mirror of
https://github.com/jellyfin/jellyfin-ffmpeg.git
synced 2024-11-23 13:59:45 +00:00
726 lines
28 KiB
C
726 lines
28 KiB
C
/*
|
|
* Copyright (c) 2011 Jan Kokemüller
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* This file is based on libebur128 which is available at
|
|
* https://github.com/jiixyj/libebur128/
|
|
*
|
|
* Libebur128 has the following copyright:
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "ebur128.h"
|
|
|
|
#include <float.h>
|
|
#include <limits.h>
|
|
#include <math.h> /* You may have to define _USE_MATH_DEFINES if you use MSVC */
|
|
|
|
#include "libavutil/error.h"
|
|
#include "libavutil/macros.h"
|
|
#include "libavutil/mem.h"
|
|
#include "libavutil/mem_internal.h"
|
|
#include "libavutil/thread.h"
|
|
|
|
#define CHECK_ERROR(condition, errorcode, goto_point) \
|
|
if ((condition)) { \
|
|
errcode = (errorcode); \
|
|
goto goto_point; \
|
|
}
|
|
|
|
#define ALMOST_ZERO 0.000001
|
|
|
|
#define RELATIVE_GATE (-10.0)
|
|
#define RELATIVE_GATE_FACTOR pow(10.0, RELATIVE_GATE / 10.0)
|
|
#define MINUS_20DB pow(10.0, -20.0 / 10.0)
|
|
|
|
struct FFEBUR128StateInternal {
|
|
/** Filtered audio data (used as ring buffer). */
|
|
double *audio_data;
|
|
/** Size of audio_data array. */
|
|
size_t audio_data_frames;
|
|
/** Current index for audio_data. */
|
|
size_t audio_data_index;
|
|
/** How many frames are needed for a gating block. Will correspond to 400ms
|
|
* of audio at initialization, and 100ms after the first block (75% overlap
|
|
* as specified in the 2011 revision of BS1770). */
|
|
unsigned long needed_frames;
|
|
/** The channel map. Has as many elements as there are channels. */
|
|
int *channel_map;
|
|
/** How many samples fit in 100ms (rounded). */
|
|
unsigned long samples_in_100ms;
|
|
/** BS.1770 filter coefficients (nominator). */
|
|
double b[5];
|
|
/** BS.1770 filter coefficients (denominator). */
|
|
double a[5];
|
|
/** BS.1770 filter state. */
|
|
double v[5][5];
|
|
/** Histograms, used to calculate LRA. */
|
|
unsigned long *block_energy_histogram;
|
|
unsigned long *short_term_block_energy_histogram;
|
|
/** Keeps track of when a new short term block is needed. */
|
|
size_t short_term_frame_counter;
|
|
/** Maximum sample peak, one per channel */
|
|
double *sample_peak;
|
|
/** The maximum window duration in ms. */
|
|
unsigned long window;
|
|
/** Data pointer array for interleaved data */
|
|
void **data_ptrs;
|
|
};
|
|
|
|
static AVOnce histogram_init = AV_ONCE_INIT;
|
|
static DECLARE_ALIGNED(32, double, histogram_energies)[1000];
|
|
static DECLARE_ALIGNED(32, double, histogram_energy_boundaries)[1001];
|
|
|
|
static void ebur128_init_filter(FFEBUR128State * st)
|
|
{
|
|
int i, j;
|
|
|
|
double f0 = 1681.974450955533;
