Date: Tue, 19 Aug 2003 17:57:00 +0200

From: Stephane Marchesin
Subject: Re: [SDL] [patch] MMX alpha blit patches with MMX detection

I think everything is correct now. I've done as much testing as I could,
but some real-world testing wouldn't hurt, I think.
The patch is here : http://icps.u-strasbg.fr/~marchesin/sdl_mmxblit.patch

If you do byte-by-byte comparison of the output between C and MMX
functions, you'll notice that the results for 555 and 565 RGB alpha
blits aren't exactly the same. This is because MMX functions for 555 and
565 RGB have an higher accuracy. If you want the exact same behaviour
that's possible by masking the three lower alpha bits in the MMX
functions. Just ask !

I removed one MMX function because after I fixed it to match its C
equivalent, it revealed to be slower than the C version on a PIII
(although a bit faster on an Athlon XP).

I've also added MMX and PIII replacements for SDL_memcpy. Those provide
some speed up in testvidinfo -benchmark (at least for me, under linux &
X11).

--HG--
extra : convert_revision : svn%3Ac70aab31-4412-0410-b14c-859654838e24/trunk%40690
This commit is contained in:
Sam Lantinga 2003-08-22 05:51:19 +00:00
parent d8ae01f168
commit 3095e05ea7
6 changed files with 1981 additions and 21 deletions

View File

@ -42,6 +42,7 @@ COMMON_SRCS = \
SDL_yuv_sw.c \
SDL_yuv_sw_c.h \
SDL_yuv_mmx.c \
mmx.h \
blank_cursor.h \
default_cursor.h

