_addr)
DSPJitRegCache c(m_gpr);
HandleLoop();
m_gpr.SaveRegs();
if (!Host::OnThread() && Analyzer::GetCodeFlags(start_addr) & Analyzer::CODE_IDLE_SKIP)
if (!Host::OnThread() && analyzer.IsIdleSkip(start_addr))
{
MOV(16, R(EAX), Imm16(DSP_IDLE_SKIP_CYCLES));
}
@ -319,7 +320,7 @@ void DSPEmitter::Compile(u16 start_addr)
DSPJitRegCache c(m_gpr);
// don't update g_dsp.pc -- the branch insn already did
m_gpr.SaveRegs();
if (!Host::OnThread() && Analyzer::GetCodeFlags(start_addr) & Analyzer::CODE_IDLE_SKIP)
if (!Host::OnThread() && analyzer.IsIdleSkip(start_addr))
{
MOV(16, R(EAX), Imm16(DSP_IDLE_SKIP_CYCLES));
}
@ -336,7 +337,7 @@ void DSPEmitter::Compile(u16 start_addr)
}
// End the block if we're before an idle skip address
if (Analyzer::GetCodeFlags(m_compile_pc) & Analyzer::CODE_IDLE_SKIP)
if (analyzer.IsIdleSkip(m_compile_pc))
{
break;
}
@ -382,7 +383,7 @@ void DSPEmitter::Compile(u16 start_addr)
}
m_gpr.SaveRegs();
if (!Host::OnThread() && Analyzer::GetCodeFlags(start_addr) & Analyzer::CODE_IDLE_SKIP)
if (!Host::OnThread() && analyzer.IsIdleSkip(start_addr))
{
MOV(16, R(EAX), Imm16(DSP_IDLE_SKIP_CYCLES));
}

View File

@ -82,7 +82,7 @@ void DSPEmitter::WriteBranchExit()
{
DSPJitRegCache c(m_gpr);
m_gpr.SaveRegs();
if (Analyzer::GetCodeFlags(m_start_address) & Analyzer::CODE_IDLE_SKIP)
if (m_dsp_core.DSPState().GetAnalyzer().IsIdleSkip(m_start_address))
{
MOV(16, R(EAX), Imm16(0x1000));
}

View File

@ -93,8 +93,7 @@ void CodeLoaded(DSPCore& dsp, const u8* ptr, size_t size)
UpdateDebugger();
dsp.ClearIRAM();
Analyzer::Analyze(state);
state.GetAnalyzer().Analyze(state);
}
void UpdateDebugger()