|
|
double G = 3.999843853973347;
|
|
double Q = 0.7071752369554196;
|
|
|
|
double K = tan(M_PI * f0 / (double) st->samplerate);
|
|
double Vh = pow(10.0, G / 20.0);
|
|
double Vb = pow(Vh, 0.4996667741545416);
|
|
|
|
double pb[3] = { 0.0, 0.0, 0.0 };
|
|
double pa[3] = { 1.0, 0.0, 0.0 };
|
|
double rb[3] = { 1.0, -2.0, 1.0 };
|
|
double ra[3] = { 1.0, 0.0, 0.0 };
|
|
|
|
double a0 = 1.0 + K / Q + K * K;
|
|
pb[0] = (Vh + Vb * K / Q + K * K) / a0;
|
|
pb[1] = 2.0 * (K * K - Vh) / a0;
|
|
pb[2] = (Vh - Vb * K / Q + K * K) / a0;
|
|
pa[1] = 2.0 * (K * K - 1.0) / a0;
|
|
pa[2] = (1.0 - K / Q + K * K) / a0;
|
|
|
|
f0 = 38.13547087602444;
|
|
Q = 0.5003270373238773;
|
|
K = tan(M_PI * f0 / (double) st->samplerate);
|
|
|
|
ra[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
|
|
ra[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);
|
|
|
|
st->d->b[0] = pb[0] * rb[0];
|
|
st->d->b[1] = pb[0] * rb[1] + pb[1] * rb[0];
|
|
st->d->b[2] = pb[0] * rb[2] + pb[1] * rb[1] + pb[2] * rb[0];
|
|
st->d->b[3] = pb[1] * rb[2] + pb[2] * rb[1];
|
|
st->d->b[4] = pb[2] * rb[2];
|
|
|
|
st->d->a[0] = pa[0] * ra[0];
|
|
st->d->a[1] = pa[0] * ra[1] + pa[1] * ra[0];
|
|
st->d->a[2] = pa[0] * ra[2] + pa[1] * ra[1] + pa[2] * ra[0];
|
|
st->d->a[3] = pa[1] * ra[2] + pa[2] * ra[1];
|
|
st->d->a[4] = pa[2] * ra[2];
|
|
|
|
for (i = 0; i < 5; ++i) {
|
|
for (j = 0; j < 5; ++j) {
|
|
st->d->v[i][j] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int ebur128_init_channel_map(FFEBUR128State * st)
|
|
{
|
|
size_t i;
|
|
st->d->channel_map =
|
|
(int *) av_malloc_array(st->channels, sizeof(*st->d->channel_map));
|
|
if (!st->d->channel_map)
|
|
return AVERROR(ENOMEM);
|
|
if (st->channels == 4) {
|
|
st->d->channel_map[0] = FF_EBUR128_LEFT;
|
|
st->d->channel_map[1] = FF_EBUR128_RIGHT;
|
|
st->d->channel_map[2] = FF_EBUR128_LEFT_SURROUND;
|
|
st->d->channel_map[3] = FF_EBUR128_RIGHT_SURROUND;
|
|
} else if (st->channels == 5) {
|
|
st->d->channel_map[0] = FF_EBUR128_LEFT;
|
|
st->d->channel_map[1] = FF_EBUR128_RIGHT;
|
|
st->d->channel_map[2] = FF_EBUR128_CENTER;
|
|
st->d->channel_map[3] = FF_EBUR128_LEFT_SURROUND;
|
|
st->d->channel_map[4] = FF_EBUR128_RIGHT_SURROUND;
|
|
} else {
|
|
for (i = 0; i < st->channels; ++i) {
|
|
switch (i) {
|
|
case 0:
|
|
st->d->channel_map[i] = FF_EBUR128_LEFT;
|
|
break;
|
|
case 1:
|
|
st->d->channel_map[i] = FF_EBUR128_RIGHT;
|
|
break;
|
|
case 2:
|
|
st->d->channel_map[i] = FF_EBUR128_CENTER;
|
|
break;
|
|
case 3:
|
|
st->d->channel_map[i] = FF_EBUR128_UNUSED;
|
|
break;
|
|
case 4:
|
|
st->d->channel_map[i] = FF_EBUR128_LEFT_SURROUND;
|
|
break;
|
|
case 5:
|
|
st->d->channel_map[i] = FF_EBUR128_RIGHT_SURROUND;
|
|
break;
|
|
default:
|
|