View File

@ -102,6 +102,18 @@ static char rcsid =
#include "SDL_memops.h"
#include "SDL_RLEaccel_c.h"
#if defined(i386) && defined(__GNUC__) && defined(USE_ASMBLIT)
#include "mmx.h"
/* Function to check the CPU flags */
#define MMX_CPU 0x800000
#define CPU_Flags() Hermes_X86_CPU()
#define X86_ASSEMBLER
#define HermesConverterInterface void
#define HermesClearInterface void
#define STACKCALL
#include "HeadX86.h"
#endif
#ifndef MAX
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#endif
@ -125,6 +137,262 @@ do { \
#define OPAQUE_BLIT(to, from, length, bpp, alpha) \
PIXEL_COPY(to, from, length, bpp)
#if defined(i386) && defined(__GNUC__) && defined(USE_ASMBLIT)
#define ALPHA_BLIT32_888MMX(to, from, length, bpp, alpha) \
do { \
Uint32 *srcp = (Uint32 *)(from); \
Uint32 *dstp = (Uint32 *)(to); \
int i = 0x00FF00FF; \
movd_m2r(*(&i), mm3); \
punpckldq_r2r(mm3, mm3); \
i = 0xFF000000; \
movd_m2r(*(&i), mm7); \
punpckldq_r2r(mm7, mm7); \
i = alpha | alpha << 16; \
movd_m2r(*(&i), mm4); \
punpckldq_r2r(mm4, mm4); \
pcmpeqd_r2r(mm5,mm5); /* set mm5 to "1" */ \
pxor_r2r(mm7, mm5); /* make clear alpha mask */ \
i = length; \
if(i & 1) { \
movd_m2r((*srcp), mm1); /* src -> mm1 */ \
punpcklbw_r2r(mm1, mm1); \
pand_r2r(mm3, mm1); \
movd_m2r((*dstp), mm2); /* dst -> mm2 */ \
punpcklbw_r2r(mm2, mm2); \
pand_r2r(mm3, mm2); \
psubw_r2r(mm2, mm1); \
pmullw_r2r(mm4, mm1); \
psrlw_i2r(8, mm1); \
paddw_r2r(mm1, mm2); \
pand_r2r(mm3, mm2); \
packuswb_r2r(mm2, mm2); \
pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \
movd_r2m(mm2, *dstp); \
++srcp; \
++dstp; \
i--; \
} \
for(; i > 0; --i) { \
movq_m2r((*srcp), mm0); \
movq_r2r(mm0, mm1); \
punpcklbw_r2r(mm0, mm0); \
movq_m2r((*dstp), mm2); \
punpckhbw_r2r(mm1, mm1); \
movq_r2r(mm2, mm6); \
pand_r2r(mm3, mm0); \
punpcklbw_r2r(mm2, mm2); \
pand_r2r(mm3, mm1); \
punpckhbw_r2r(mm6, mm6); \
pand_r2r(mm3, mm2); \
psubw_r2r(mm2, mm0); \
pmullw_r2r(mm4, mm0); \
pand_r2r(mm3, mm6); \
psubw_r2r(mm6, mm1); \
pmullw_r2r(mm4, mm1); \
psrlw_i2r(8, mm0); \
paddw_r2r(mm0, mm2); \
psrlw_i2r(8, mm1); \
paddw_r2r(mm1, mm6); \
pand_r2r(mm3, mm2); \
pand_r2r(mm3, mm6); \
packuswb_r2r(mm2, mm2); \
packuswb_r2r(mm6, mm6); \
psrlq_i2r(32, mm2); \
psllq_i2r(32, mm6); \
por_r2r(mm6, mm2); \
pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \
movq_r2m(mm2, *dstp); \
srcp += 2; \
dstp += 2; \
i--; \
} \
emms(); \
} while(0)
#define ALPHA_BLIT16_565MMX(to, from, length, bpp, alpha) \
do { \
int i, n = 0; \
Uint16 *srcp = (Uint16 *)(from); \
Uint16 *dstp = (Uint16 *)(to); \
Uint32 ALPHA = 0xF800; \
movd_m2r(*(&ALPHA), mm1); \
punpcklwd_r2r(mm1, mm1); \
punpcklwd_r2r(mm1, mm1); \
ALPHA = 0x07E0; \
movd_m2r(*(&ALPHA), mm4); \
punpcklwd_r2r(mm4, mm4); \
punpcklwd_r2r(mm4, mm4); \
ALPHA = 0x001F; \
movd_m2r(*(&ALPHA), mm7); \
punpcklwd_r2r(mm7, mm7); \
punpcklwd_r2r(mm7, mm7); \
alpha &= ~(1+2+4); \
i = (Uint32)alpha | (Uint32)alpha << 16; \
movd_m2r(*(&i), mm0); \
punpckldq_r2r(mm0, mm0); \
ALPHA = alpha >> 3; \
i = ((int)(length) & 3); \
for(; i > 0; --i) { \
Uint32 s = *srcp++; \
Uint32 d = *dstp; \
s = (s | s << 16) & 0x07e0f81f; \
d = (d | d << 16) & 0x07e0f81f; \
d += (s - d) * ALPHA >> 5; \
d &= 0x07e0f81f; \
*dstp++ = d | d >> 16; \
n++; \
} \
i = (int)(length) - n; \
for(; i > 0; --i) { \
movq_m2r((*dstp), mm3); \
movq_m2r((*srcp), mm2); \
movq_r2r(mm2, mm5); \
pand_r2r(mm1 , mm5); \
psrlq_i2r(11, mm5); \
movq_r2r(mm3, mm6); \
pand_r2r(mm1 , mm6); \
psrlq_i2r(11, mm6); \
psubw_r2r(mm6, mm5); \
pmullw_r2r(mm0, mm5); \
psrlw_i2r(8, mm5); \
paddw_r2r(mm5, mm6); \
psllq_i2r(11, mm6); \
pand_r2r(mm1, mm6); \
movq_r2r(mm4, mm5); \
por_r2r(mm7, mm5); \
pand_r2r(mm5, mm3); \
por_r2r(mm6, mm3); \
movq_r2r(mm2, mm5); \
pand_r2r(mm4 , mm5); \
psrlq_i2r(5, mm5); \
movq_r2r(mm3, mm6); \
pand_r2r(mm4 , mm6); \
psrlq_i2r(5, mm6); \
psubw_r2r(mm6, mm5); \
pmullw_r2r(mm0, mm5); \
psrlw_i2r(8, mm5); \
paddw_r2r(mm5, mm6); \
psllq_i2r(5, mm6); \
pand_r2r(mm4, mm6); \
movq_r2r(mm1, mm5); \
por_r2r(mm7, mm5); \
pand_r2r(mm5, mm3); \
por_r2r(mm6, mm3); \
movq_r2r(mm2, mm5); \
pand_r2r(mm7 , mm5); \
movq_r2r(mm3, mm6); \
pand_r2r(mm7 , mm6); \
psubw_r2r(mm6, mm5); \
pmullw_r2r(mm0, mm5); \
psrlw_i2r(8, mm5); \
paddw_r2r(mm5, mm6); \
pand_r2r(mm7, mm6); \
movq_r2r(mm1, mm5); \
por_r2r(mm4, mm5); \
pand_r2r(mm5, mm3); \
por_r2r(mm6, mm3); \
movq_r2m(mm3, *dstp); \
srcp += 4; \
dstp += 4; \
i -= 3; \
} \
emms(); \
} while(0)
#define ALPHA_BLIT16_555MMX(to, from, length, bpp, alpha) \
do { \
int i, n = 0; \
Uint16 *srcp = (Uint16 *)(from); \
Uint16 *dstp = (Uint16 *)(to); \
Uint32 ALPHA = 0x7C00; \
movd_m2r(*(&ALPHA), mm1); \
punpcklwd_r2r(mm1, mm1); \
punpcklwd_r2r(mm1, mm1); \
ALPHA = 0x03E0; \
movd_m2r(*(&ALPHA), mm4); \
punpcklwd_r2r(mm4, mm4); \
punpcklwd_r2r(mm4, mm4); \
ALPHA = 0x001F; \
movd_m2r(*(&ALPHA), mm7); \
punpcklwd_r2r(mm7, mm7); \
punpcklwd_r2r(mm7, mm7); \
alpha &= ~(1+2+4); \
i = (Uint32)alpha | (Uint32)alpha << 16; \
movd_m2r(*(&i), mm0); \
punpckldq_r2r(mm0, mm0); \
i = ((int)(length) & 3); \
ALPHA = alpha >> 3; \
for(; i > 0; --i) { \
Uint32 s = *srcp++; \
Uint32 d = *dstp; \
s = (s | s << 16) & 0x03e07c1f; \
d = (d | d << 16) & 0x03e07c1f; \
d += (s - d) * ALPHA >> 5; \
d &= 0x03e07c1f; \
*dstp++ = d | d >> 16; \
n++; \
} \
i = (int)(length) - n; \
for(; i > 0; --i) { \
movq_m2r((*dstp), mm3); \
movq_m2r((*srcp), mm2); \
movq_r2r(mm2, mm5); \
pand_r2r(mm1 , mm5); \
psrlq_i2r(10, mm5); \
movq_r2r(mm3, mm6); \
pand_r2r(mm1 , mm6); \
psrlq_i2r(10, mm6); \
psubw_r2r(mm6, mm5); \
pmullw_r2r(mm0, mm5); \
psrlw_i2r(8, mm5); \
paddw_r2r(mm5, mm6); \
psllq_i2r(10, mm6); \
pand_r2r(mm1, mm6); \
movq_r2r(mm4, mm5); \
por_r2r(mm7, mm5); \
pand_r2r(mm5, mm3); \
por_r2r(mm6, mm3); \
movq_r2r(mm2, mm5); \
pand_r2r(mm4 , mm5); \
psrlq_i2r(5, mm5); \
movq_r2r(mm3, mm6); \
pand_r2r(mm4 , mm6); \
psrlq_i2r(5, mm6); \
psubw_r2r(mm6, mm5); \
pmullw_r2r(mm0, mm5); \
psrlw_i2r(8, mm5); \
paddw_r2r(mm5, mm6); \
psllq_i2r(5, mm6); \
pand_r2r(mm4, mm6); \
movq_r2r(mm1, mm5); \
por_r2r(mm7, mm5); \
pand_r2r(mm5, mm3); \
por_r2r(mm6, mm3); \
movq_r2r(mm2, mm5); \
pand_r2r(mm7 , mm5); \
movq_r2r(mm3, mm6); \
pand_r2r(mm7 , mm6); \
psubw_r2r(mm6, mm5); \
pmullw_r2r(mm0, mm5); \
psrlw_i2r(8, mm5); \
paddw_r2r(mm5, mm6); \
pand_r2r(mm7, mm6); \
movq_r2r(mm1, mm5); \
por_r2r(mm4, mm5); \
pand_r2r(mm5, mm3); \
por_r2r(mm6, mm3); \
movq_r2m(mm3, *dstp); \
srcp += 4; \
dstp += 4; \
i -= 3; \
} \
emms(); \
} while(0)
#endif
/*
* For 32bpp pixels on the form 0x00rrggbb:
* If we treat the middle component separately, we can process the two
@ -161,12 +429,13 @@ do { \
int i; \
Uint16 *src = (Uint16 *)(from); \
Uint16 *dst = (Uint16 *)(to); \
Uint32 ALPHA = alpha >> 3; \
for(i = 0; i < (int)(length); i++) { \
Uint32 s = *src++; \
Uint32 d = *dst; \
s = (s | s << 16) & 0x07e0f81f; \
d = (d | d << 16) & 0x07e0f81f; \
d += (s - d) * alpha >> 5; \
d += (s - d) * ALPHA >> 5; \
d &= 0x07e0f81f; \
*dst++ = d | d >> 16; \
} \
@ -177,12 +446,13 @@ do { \
int i; \
Uint16 *src = (Uint16 *)(from); \
Uint16 *dst = (Uint16 *)(to); \
Uint32 ALPHA = alpha >> 3; \
for(i = 0; i < (int)(length); i++) { \
Uint32 s = *src++; \
Uint32 d = *dst; \
s = (s | s << 16) & 0x03e07c1f; \
d = (d | d << 16) & 0x03e07c1f; \
d += (s - d) * alpha >> 5; \
d += (s - d) * ALPHA >> 5; \
d &= 0x03e07c1f; \
*dst++ = d | d >> 16; \
} \
@ -248,7 +518,48 @@ do { \
} \
} while(0)
#if defined(i386) && defined(__GNUC__) && defined(USE_ASMBLIT)
#define ALPHA_BLIT32_888_50MMX(to, from, length, bpp, alpha) \
do { \
Uint32 *srcp = (Uint32 *)(from); \
Uint32 *dstp = (Uint32 *)(to); \
int i = 0x00fefefe; \
movd_m2r(*(&i), mm4); \
punpckldq_r2r(mm4, mm4); \
i = 0x00010101; \
movd_m2r(*(&i), mm3); \
punpckldq_r2r(mm3, mm3); \
i = (int)(length); \
if( i & 1 ) { \
Uint32 s = *srcp++; \
Uint32 d = *dstp; \
*dstp++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \
+ (s & d & 0x00010101); \
i--; \
} \
for(; i > 0; --i) { \
movq_m2r((*dstp), mm2); /* dst -> mm2 */ \
movq_r2r(mm2, mm6); /* dst -> mm6 */ \
movq_m2r((*srcp), mm1); /* src -> mm1 */ \
movq_r2r(mm1, mm5); /* src -> mm5 */ \
pand_r2r(mm4, mm6); /* dst & 0x00fefefe -> mm6 */ \
pand_r2r(mm4, mm5); /* src & 0x00fefefe -> mm5 */ \
paddd_r2r(mm6, mm5); /* (dst & 0x00fefefe) + (dst & 0x00fefefe) -> mm5 */ \
psrld_i2r(1, mm5); \
pand_r2r(mm1, mm2); /* s & d -> mm2 */ \
pand_r2r(mm3, mm2); /* s & d & 0x00010101 -> mm2 */ \
paddd_r2r(mm5, mm2); \
movq_r2m(mm2, (*dstp)); \
dstp += 2; \
srcp += 2; \
i--; \
} \
emms(); \
} while(0)
#endif
/*
* Special case: 50% alpha (alpha=128)
* This is treated specially because it can be optimized very well, and
@ -320,6 +631,7 @@ do { \
#define ALPHA_BLIT16_555_50(to, from, length, bpp, alpha) \
ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xfbde)
#if defined(i386) && defined(__GNUC__) && defined(USE_ASMBLIT)
#define CHOOSE_BLIT(blitter, alpha, fmt) \
do { \
@ -345,7 +657,92 @@ do { \
if(alpha == 128) \
blitter(2, Uint8, ALPHA_BLIT16_565_50); \
else { \
alpha >>= 3; /* use 5 bit alpha */ \
if((CPU_Flags()&MMX_CPU)!=0) \
blitter(2, Uint8, ALPHA_BLIT16_565MMX); \
else \
blitter(2, Uint8, ALPHA_BLIT16_565); \
} \
} else \
goto general16; \
break; \
\
case 0x7fff: \
if(fmt->Gmask == 0x03e0 \
|| fmt->Rmask == 0x03e0 \
|| fmt->Bmask == 0x03e0) { \
if(alpha == 128) \
blitter(2, Uint8, ALPHA_BLIT16_555_50); \
else { \
if((CPU_Flags()&MMX_CPU)!=0) \
blitter(2, Uint8, ALPHA_BLIT16_555MMX); \
else \
blitter(2, Uint8, ALPHA_BLIT16_555); \
} \
break; \
} \
/* fallthrough */ \
\
default: \
general16: \
blitter(2, Uint8, ALPHA_BLIT_ANY); \
} \
break; \
\
case 3: \
blitter(3, Uint8, ALPHA_BLIT_ANY); \
break; \
\
case 4: \
if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \
&& (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \
|| fmt->Bmask == 0xff00)) { \
if(alpha == 128) \
{ \
if((CPU_Flags()&MMX_CPU)!=0) \
blitter(4, Uint16, ALPHA_BLIT32_888_50MMX);\
else \
blitter(4, Uint16, ALPHA_BLIT32_888_50);\
} \
else \
{ \
if((CPU_Flags()&MMX_CPU)!=0) \
blitter(4, Uint16, ALPHA_BLIT32_888MMX);\
else \
blitter(4, Uint16, ALPHA_BLIT32_888); \
} \
} else \
blitter(4, Uint16, ALPHA_BLIT_ANY); \
break; \
} \
} \
} while(0)
#else
#define CHOOSE_BLIT(blitter, alpha, fmt) \
do { \
if(alpha == 255) { \
switch(fmt->BytesPerPixel) { \
case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \
case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \
case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \
case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \
} \
} else { \
switch(fmt->BytesPerPixel) { \
case 1: \
/* No 8bpp alpha blitting */ \
break; \
\
case 2: \
switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \
case 0xffff: \
if(fmt->Gmask == 0x07e0 \
|| fmt->Rmask == 0x07e0 \
|| fmt->Bmask == 0x07e0) { \
if(alpha == 128) \
blitter(2, Uint8, ALPHA_BLIT16_565_50); \
else { \
blitter(2, Uint8, ALPHA_BLIT16_565); \
} \
} else \
@ -359,7 +756,6 @@ do { \
if(alpha == 128) \
blitter(2, Uint8, ALPHA_BLIT16_555_50); \
else { \
alpha >>= 3; /* use 5 bit alpha */ \
blitter(2, Uint8, ALPHA_BLIT16_555); \
} \
break; \
@ -391,6 +787,7 @@ do { \
} \
} while(0)
#endif
/*
* This takes care of the case when the surface is clipped on the left and/or

View File

@ -37,6 +37,19 @@ static char rcsid =
#include "SDL_pixels_c.h"
#include "SDL_memops.h"
#if defined(i386) && defined(__GNUC__) && defined(USE_ASMBLIT)
#include "mmx.h"
/* Function to check the CPU flags */
#define MMX_CPU 0x800000
#define SSE_CPU 0x2000000
#define CPU_Flags() Hermes_X86_CPU()
#define X86_ASSEMBLER
#define HermesConverterInterface void
#define HermesClearInterface void
#define STACKCALL
#include "HeadX86.h"
#endif
/* The general purpose software blit routine */
static int SDL_SoftBlit(SDL_Surface *src, SDL_Rect *srcrect,
SDL_Surface *dst, SDL_Rect *dstrect)
@ -106,11 +119,54 @@ static int SDL_SoftBlit(SDL_Surface *src, SDL_Rect *srcrect,
return(okay ? 0 : -1);
}
#if defined(i386) && defined(__GNUC__) && defined(USE_ASMBLIT)
void SDL_memcpyMMX(char* to,char* from,int len)
{
int i;
for(i=0; i<len/8; i++) {
__asm__ __volatile__ (
" movq (%0), %%mm0\n"
" movq %%mm0, (%1)\n"
: : "r" (from), "r" (to) : "memory");
from+=8;
to+=8;
}
if (len&7)
SDL_memcpy(to, from, len&7);
}
void SDL_memcpySSE(char* to,char* from,int len)
{
int i;
__asm__ __volatile__ (
" prefetchnta (%0)\n"
" prefetchnta 64(%0)\n"
" prefetchnta 128(%0)\n"
" prefetchnta 192(%0)\n"
: : "r" (from) );
for(i=0; i<len/8; i++) {
__asm__ __volatile__ (
" prefetchnta 256(%0)\n"
" movq (%0), %%mm0\n"
" movntq %%mm0, (%1)\n"
: : "r" (from), "r" (to) : "memory");
from+=8;
to+=8;
}
if (len&7)
SDL_memcpy(to, from, len&7);
}
#endif
static void SDL_BlitCopy(SDL_BlitInfo *info)
{
Uint8 *src, *dst;
int w, h;
int srcskip, dstskip;
Uint32 f;
w = info->d_width*info->dst->BytesPerPixel;
h = info->d_height;
@ -118,6 +174,33 @@ static void SDL_BlitCopy(SDL_BlitInfo *info)
dst = info->d_pixels;
srcskip = w+info->s_skip;
dstskip = w+info->d_skip;
#if defined(i386) && defined(__GNUC__) && defined(USE_ASMBLIT)
f=CPU_Flags();
if((f&(MMX_CPU|SSE_CPU))==(MMX_CPU|SSE_CPU))
{
while ( h-- ) {
SDL_memcpySSE(dst, src, w);
src += srcskip;
dst += dstskip;
}
__asm__ __volatile__ (
" emms\n"
::);
}
else
if((f&(MMX_CPU))!=0)
{
while ( h-- ) {
SDL_memcpyMMX(dst, src, w);
src += srcskip;
dst += dstskip;
}
__asm__ __volatile__ (
" emms\n"
::);
}
else
#endif
while ( h-- ) {
SDL_memcpy(dst, src, w);
src += srcskip;