st->d->channel_map[i] = FF_EBUR128_UNUSED;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void init_histogram(void)
|
|
{
|
|
int i;
|
|
/* initialize static constants */
|
|
histogram_energy_boundaries[0] = pow(10.0, (-70.0 + 0.691) / 10.0);
|
|
for (i = 0; i < 1000; ++i) {
|
|
histogram_energies[i] =
|
|
pow(10.0, ((double) i / 10.0 - 69.95 + 0.691) / 10.0);
|
|
}
|
|
for (i = 1; i < 1001; ++i) {
|
|
histogram_energy_boundaries[i] =
|
|
pow(10.0, ((double) i / 10.0 - 70.0 + 0.691) / 10.0);
|
|
}
|
|
}
|
|
|
|
FFEBUR128State *ff_ebur128_init(unsigned int channels,
|
|
unsigned long samplerate,
|
|
unsigned long window, int mode)
|
|
{
|
|
int errcode;
|
|
FFEBUR128State *st;
|
|
|
|
st = (FFEBUR128State *) av_malloc(sizeof(*st));
|
|
CHECK_ERROR(!st, 0, exit)
|
|
st->d = (struct FFEBUR128StateInternal *)
|
|
av_malloc(sizeof(*st->d));
|
|
CHECK_ERROR(!st->d, 0, free_state)
|
|
st->channels = channels;
|
|
errcode = ebur128_init_channel_map(st);
|
|
CHECK_ERROR(errcode, 0, free_internal)
|
|
|
|
st->d->sample_peak =
|
|
(double *) av_calloc(channels, sizeof(*st->d->sample_peak));
|
|
CHECK_ERROR(!st->d->sample_peak, 0, free_channel_map)
|
|
|
|
st->samplerate = samplerate;
|
|
st->d->samples_in_100ms = (st->samplerate + 5) / 10;
|
|
st->mode = mode;
|
|
if ((mode & FF_EBUR128_MODE_S) == FF_EBUR128_MODE_S) {
|
|
st->d->window = FFMAX(window, 3000);
|
|
} else if ((mode & FF_EBUR128_MODE_M) == FF_EBUR128_MODE_M) {
|
|
st->d->window = FFMAX(window, 400);
|
|
} else {
|
|
goto free_sample_peak;
|
|
}
|
|
st->d->audio_data_frames = st->samplerate * st->d->window / 1000;
|
|
if (st->d->audio_data_frames % st->d->samples_in_100ms) {
|
|
/* round up to multiple of samples_in_100ms */
|
|
st->d->audio_data_frames = st->d->audio_data_frames
|
|
+ st->d->samples_in_100ms
|
|
- (st->d->audio_data_frames % st->d->samples_in_100ms);
|
|
}
|
|
st->d->audio_data =
|
|
(double *) av_calloc(st->d->audio_data_frames,
|
|
st->channels * sizeof(*st->d->audio_data));
|
|
CHECK_ERROR(!st->d->audio_data, 0, free_sample_peak)
|
|
|
|
ebur128_init_filter(st);
|
|
|
|
st->d->block_energy_histogram =
|
|
av_mallocz(1000 * sizeof(*st->d->block_energy_histogram));
|
|
CHECK_ERROR(!st->d->block_energy_histogram, 0, free_audio_data)
|
|
st->d->short_term_block_energy_histogram =
|
|
av_mallocz(1000 * sizeof(*st->d->short_term_block_energy_histogram));
|
|
CHECK_ERROR(!st->d->short_term_block_energy_histogram, 0,
|
|
free_block_energy_histogram)
|
|
st->d->short_term_frame_counter = 0;
|
|
|
|
/* the first block needs 400ms of audio data */
|
|
st->d->needed_frames = st->d->samples_in_100ms * 4;
|
|
/* start at the beginning of the buffer */
|
|
st->d->audio_data_index = 0;
|
|
|
|
if (ff_thread_once(&histogram_init, &init_histogram) != 0)
|
|