View File

@ -410,12 +410,86 @@ do { \
} \
}
/* 2 - times unrolled loop */
#define DUFFS_LOOP_DOUBLE2(pixel_copy_increment, \
double_pixel_copy_increment, width) \
{ int n, w = width; \
if( w & 1 ) { \
pixel_copy_increment; \
w--; \
} \
if ( w > 0 ) { \
n = ( w + 2) / 4; \
switch( w & 2 ) { \
case 0: do { double_pixel_copy_increment; \
case 2: double_pixel_copy_increment; \
} while ( --n > 0 ); \
} \
} \
}
/* 2 - times unrolled loop 4 pixels */
#define DUFFS_LOOP_QUATRO2(pixel_copy_increment, \
double_pixel_copy_increment, \
quatro_pixel_copy_increment, width) \
{ int n, w = width; \
if(w & 1) { \
pixel_copy_increment; \
w--; \
} \
if(w & 2) { \
double_pixel_copy_increment; \
w -= 2; \
} \
if ( w > 0 ) { \
n = ( w + 7 ) / 8; \
switch( w & 4 ) { \
case 0: do { quatro_pixel_copy_increment; \
case 4: quatro_pixel_copy_increment; \
} while ( --n > 0 ); \
} \
} \
}
/* Use the 8-times version of the loop by default */
#define DUFFS_LOOP(pixel_copy_increment, width) \
DUFFS_LOOP8(pixel_copy_increment, width)
#else
/* Don't use Duff's device to unroll loops */
#define DUFFS_LOOP_DOUBLE2(pixel_copy_increment, \
double_pixel_copy_increment, width) \
{ int n = width; \
if( n & 1 ) { \
pixel_copy_increment; \
n--; \
} \
n=n>>1; \
for(; n > 0; --n) { \
double_pixel_copy_increment; \
} \
}
/* Don't use Duff's device to unroll loops */
#define DUFFS_LOOP_QUATRO2(pixel_copy_increment, \
double_pixel_copy_increment, \
quatro_pixel_copy_increment, width) \
{ int n = width; \
if(n & 1) { \
pixel_copy_increment; \
n--; \
} \
if(n & 2) { \
double_pixel_copy_increment; \
n -= 2; \
} \
n=n>>2; \
for(; n > 0; --n) { \
quatro_pixel_copy_increment; \
} \
}
/* Don't use Duff's device to unroll loops */
#define DUFFS_LOOP(pixel_copy_increment, width) \
{ int n; \