goto free_short_term_block_energy_histogram;
|
|
|
|
st->d->data_ptrs = av_malloc_array(channels, sizeof(*st->d->data_ptrs));
|
|
CHECK_ERROR(!st->d->data_ptrs, 0,
|
|
free_short_term_block_energy_histogram);
|
|
|
|
return st;
|
|
|
|
free_short_term_block_energy_histogram:
|
|
av_free(st->d->short_term_block_energy_histogram);
|
|
free_block_energy_histogram:
|
|
av_free(st->d->block_energy_histogram);
|
|
free_audio_data:
|
|
av_free(st->d->audio_data);
|
|
free_sample_peak:
|
|
av_free(st->d->sample_peak);
|
|
free_channel_map:
|
|
av_free(st->d->channel_map);
|
|
free_internal:
|
|
av_free(st->d);
|
|
free_state:
|
|
av_free(st);
|
|
exit:
|
|
return NULL;
|
|
}
|
|
|
|
void ff_ebur128_destroy(FFEBUR128State ** st)
|
|
{
|
|
av_free((*st)->d->block_energy_histogram);
|
|
av_free((*st)->d->short_term_block_energy_histogram);
|
|
av_free((*st)->d->audio_data);
|
|
av_free((*st)->d->channel_map);
|
|
av_free((*st)->d->sample_peak);
|
|
av_free((*st)->d->data_ptrs);
|
|
av_free((*st)->d);
|
|
av_free(*st);
|
|
*st = NULL;
|
|
}
|
|
|
|
#define EBUR128_FILTER(type, scaling_factor) \
|
|
static void ebur128_filter_##type(FFEBUR128State* st, const type** srcs, \
|
|
size_t src_index, size_t frames, \
|
|
int stride) { \
|
|
double* audio_data = st->d->audio_data + st->d->audio_data_index; \
|
|
size_t i, c; \
|
|
\
|
|
if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) == FF_EBUR128_MODE_SAMPLE_PEAK) { \
|
|
for (c = 0; c < st->channels; ++c) { \
|
|
double max = 0.0; \
|
|
for (i = 0; i < frames; ++i) { \
|
|
type v = srcs[c][src_index + i * stride]; \
|
|
if (v > max) { \
|
|
max = v; \
|
|
} else if (-v > max) { \
|
|
max = -1.0 * v; \
|
|
} \
|
|
} \
|
|
max /= scaling_factor; \
|
|
if (max > st->d->sample_peak[c]) st->d->sample_peak[c] = max; \
|
|
} \
|
|
} \
|
|
for (c = 0; c < st->channels; ++c) { \
|
|
int ci = st->d->channel_map[c] - 1; \
|
|
if (ci < 0) continue; \
|
|
else if (ci == FF_EBUR128_DUAL_MONO - 1) ci = 0; /*dual mono */ \
|
|
for (i = 0; i < frames; ++i) { \
|
|
st->d->v[ci][0] = (double) (srcs[c][src_index + i * stride] / scaling_factor) \
|
|
- st->d->a[1] * st->d->v[ci][1] \
|
|
- st->d->a[2] * st->d->v[ci][2] \
|
|
- st->d->a[3] * st->d->v[ci][3] \
|
|
- st->d->a[4] * st->d->v[ci][4]; \
|
|
audio_data[i * st->channels + c] = \
|
|
st->d->b[0] * st->d->v[ci][0] \
|
|
+ st->d->b[1] * st->d->v[ci][1] \
|
|
+ st->d->b[2] * st->d->v[ci][2] \
|
|
+ st->d->b[3] * st->d->v[ci][3] \
|
|
+ st->d->b[4] * st->d->v[ci][4]; \
|
|
st->d->v[ci][4] = st->d->v[ci][3]; \
|
|
st->d->v[ci][3] = st->d->v[ci][2]; \
|
|
st->d->v[ci][2] = st->d->v[ci][1]; \
|
|
st->d->v[ci][1] = st->d->v[ci][0]; \
|
|
} \
|
|
st->d->v[ci][4] = fabs(st->d->v[ci][4]) < DBL_MIN ? 0.0 : st->d->v[ci][4]; \
|
|
st->d->v[ci][3] = fabs(st->d->v[ci][3]) < DBL_MIN ? 0.0 : st->d->v[ci][3]; \
|
|
st->d->v[ci][2] = fabs(st->d->v[ci][2]) < DBL_MIN ? 0.0 : st->d->v[ci][2]; \
|
|
st->d->v[ci][1] = fabs(st->d->v[ci][1]) < DBL_MIN ? 0.0 : st->d->v[ci][1]; \
|
|
} \
|
|
}
|
|
EBUR128_FILTER(double, 1.0)
|
|
|
|
static double ebur128_energy_to_loudness(double energy)
|
|
{
|
|
return 10 * log10(energy) - 0.691;
|
|
}
|
|
|
|
static size_t find_histogram_index(double energy)
|
|
{
|
|
size_t index_min = 0;
|
|
size_t index_max = 1000;
|
|
size_t index_mid;
|
|
|
|
do {
|
|
index_mid = (index_min + index_max) / 2;
|
|
if (energy >= histogram_energy_boundaries[index_mid]) {
|
|
index_min = index_mid;
|
|
} else {
|
|
index_max = index_mid;
|
|
}
|
|
} while (index_max - index_min != 1);
|
|
|
|
return index_min;
|
|
}
|
|
|
|
static void ebur128_calc_gating_block(FFEBUR128State * st,
|
|
size_t frames_per_block,
|
|
double *optional_output)
|
|
{
|
|
size_t i, c;
|
|
double sum = 0.0;
|
|
double channel_sum;
|
|
for (c = 0; c < st->channels; ++c) {
|
|
if (st->d->channel_map[c] == FF_EBUR128_UNUSED)
|
|
continue;
|
|
channel_sum = 0.0;
|
|
if (st->d->audio_data_index < frames_per_block * st->channels) {
|
|
for (i = 0; i < st->d->audio_data_index / st->channels; ++i) {
|
|
channel_sum += st->d->audio_data[i * st->channels + c] *
|
|
st->d->audio_data[i * st->channels + c];
|
|
}
|
|
for (i = st->d->audio_data_frames -
|
|
(frames_per_block -
|
|
st->d->audio_data_index / st->channels);
|
|
i < st->d->audio_data_frames; ++i) {
|
|
channel_sum += st->d->audio_data[i * st->channels + c] *
|
|
st->d->audio_data[i * st->channels + c];
|
|
}
|
|
} else {
|
|
for (i =
|
|
st->d->audio_data_index / st->channels - frames_per_block;
|
|
i < st->d->audio_data_index / st->channels; ++i) {
|
|
channel_sum +=
|
|
st->d->audio_data[i * st->channels +
|
|
c] * st->d->audio_data[i *
|
|
st->channels +
|
|
c];
|
|
}
|
|
}
|
|
if (st->d->channel_map[c] == FF_EBUR128_Mp110 ||
|
|
st->d->channel_map[c] == FF_EBUR128_Mm110 ||
|
|
st->d->channel_map[c] == FF_EBUR128_Mp060 ||
|
|
st->d->channel_map[c] == FF_EBUR128_Mm060 ||
|
|
st->d->channel_map[c] == FF_EBUR128_Mp090 ||
|
|
st->d->channel_map[c] == FF_EBUR128_Mm090) {
|
|
channel_sum *= 1.41;
|
|
} else if (st->d->channel_map[c] == FF_EBUR128_DUAL_MONO) {
|
|
channel_sum *= 2.0;
|
|
}
|
|
sum += channel_sum;
|
|
}
|
|
sum /= (double) frames_per_block;
|
|
if (optional_output) {
|
|
*optional_output = sum;
|
|
} else if (sum >= histogram_energy_boundaries[0]) {
|
|
++st->d->block_energy_histogram[find_histogram_index(sum)];
|
|
}
|
|
}
|
|
|
|
int ff_ebur128_set_channel(FFEBUR128State * st,
|
|
unsigned int channel_number, int value)
|
|
{
|
|
if (channel_number >= st->channels) {
|
|
return 1;
|