View File

@ -31,6 +31,19 @@ static char rcsid =
#include "SDL_video.h"
#include "SDL_blit.h"
#if defined(i386) && defined(__GNUC__) && defined(USE_ASMBLIT)
#include "mmx.h"
/* Function to check the CPU flags */
#define MMX_CPU 0x800000
#define TDNOW_CPU 0x80000000
#define CPU_Flags() Hermes_X86_CPU()
#define X86_ASSEMBLER
#define HermesConverterInterface void
#define HermesClearInterface void
#define STACKCALL
#include "HeadX86.h"
#endif
/* Functions to perform alpha blended blitting */
/* N->1 blending with per-surface alpha */
@ -195,6 +208,222 @@ static void BlitNto1SurfaceAlphaKey(SDL_BlitInfo *info)
}
}
#if defined(i386) && defined(__GNUC__) && defined(USE_ASMBLIT)
/* fast RGB888->(A)RGB888 blending with surface alpha=128 special case */
static void BlitRGBtoRGBSurfaceAlpha128MMX(SDL_BlitInfo *info)
{
int width = info->d_width;
int height = info->d_height;
Uint32 *srcp = (Uint32 *)info->s_pixels;
int srcskip = info->s_skip >> 2;
Uint32 *dstp = (Uint32 *)info->d_pixels;
int dstskip = info->d_skip >> 2;
Uint8 load[8];
*(Uint64 *)load = 0x00fefefe00fefefe;/* alpha128 mask */
movq_m2r(*load, mm4); /* alpha128 mask -> mm4 */
*(Uint64 *)load = 0x0001010100010101;/* !alpha128 mask */
movq_m2r(*load, mm3); /* !alpha128 mask -> mm3 */
*(Uint64 *)load = 0xFF000000FF000000;/* dst alpha mask */
movq_m2r(*load, mm7); /* dst alpha mask -> mm7 */
while(height--) {
DUFFS_LOOP_DOUBLE2(
{
Uint32 s = *srcp++;
Uint32 d = *dstp;
*dstp++ = ((((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1)
+ (s & d & 0x00010101)) | 0xff000000;
},{
movq_m2r((*dstp), mm2);/* 2 x dst -> mm2(ARGBARGB) */
movq_r2r(mm2, mm6); /* 2 x dst -> mm6(ARGBARGB) */
movq_m2r((*srcp), mm1);/* 2 x src -> mm1(ARGBARGB) */
movq_r2r(mm1, mm5); /* 2 x src -> mm5(ARGBARGB) */
pand_r2r(mm4, mm6); /* dst & mask -> mm6 */
pand_r2r(mm4, mm5); /* src & mask -> mm5 */
paddd_r2r(mm6, mm5); /* mm6 + mm5 -> mm5 */
psrld_i2r(1, mm5); /* mm5 >> 1 -> mm5 */
pand_r2r(mm1, mm2); /* src & dst -> mm2 */
pand_r2r(mm3, mm2); /* mm2 & !mask -> mm2 */
paddd_r2r(mm5, mm2); /* mm5 + mm2 -> mm2 */
por_r2r(mm7, mm2); /* mm7(full alpha) | mm2 -> mm2 */
movq_r2m(mm2, (*dstp));/* mm2 -> 2 x dst pixels */
dstp += 2;
srcp += 2;
}, width);
srcp += srcskip;
dstp += dstskip;
}
emms();
}
/* fast RGB888->(A)RGB888 blending with surface alpha */
static void BlitRGBtoRGBSurfaceAlphaMMX(SDL_BlitInfo *info)
{
unsigned alpha = info->src->alpha;
if(alpha == 128) {
BlitRGBtoRGBSurfaceAlpha128MMX(info);
} else {
int width = info->d_width;
int height = info->d_height;
Uint32 *srcp = (Uint32 *)info->s_pixels;
int srcskip = info->s_skip >> 2;
Uint32 *dstp = (Uint32 *)info->d_pixels;
int dstskip = info->d_skip >> 2;
Uint8 load[8] = {alpha, alpha, alpha, alpha,
alpha, alpha, alpha, alpha};
movq_m2r(*load, mm4); /* alpha -> mm4 */
*(Uint64 *)load = 0x00FF00FF00FF00FF;
movq_m2r(*load, mm3); /* mask -> mm3 */
pand_r2r(mm3, mm4); /* mm4 & mask -> 0A0A0A0A -> mm4 */
*(Uint64 *)load = 0xFF000000FF000000;/* dst alpha mask */
movq_m2r(*load, mm7); /* dst alpha mask -> mm7 */
while(height--) {
DUFFS_LOOP_DOUBLE2({
/* One Pixel Blend */
movd_m2r((*srcp), mm1);/* src(ARGB) -> mm1 (0000ARGB)*/
punpcklbw_r2r(mm1, mm1); /* AARRGGBB -> mm1 */
pand_r2r(mm3, mm1); /* 0A0R0G0B -> mm1 */
movd_m2r((*dstp), mm2);/* dst(ARGB) -> mm2 (0000ARGB)*/
movq_r2r(mm2, mm6);/* dst(ARGB) -> mm6 (0000ARGB)*/
punpcklbw_r2r(mm2, mm2); /* AARRGGBB -> mm2 */
pand_r2r(mm3, mm2); /* 0A0R0G0B -> mm2 */
psubw_r2r(mm2, mm1);/* src - dst -> mm1 */
pmullw_r2r(mm4, mm1); /* mm1 * alpha -> mm1 */
psrlw_i2r(8, mm1); /* mm1 >> 8 -> mm1 */
paddw_r2r(mm1, mm2); /* mm1 + mm2(dst) -> mm2 */
pand_r2r(mm3, mm2); /* 0A0R0G0B -> mm2 */
packuswb_r2r(mm2, mm2); /* ARGBARGB -> mm2 */
por_r2r(mm7, mm2); /* mm7(full alpha) | mm2 -> mm2 */
movd_r2m(mm2, *dstp);/* mm2 -> pixel */
++srcp;
++dstp;
},{
/* Two Pixels Blend */
movq_m2r((*srcp), mm0);/* 2 x src -> mm0(ARGBARGB)*/
movq_r2r(mm0, mm1); /* 2 x src -> mm1(ARGBARGB) */
punpcklbw_r2r(mm0, mm0); /* low - AARRGGBB -> mm0 */
pand_r2r(mm3, mm0); /* 0A0R0G0B -> mm0(src1) */
punpckhbw_r2r(mm1, mm1); /* high - AARRGGBB -> mm1 */
pand_r2r(mm3, mm1); /* 0A0R0G0B -> mm1(src2) */
movq_m2r((*dstp), mm2);/* 2 x dst -> mm2(ARGBARGB) */
movq_r2r(mm2, mm5); /* 2 x dst -> mm5(ARGBARGB) */
movq_r2r(mm2, mm6); /* 2 x dst -> mm6(ARGBARGB) */
punpcklbw_r2r(mm2, mm2); /* low - AARRGGBB -> mm2 */
punpckhbw_r2r(mm6, mm6); /* high - AARRGGBB -> mm6 */
pand_r2r(mm3, mm2); /* 0A0R0G0B -> mm2(dst1) */
psubw_r2r(mm2, mm0);/* src1 - dst1 -> mm0 */
pmullw_r2r(mm4, mm0); /* mm0 * alpha -> mm0 */
pand_r2r(mm3, mm6); /* 0A0R0G0B -> mm6(dst2) */
psrlw_i2r(8, mm0); /* mm0 >> 8 -> mm1 */
psubw_r2r(mm6, mm1);/* src2 - dst2 -> mm1 */
pmullw_r2r(mm4, mm1); /* mm1 * alpha -> mm1 */
paddw_r2r(mm0, mm2); /* mm0 + mm2(dst1) -> mm2 */
psrlw_i2r(8, mm1); /* mm1 >> 8 -> mm0 */
pand_r2r(mm3, mm2); /* 0A0R0G0B -> mm2 */
paddw_r2r(mm1, mm6); /* mm1 + mm6(dst2) -> mm6 */
pand_r2r(mm3, mm6); /* 0A0R0G0B -> mm6 */
packuswb_r2r(mm2, mm2); /* ARGBARGB -> mm2 */
packuswb_r2r(mm6, mm6); /* ARGBARGB -> mm6 */
psrlq_i2r(32, mm2); /* mm2 >> 32 -> mm2 */
psllq_i2r(32, mm6); /* mm6 << 32 -> mm6 */
por_r2r(mm6, mm2); /* mm6 | mm2 -> mm2 */
por_r2r(mm7, mm2); /* mm7(full alpha) | mm2 -> mm2 */
movq_r2m(mm2, *dstp);/* mm2 -> 2 x pixel */
srcp += 2;
dstp += 2;
}, width);
srcp += srcskip;
dstp += dstskip;
}
emms();
}
}
/* fast ARGB888->(A)RGB888 blending with pixel alpha */