|
}
|
|
if (value == FF_EBUR128_DUAL_MONO &&
|
|
(st->channels != 1 || channel_number != 0)) {
|
|
return 1;
|
|
}
|
|
st->d->channel_map[channel_number] = value;
|
|
return 0;
|
|
}
|
|
|
|
static int ebur128_energy_shortterm(FFEBUR128State * st, double *out);
|
|
#define EBUR128_ADD_FRAMES_PLANAR(type) \
|
|
static void ebur128_add_frames_planar_##type(FFEBUR128State* st, const type** srcs, \
|
|
size_t frames, int stride) { \
|
|
size_t src_index = 0; \
|
|
while (frames > 0) { \
|
|
if (frames >= st->d->needed_frames) { \
|
|
ebur128_filter_##type(st, srcs, src_index, st->d->needed_frames, stride); \
|
|
src_index += st->d->needed_frames * stride; \
|
|
frames -= st->d->needed_frames; \
|
|
st->d->audio_data_index += st->d->needed_frames * st->channels; \
|
|
/* calculate the new gating block */ \
|
|
if ((st->mode & FF_EBUR128_MODE_I) == FF_EBUR128_MODE_I) { \
|
|
ebur128_calc_gating_block(st, st->d->samples_in_100ms * 4, NULL); \
|
|
} \
|
|
if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) { \
|
|
st->d->short_term_frame_counter += st->d->needed_frames; \
|
|
if (st->d->short_term_frame_counter == st->d->samples_in_100ms * 30) { \
|
|
double st_energy; \
|
|
ebur128_energy_shortterm(st, &st_energy); \
|
|
if (st_energy >= histogram_energy_boundaries[0]) { \
|
|
++st->d->short_term_block_energy_histogram[ \
|
|
find_histogram_index(st_energy)]; \
|
|
} \
|
|
st->d->short_term_frame_counter = st->d->samples_in_100ms * 20; \
|
|
} \
|
|
} \
|
|
/* 100ms are needed for all blocks besides the first one */ \
|
|
st->d->needed_frames = st->d->samples_in_100ms; \
|
|
/* reset audio_data_index when buffer full */ \
|
|
if (st->d->audio_data_index == st->d->audio_data_frames * st->channels) { \
|
|
st->d->audio_data_index = 0; \
|
|
} \
|
|
} else { \
|
|
ebur128_filter_##type(st, srcs, src_index, frames, stride); \
|
|
st->d->audio_data_index += frames * st->channels; \
|
|
if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) { \
|
|
st->d->short_term_frame_counter += frames; \
|
|
} \
|
|
st->d->needed_frames -= frames; \
|
|
frames = 0; \
|
|
} \
|
|
} \
|
|
}
|
|
EBUR128_ADD_FRAMES_PLANAR(double)
|
|
#define FF_EBUR128_ADD_FRAMES(type) \
|
|
void ff_ebur128_add_frames_##type(FFEBUR128State* st, const type* src, \
|
|
size_t frames) { \
|
|
int i; \
|
|
const type **buf = (const type**)st->d->data_ptrs; \
|
|
for (i = 0; i < st->channels; i++) \
|
|
buf[i] = src + i; \
|
|
ebur128_add_frames_planar_##type(st, buf, frames, st->channels); \
|
|
}
|
|
FF_EBUR128_ADD_FRAMES(double)
|
|
|
|
static int ebur128_calc_relative_threshold(FFEBUR128State **sts, size_t size,
|
|
double *relative_threshold)
|
|
{
|
|
size_t i, j;
|
|
int above_thresh_counter = 0;
|
|
*relative_threshold = 0.0;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
unsigned long *block_energy_histogram = sts[i]->d->block_energy_histogram;
|
|
for (j = 0; j < 1000; ++j) {
|
|
*relative_threshold += block_energy_histogram[j] * histogram_energies[j];
|
|
above_thresh_counter += block_energy_histogram[j];
|
|
}
|
|
}
|
|
|
|
if (above_thresh_counter != 0) {
|
|
*relative_threshold /= (double)above_thresh_counter;
|
|
*relative_threshold *= RELATIVE_GATE_FACTOR;
|
|
}
|
|
|
|
return above_thresh_counter;
|
|
}
|
|
|
|
static int ebur128_gated_loudness(FFEBUR128State ** sts, size_t size,
|
|
double *out)
|
|
{
|
|
double gated_loudness = 0.0;
|
|
double relative_threshold;
|
|
size_t above_thresh_counter;
|
|
size_t i, j, start_index;
|
|
|
|
for (i = 0; i < size; i++)
|
|
if ((sts[i]->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I)
|
|
return AVERROR(EINVAL);
|
|
|
|
if (!ebur128_calc_relative_threshold(sts, size, &relative_threshold)) {
|
|
*out = -HUGE_VAL;
|
|
return 0;
|
|
}
|
|
|
|
above_thresh_counter = 0;
|
|
if (relative_threshold < histogram_energy_boundaries[0]) {
|
|
start_index = 0;
|
|
} else {
|
|
start_index = find_histogram_index(relative_threshold);
|
|
if (relative_threshold > histogram_energies[start_index]) {
|
|
++start_index;
|
|
}
|
|
}
|
|
for (i = 0; i < size; i++) {
|
|
for (j = start_index; j < 1000; ++j) {
|
|
gated_loudness += sts[i]->d->block_energy_histogram[j] *
|
|
histogram_energies[j];
|
|
above_thresh_counter += sts[i]->d->block_energy_histogram[j];
|
|
}
|
|
}
|
|
if (!above_thresh_counter) {
|
|
*out = -HUGE_VAL;
|
|
return 0;
|
|
}
|
|
gated_loudness /= (double) above_thresh_counter;
|
|
*out = ebur128_energy_to_loudness(gated_loudness);
|
|
return 0;
|
|
}
|
|
|
|
int ff_ebur128_relative_threshold(FFEBUR128State * st, double *out)
|
|
{
|
|
double relative_threshold;
|
|
|
|
if ((st->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I)
|
|
return AVERROR(EINVAL);
|
|
|
|
if (!ebur128_calc_relative_threshold(&st, 1, &relative_threshold)) {
|
|
*out = -70.0;
|
|
return 0;
|
|
}
|
|
|
|
*out = ebur128_energy_to_loudness(relative_threshold);
|
|
return 0;
|
|
}
|
|
|
|
int ff_ebur128_loudness_global(FFEBUR128State * st, double *out)
|
|
{
|
|
return ebur128_gated_loudness(&st, 1, out);
|
|
}
|
|
|
|
static int ebur128_energy_in_interval(FFEBUR128State * st,
|
|
size_t interval_frames, double *out)
|
|
{
|
|
if (interval_frames > st->d->audio_data_frames) {
|
|
return AVERROR(EINVAL);
|
|
}
|
|
ebur128_calc_gating_block(st, interval_frames, out);
|
|
return 0;
|
|
}
|
|
|
|
static int ebur128_energy_shortterm(FFEBUR128State * st, double *out)
|
|
{
|
|
return ebur128_energy_in_interval(st, st->d->samples_in_100ms * 30,
|
|
out);
|
|
}
|
|
|
|