static void BlitRGBtoRGBPixelAlphaMMX(SDL_BlitInfo *info)
{
int width = info->d_width;
int height = info->d_height;
Uint32 *srcp = (Uint32 *)info->s_pixels;
int srcskip = info->s_skip >> 2;
Uint32 *dstp = (Uint32 *)info->d_pixels;
int dstskip = info->d_skip >> 2;
Uint32 alpha = 0;
Uint8 load[8];
*(Uint64 *)load = 0x00FF00FF00FF00FF;
movq_m2r(*load, mm3); /* mask -> mm2 */
*(Uint64 *)load = 0x00FF000000000000;
movq_m2r(*load, mm7); /* dst alpha mask -> mm2 */
*(Uint64 *)load = 0x00FFFFFF00FFFFFF;
movq_m2r(*load, mm0); /* alpha 255 mask -> mm0 */
*(Uint64 *)load = 0xFF000000FF000000;
movq_m2r(*load, mm6); /* alpha 255 !mask -> mm6 */
while(height--) {
DUFFS_LOOP4({
alpha = *srcp;
alpha >>= 24;
/* FIXME: Here we special-case opaque alpha since the
compositioning used (>>8 instead of /255) doesn't handle
it correctly. Also special-case alpha=0 for speed?
Benchmark this! */
if(alpha) {
if(alpha == SDL_ALPHA_OPAQUE) {
movd_m2r((*srcp), mm1);/* src(ARGB) -> mm1 (0000ARGB)*/
movd_m2r((*dstp), mm2);/* dst(ARGB) -> mm2 (0000ARGB)*/
pand_r2r(mm0, mm1);
pand_r2r(mm6, mm2);
por_r2r(mm1, mm2);
movd_r2m(mm2, (*dstp));
} else {
movd_m2r((*srcp), mm1);/* src(ARGB) -> mm1 (0000ARGB)*/
punpcklbw_r2r(mm1, mm1); /* AARRGGBB -> mm1 */
pand_r2r(mm3, mm1); /* 0A0R0G0B -> mm1 */
movd_m2r((*dstp), mm2);/* dst(ARGB) -> mm2 (0000ARGB)*/
punpcklbw_r2r(mm2, mm2); /* AARRGGBB -> mm2 */
pand_r2r(mm3, mm2); /* 0A0R0G0B -> mm2 */
movq_r2r(mm2, mm5);/* mm2(0A0R0G0B) -> mm5 */
pand_r2r(mm7, mm5); /* mm5 & dst alpha mask -> mm5(0A000000) */
psrlq_i2r(24, mm5); /* mm5 >> 24 -> mm5 (0000A000)*/
movq_r2r(mm1, mm4);/* mm1(0A0R0G0B) -> mm4 */
psrlq_i2r(48, mm4); /* mm4 >> 48 -> mm4(0000000A) */
punpcklwd_r2r(mm4, mm4); /* 00000A0A -> mm4 */
punpcklwd_r2r(mm4, mm4); /* 0A0A0A0A -> mm4 */
/* blend */
psubw_r2r(mm2, mm1);/* src - dst -> mm1 */
pmullw_r2r(mm4, mm1); /* mm1 * alpha -> mm1 */
psrlw_i2r(8, mm1); /* mm1 >> 8 -> mm1 */
paddw_r2r(mm1, mm2); /* mm1 + mm2(dst) -> mm2 */
pand_r2r(mm3, mm2); /* 0A0R0G0B -> mm2 */
packuswb_r2r(mm2, mm2); /* ARGBARGB -> mm2 */
pand_r2r(mm0, mm2); /* 0RGB0RGB -> mm2 */
por_r2r(mm5, mm2); /* dst alpha | mm2 -> mm2 */
movd_r2m(mm2, *dstp);/* mm2 -> dst */
}
}
++srcp;
++dstp;
}, width);
srcp += srcskip;
dstp += dstskip;
}
emms();
}
#endif
/* fast RGB888->(A)RGB888 blending with surface alpha=128 special case */
static void BlitRGBtoRGBSurfaceAlpha128(SDL_BlitInfo *info)
{
@ -230,13 +459,14 @@ static void BlitRGBtoRGBSurfaceAlpha(SDL_BlitInfo *info)
int srcskip = info->s_skip >> 2;
Uint32 *dstp = (Uint32 *)info->d_pixels;
int dstskip = info->d_skip >> 2;
Uint32 s;
Uint32 d;
Uint32 s1;
Uint32 d1;
while(height--) {
DUFFS_LOOP4({
Uint32 s;
Uint32 d;
Uint32 s1;
Uint32 d1;
DUFFS_LOOP_DOUBLE2({
/* One Pixel Blend */
s = *srcp;
d = *dstp;
s1 = s & 0xff00ff;
@ -249,6 +479,35 @@ static void BlitRGBtoRGBSurfaceAlpha(SDL_BlitInfo *info)
*dstp = d1 | d | 0xff000000;
++srcp;
++dstp;
},{
/* Two Pixels Blend */
s = *srcp;
d = *dstp;
s1 = s & 0xff00ff;
d1 = d & 0xff00ff;
d1 += (s1 - d1) * alpha >> 8;
d1 &= 0xff00ff;
s = ((s & 0xff00) >> 8) |
((srcp[1] & 0xff00) << 8);
d = ((d & 0xff00) >> 8) |
((dstp[1] & 0xff00) << 8);
d += (s - d) * alpha >> 8;
d &= 0x00ff00ff;
*dstp++ = d1 | ((d << 8) & 0xff00) | 0xff000000;
++srcp;
s1 = *srcp;
d1 = *dstp;
s1 &= 0xff00ff;
d1 &= 0xff00ff;
d1 += (s1 - d1) * alpha >> 8;
d1 &= 0xff00ff;
*dstp = d1 | ((d >> 8) & 0xff00) | 0xff000000;
++srcp;
++dstp;
}, width);
srcp += srcskip;
dstp += dstskip;
@ -278,9 +537,10 @@ static void BlitRGBtoRGBPixelAlpha(SDL_BlitInfo *info)
compositioning used (>>8 instead of /255) doesn't handle
it correctly. Also special-case alpha=0 for speed?
Benchmark this! */
if(alpha == SDL_ALPHA_OPAQUE) {
if(alpha) {
if(alpha == SDL_ALPHA_OPAQUE) {
*dstp = (s & 0x00ffffff) | (*dstp & 0xff000000);
} else {
} else {
/*
* take out the middle component (green), and process
* the other two in parallel. One multiply less.
@ -294,6 +554,7 @@ static void BlitRGBtoRGBPixelAlpha(SDL_BlitInfo *info)
d &= 0xff00;
d = (d + ((s - d) * alpha >> 8)) & 0xff00;
*dstp = d1 | d | dalpha;
}
}
++srcp;
++dstp;
@ -303,6 +564,101 @@ static void BlitRGBtoRGBPixelAlpha(SDL_BlitInfo *info)
}
}
#if defined(i386) && defined(__GNUC__) && defined(USE_ASMBLIT)
/* fast (as in MMX with prefetch) ARGB888->(A)RGB888 blending with pixel alpha */
inline static void BlitRGBtoRGBPixelAlphaMMX3DNOW(SDL_BlitInfo *info)
{
int width = info->d_width;
int height = info->d_height;
Uint32 *srcp = (Uint32 *)info->s_pixels;
int srcskip = info->s_skip >> 2;
Uint32 *dstp = (Uint32 *)info->d_pixels;
int dstskip = info->d_skip >> 2;
Uint32 s;
Uint32 alpha;
__asm__ (
/* make mm6 all zeros. */
"pxor %%mm6, %%mm6\n"
/* Make a mask to preserve the alpha. */
"pcmpeqb %%mm7, %%mm7\n\t" /* mm7(s) = FF FF FF FF | FF FF FF FF */
"psrlq $16, %%mm7\n\t" /* mm7(s) = 00 00 FF FF | FF FF FF FF */
: );
while(height--) {
DUFFS_LOOP4({
__asm__ (
"prefetch 64(%0)\n"
"prefetch 64(%1)\n"
: : "r" (srcp), "r" (dstp) );
s = *srcp;
alpha = s >> 24;
/* FIXME: Here we special-case opaque alpha since the
compositioning used (>>8 instead of /255) doesn't handle
it correctly. Also special-case alpha=0 for speed?
Benchmark this! */
if(alpha == SDL_ALPHA_OPAQUE) {
*dstp = (s & 0x00ffffff) | (*dstp & 0xff000000);
}
else {
__asm__ (
/* load in the source, and dst. */
"movd (%0), %%mm0\n" /* mm0(s) = 0 0 0 0 | As Rs Gs Bs */
"movd (%1), %%mm1\n" /* mm1(d) = 0 0 0 0 | Ad Rd Gd Bd */
/* Move the src alpha into mm2 */