int ff_ebur128_loudness_shortterm(FFEBUR128State * st, double *out)
|
|
{
|
|
double energy;
|
|
int error = ebur128_energy_shortterm(st, &energy);
|
|
if (error) {
|
|
return error;
|
|
} else if (energy <= 0.0) {
|
|
*out = -HUGE_VAL;
|
|
return 0;
|
|
}
|
|
*out = ebur128_energy_to_loudness(energy);
|
|
return 0;
|
|
}
|
|
|
|
/* EBU - TECH 3342 */
|
|
int ff_ebur128_loudness_range_multiple(FFEBUR128State ** sts, size_t size,
|
|
double *out)
|
|
{
|
|
size_t i, j;
|
|
size_t stl_size;
|
|
double stl_power, stl_integrated;
|
|
/* High and low percentile energy */
|
|
double h_en, l_en;
|
|
unsigned long hist[1000] = { 0 };
|
|
size_t percentile_low, percentile_high;
|
|
size_t index;
|
|
|
|
for (i = 0; i < size; ++i) {
|
|
if (sts[i]) {
|
|
if ((sts[i]->mode & FF_EBUR128_MODE_LRA) !=
|
|
FF_EBUR128_MODE_LRA) {
|
|
return AVERROR(EINVAL);
|
|
}
|
|
}
|
|
}
|
|
|
|
stl_size = 0;
|
|
stl_power = 0.0;
|
|
for (i = 0; i < size; ++i) {
|
|
if (!sts[i])
|
|
continue;
|
|
for (j = 0; j < 1000; ++j) {
|
|
hist[j] += sts[i]->d->short_term_block_energy_histogram[j];
|
|
stl_size += sts[i]->d->short_term_block_energy_histogram[j];
|
|
stl_power += sts[i]->d->short_term_block_energy_histogram[j]
|
|
* histogram_energies[j];
|
|
}
|
|
}
|
|
if (!stl_size) {
|
|
*out = 0.0;
|
|
return 0;
|
|
}
|
|
|
|
stl_power /= stl_size;
|
|
stl_integrated = MINUS_20DB * stl_power;
|
|
|
|
if (stl_integrated < histogram_energy_boundaries[0]) {
|
|
index = 0;
|
|
} else {
|
|
index = find_histogram_index(stl_integrated);
|
|
if (stl_integrated > histogram_energies[index]) {
|
|
++index;
|
|
}
|
|
}
|
|
stl_size = 0;
|
|
for (j = index; j < 1000; ++j) {
|
|
stl_size += hist[j];
|
|
}
|
|
if (!stl_size) {
|
|
*out = 0.0;
|
|
return 0;
|
|
}
|
|
|
|
percentile_low = (size_t) ((stl_size - 1) * 0.1 + 0.5);
|
|
percentile_high = (size_t) ((stl_size - 1) * 0.95 + 0.5);
|
|
|
|
stl_size = 0;
|
|
j = index;
|
|
while (stl_size <= percentile_low) {
|
|
stl_size += hist[j++];
|
|
}
|
|
l_en = histogram_energies[j - 1];
|
|
while (stl_size <= percentile_high) {
|
|
stl_size += hist[j++];
|
|
}
|
|
h_en = histogram_energies[j - 1];
|
|
*out =
|
|
ebur128_energy_to_loudness(h_en) -
|
|
ebur128_energy_to_loudness(l_en);
|
|
return 0;
|
|
}
|
|
|
|
int ff_ebur128_loudness_range(FFEBUR128State * st, double *out)
|
|
{
|
|
return ff_ebur128_loudness_range_multiple(&st, 1, out);
|
|
}
|
|
|
|
int ff_ebur128_sample_peak(FFEBUR128State * st,
|
|
unsigned int channel_number, double *out)
|
|
{
|
|
if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) !=
|
|
FF_EBUR128_MODE_SAMPLE_PEAK) {
|
|
return AVERROR(EINVAL);
|
|
} else if (channel_number >= st->channels) {
|
|
return AVERROR(EINVAL);
|
|
}
|
|
*out = st->d->sample_peak[channel_number];
|
|
return 0;
|
|
}
|