/* if supporting pshufw */
/*"pshufw $0x55, %%mm0, %%mm2\n" */ /* mm2 = 0 As 0 As | 0 As 0 As */
/*"psrlw $8, %%mm2\n" */
/* else: */
"movq %%mm0, %%mm2\n"
"psrld $24, %%mm2\n" /* mm2 = 0 0 0 0 | 0 0 0 As */
"punpcklwd %%mm2, %%mm2\n" /* mm2 = 0 0 0 0 | 0 As 0 As */
"punpckldq %%mm2, %%mm2\n" /* mm2 = 0 As 0 As | 0 As 0 As */
/* move the colors into words. */
"punpcklbw %%mm6, %%mm0\n" /* mm0 = 0 As 0 Rs | 0 Gs 0 Bs */
"punpcklbw %%mm6, %%mm1\n" /* mm0 = 0 Ad 0 Rd | 0 Gd 0 Bd */
/* src - dst */
"psubw %%mm1, %%mm0\n" /* mm0 = As-Ad Rs-Rd | Gs-Gd Bs-Bd */
/* A * (src-dst) */
"pmullw %%mm2, %%mm0\n" /* mm0 = As*As-d As*Rs-d | As*Gs-d As*Bs-d */
"pand %%mm7, %%mm0\n" /* to preserve dest alpha */
"psrlw $8, %%mm0\n" /* mm0 = Ac>>8 Rc>>8 | Gc>>8 Bc>>8 */
"paddb %%mm1, %%mm0\n" /* mm0 = Ac+Ad Rc+Rd | Gc+Gd Bc+Bd */
"packuswb %%mm0, %%mm0\n" /* mm0 = | Ac Rc Gc Bc */
"movd %%mm0, (%1)\n" /* result in mm0 */
: : "r" (srcp), "r" (dstp) );
}
++srcp;
++dstp;
}, width);
srcp += srcskip;
dstp += dstskip;
}
__asm__ (
"emms\n"
: );
}
#endif
/* 16bpp special case for per-surface alpha=50%: blend 2 pixels in parallel */
/* blend a single 16 bit pixel at 50% */
@ -410,6 +766,308 @@ static void Blit16to16SurfaceAlpha128(SDL_BlitInfo *info, Uint16 mask)
}
}
#if defined(i386) && defined(__GNUC__) && defined(USE_ASMBLIT)
/* fast RGB565->RGB565 blending with surface alpha */
static void Blit565to565SurfaceAlphaMMX(SDL_BlitInfo *info)
{
unsigned alpha = info->src->alpha; /* downscale alpha to 5 bits */
if(alpha == 128) {
Blit16to16SurfaceAlpha128(info, 0xf7de);
} else {
int width = info->d_width;
int height = info->d_height;
Uint16 *srcp = (Uint16 *)info->s_pixels;
int srcskip = info->s_skip >> 1;
Uint16 *dstp = (Uint16 *)info->d_pixels;
int dstskip = info->d_skip >> 1;
Uint32 s, d;
Uint8 load[8];
alpha &= ~(1+2+4); /* cut alpha to get the exact same behaviour */
*(Uint64 *)load = alpha;
alpha >>= 3; /* downscale alpha to 5 bits */
movq_m2r(*load, mm0); /* alpha(0000000A) -> mm0 */
punpcklwd_r2r(mm0, mm0); /* 00000A0A -> mm0 */
punpcklwd_r2r(mm0, mm0); /* 0A0A0A0A -> mm0 */
/* Setup the 565 color channel masks */
*(Uint64 *)load = 0xF800F800F800F800;
movq_m2r(*load, mm1); /* MASKRED -> mm1 */
*(Uint64 *)load = 0x07E007E007E007E0;
movq_m2r(*load, mm4); /* MASKGREEN -> mm4 */
*(Uint64 *)load = 0x001F001F001F001F;
movq_m2r(*load, mm7); /* MASKBLUE -> mm7 */
while(height--) {
DUFFS_LOOP_QUATRO2(
{
s = *srcp++;
d = *dstp;
/*
* shift out the middle component (green) to
* the high 16 bits, and process all three RGB
* components at the same time.
*/
s = (s | s << 16) & 0x07e0f81f;
d = (d | d << 16) & 0x07e0f81f;
d += (s - d) * alpha >> 5;
d &= 0x07e0f81f;
*dstp++ = d | d >> 16;
},{
s = *srcp++;
d = *dstp;
/*
* shift out the middle component (green) to
* the high 16 bits, and process all three RGB
* components at the same time.
*/
s = (s | s << 16) & 0x07e0f81f;
d = (d | d << 16) & 0x07e0f81f;
d += (s - d) * alpha >> 5;
d &= 0x07e0f81f;
*dstp++ = d | d >> 16;
s = *srcp++;
d = *dstp;
/*
* shift out the middle component (green) to
* the high 16 bits, and process all three RGB
* components at the same time.
*/
s = (s | s << 16) & 0x07e0f81f;
d = (d | d << 16) & 0x07e0f81f;
d += (s - d) * alpha >> 5;
d &= 0x07e0f81f;
*dstp++ = d | d >> 16;
},{
movq_m2r((*dstp), mm3);/* 4 dst pixels -> mm3 */
movq_m2r((*srcp), mm2);/* 4 src pixels -> mm2 */
/* RED */
movq_r2r(mm2, mm5); /* src -> mm5 */
pand_r2r(mm1 , mm5); /* src & MASKRED -> mm5 */
psrlq_i2r(11, mm5); /* mm5 >> 11 -> mm5 [000r 000r 000r 000r] */
movq_r2r(mm3, mm6); /* dst -> mm6 */
pand_r2r(mm1 , mm6); /* dst & MASKRED -> mm6 */
psrlq_i2r(11, mm6); /* mm6 >> 11 -> mm6 [000r 000r 000r 000r] */
/* blend */
psubw_r2r(mm6, mm5);/* src - dst -> mm5 */
pmullw_r2r(mm0, mm5); /* mm5 * alpha -> mm5 */
psrlw_i2r(8, mm5); /* mm5 >> 8 -> mm5 */
paddw_r2r(mm5, mm6); /* mm5 + mm6(dst) -> mm6 */
psllq_i2r(11, mm6); /* mm6 << 11 -> mm6 */
pand_r2r(mm1, mm6); /* mm6 & MASKRED -> mm6 */
movq_r2r(mm4, mm5); /* MASKGREEN -> mm5 */
por_r2r(mm7, mm5); /* MASKBLUE | mm5 -> mm5 */
pand_r2r(mm5, mm3); /* mm3 & mm5(!MASKRED) -> mm3 */
por_r2r(mm6, mm3); /* save new reds in dsts */
/* green */
movq_r2r(mm2, mm5); /* src -> mm5 */
pand_r2r(mm4 , mm5); /* src & MASKGREEN -> mm5 */
psrlq_i2r(5, mm5); /* mm5 >> 5 -> mm5 [000g 000g 000g 000g] */
movq_r2r(mm3, mm6); /* dst -> mm6 */
pand_r2r(mm4 , mm6); /* dst & MASKGREEN -> mm6 */
psrlq_i2r(5, mm6); /* mm6 >> 5 -> mm6 [000g 000g 000g 000g] */
/* blend */
psubw_r2r(mm6, mm5);/* src - dst -> mm5 */
pmullw_r2r(mm0, mm5); /* mm5 * alpha -> mm5 */
psrlw_i2r(8, mm5); /* mm5 >> 8 -> mm5 */
paddw_r2r(mm5, mm6); /* mm5 + mm6(dst) -> mm6 */
psllq_i2r(5, mm6); /* mm6 << 5 -> mm6 */
pand_r2r(mm4, mm6); /* mm6 & MASKGREEN -> mm6 */
movq_r2r(mm1, mm5); /* MASKRED -> mm5 */
por_r2r(mm7, mm5); /* MASKBLUE | mm5 -> mm5 */
pand_r2r(mm5, mm3); /* mm3 & mm5(!MASKGREEN) -> mm3 */
por_r2r(mm6, mm3); /* save new greens in dsts */
/* blue */
movq_r2r(mm2, mm5); /* src -> mm5 */
pand_r2r(mm7 , mm5); /* src & MASKRED -> mm5[000b 000b 000b 000b] */
movq_r2r(mm3, mm6); /* dst -> mm6 */
pand_r2r(mm7 , mm6); /* dst & MASKBLUE -> mm6[000b 000b 000b 000b] */
/* blend */
psubw_r2r(mm6, mm5);/* src - dst -> mm5 */
pmullw_r2r(mm0, mm5); /* mm5 * alpha -> mm5 */
psrlw_i2r(8, mm5); /* mm5 >> 8 -> mm5 */
paddw_r2r(mm5, mm6); /* mm5 + mm6(dst) -> mm6 */
pand_r2r(mm7, mm6); /* mm6 & MASKBLUE -> mm6 */
movq_r2r(mm1, mm5); /* MASKRED -> mm5 */
por_r2r(mm4, mm5); /* MASKGREEN | mm5 -> mm5 */
pand_r2r(mm5, mm3); /* mm3 & mm5(!MASKBLUE) -> mm3 */
por_r2r(mm6, mm3); /* save new blues in dsts */
movq_r2m(mm3, *dstp);/* mm3 -> 4 dst pixels */
srcp += 4;
dstp += 4;
}, width);
srcp += srcskip;
dstp += dstskip;
}
emms();
}
}
/* fast RGB555->RGB555 blending with surface alpha */
static void Blit555to555SurfaceAlphaMMX(SDL_BlitInfo *info)
{
unsigned alpha = info->src->alpha; /* downscale alpha to 5 bits */
if(alpha == 128) {
Blit16to16SurfaceAlpha128(info, 0xfbde);
} else {
int width = info->d_width;
int height = info->d_height;
Uint16 *srcp = (Uint16 *)info->s_pixels;
int srcskip = info->s_skip >> 1;
Uint16 *dstp = (Uint16 *)info->d_pixels;
int dstskip = info->d_skip >> 1;
Uint32 s, d;
Uint8 load[8];
alpha &= ~(1+2+4); /* cut alpha to get the exact same behaviour */
*(Uint64 *)load = alpha;
alpha >>= 3; /* downscale alpha to 5 bits */
movq_m2r(*load, mm0); /* alpha(0000000A) -> mm0 */
punpcklwd_r2r(mm0, mm0); /* 00000A0A -> mm0 */
punpcklwd_r2r(mm0, mm0); /* 0A0A0A0A -> mm0 */
/* Setup the 555 color channel masks */
*(Uint64 *)load = 0x7C007C007C007C00;
movq_m2r(*load, mm1); /* MASKRED -> mm1 */
*(Uint64 *)load = 0x03E003E003E003E0;
movq_m2r(*load, mm4); /* MASKGREEN -> mm4 */
*(Uint64 *)load = 0x001F001F001F001F;
movq_m2r(*load, mm7); /* MASKBLUE -> mm7 */
while(height--) {
DUFFS_LOOP_QUATRO2(
{
s = *srcp++;
d = *dstp;
/*
* shift out the middle component (green) to
* the high 16 bits, and process all three RGB
* components at the same time.
*/
s = (s | s << 16) & 0x03e07c1f;
d = (d | d << 16) & 0x03e07c1f;
d += (s - d) * alpha >> 5;
d &= 0x03e07c1f;
*dstp++ = d | d >> 16;
},{
s = *srcp++;
d = *dstp;
/*
* shift out the middle component (green) to
* the high 16 bits, and process all three RGB
* components at the same time.
*/
s = (s | s << 16) & 0x03e07c1f;
d = (d | d << 16) & 0x03e07c1f;
d += (s - d) * alpha >> 5;
d &= 0x03e07c1f;
*dstp++ = d | d >> 16;
s = *srcp++;
d = *dstp;
/*
* shift out the middle component (green) to
* the high 16 bits, and process all three RGB
* components at the same time.
*/
s = (s | s << 16) & 0x03e07c1f;
d = (d | d << 16) & 0x03e07c1f;
d += (s - d) * alpha >> 5;
d &= 0x03e07c1f;
*dstp++ = d | d >> 16;
},{
movq_m2r((*dstp), mm3);/* 4 dst pixels -> mm3 */
movq_m2r((*srcp), mm2);/* 4 src pixels -> mm2 */
/* RED */
movq_r2r(mm2, mm5); /* src -> mm5 */
pand_r2r(mm1 , mm5); /* src & MASKRED -> mm5 */
psrlq_i2r(10, mm5); /* mm5 >> 10 -> mm5 [000r 000r 000r 000r] */
movq_r2r(mm3, mm6); /* dst -> mm6 */
pand_r2r(mm1 , mm6); /* dst & MASKRED -> mm6 */
psrlq_i2r(10, mm6); /* mm6 >> 10 -> mm6 [000r 000r 000r 000r] */
/* blend */
psubw_r2r(mm6, mm5);/* src - dst -> mm5 */
pmullw_r2r(mm0, mm5); /* mm5 * alpha -> mm5 */
psrlw_i2r(8, mm5); /* mm5 >> 8 -> mm5 */
paddw_r2r(mm5, mm6); /* mm5 + mm6(dst) -> mm6 */
psllq_i2r(10, mm6); /* mm6 << 10 -> mm6 */
pand_r2r(mm1, mm6); /* mm6 & MASKRED -> mm6 */
movq_r2r(mm4, mm5); /* MASKGREEN -> mm5 */
por_r2r(mm7, mm5); /* MASKBLUE | mm5 -> mm5 */
pand_r2r(mm5, mm3); /* mm3 & mm5(!MASKRED) -> mm3 */
por_r2r(mm6, mm3); /* save new reds in dsts */
/* green */
movq_r2r(mm2, mm5); /* src -> mm5 */
pand_r2r(mm4 , mm5); /* src & MASKGREEN -> mm5 */
psrlq_i2r(5, mm5); /* mm5 >> 5 -> mm5 [000g 000g 000g 000g] */
movq_r2r(mm3, mm6); /* dst -> mm6 */
pand_r2r(mm4 , mm6); /* dst & MASKGREEN -> mm6 */
psrlq_i2r(5, mm6); /* mm6 >> 5 -> mm6 [000g 000g 000g 000g] */
/* blend */
psubw_r2r(mm6, mm5);/* src - dst -> mm5 */
pmullw_r2r(mm0, mm5); /* mm5 * alpha -> mm5 */
psrlw_i2r(8, mm5); /* mm5 >> 8 -> mm5 */
paddw_r2r(mm5, mm6); /* mm5 + mm6(dst) -> mm6 */
psllq_i2r(5, mm6); /* mm6 << 5 -> mm6 */
pand_r2r(mm4, mm6); /* mm6 & MASKGREEN -> mm6 */
movq_r2r(mm1, mm5); /* MASKRED -> mm5 */
por_r2r(mm7, mm5); /* MASKBLUE | mm5 -> mm5 */
pand_r2r(mm5, mm3); /* mm3 & mm5(!MASKGREEN) -> mm3 */
por_r2r(mm6, mm3); /* save new greens in dsts */
/* blue */
movq_r2r(mm2, mm5); /* src -> mm5 */
pand_r2r(mm7 , mm5); /* src & MASKRED -> mm5[000b 000b 000b 000b] */
movq_r2r(mm3, mm6); /* dst -> mm6 */
pand_r2r(mm7 , mm6); /* dst & MASKBLUE -> mm6[000b 000b 000b 000b] */
/* blend */
psubw_r2r(mm6, mm5);/* src - dst -> mm5 */
pmullw_r2r(mm0, mm5); /* mm5 * alpha -> mm5 */
psrlw_i2r(8, mm5); /* mm5 >> 8 -> mm5 */
paddw_r2r(mm5, mm6); /* mm5 + mm6(dst) -> mm6 */
pand_r2r(mm7, mm6); /* mm6 & MASKBLUE -> mm6 */
movq_r2r(mm1, mm5); /* MASKRED -> mm5 */
por_r2r(mm4, mm5); /* MASKGREEN | mm5 -> mm5 */
pand_r2r(mm5, mm3); /* mm3 & mm5(!MASKBLUE) -> mm3 */
por_r2r(mm6, mm3); /* save new blues in dsts */
movq_r2m(mm3, *dstp);/* mm3 -> 4 dst pixels */
srcp += 4;
dstp += 4;
}, width);
srcp += srcskip;
dstp += dstskip;
}
emms();
}
}
#endif
/* fast RGB565->RGB565 blending with surface alpha */
static void Blit565to565SurfaceAlpha(SDL_BlitInfo *info)
{
@ -500,10 +1158,11 @@ static void BlitARGBto565PixelAlpha(SDL_BlitInfo *info)
compositioning used (>>8 instead of /255) doesn't handle
it correctly. Also special-case alpha=0 for speed?
Benchmark this! */
if(alpha == (SDL_ALPHA_OPAQUE >> 3)) {
if(alpha) {
if(alpha == (SDL_ALPHA_OPAQUE >> 3)) {
*dstp = (s >> 8 & 0xf800) + (s >> 5 & 0x7e0)
+ (s >> 3 & 0x1f);
} else {
} else {
Uint32 d = *dstp;
/*
* convert source and destination to G0RAB65565
@ -515,6 +1174,7 @@ static void BlitARGBto565PixelAlpha(SDL_BlitInfo *info)
d += (s - d) * alpha >> 5;
d &= 0x07e0f81f;
*dstp = d | d >> 16;
}
}
srcp++;
dstp++;
@ -543,10 +1203,11 @@ static void BlitARGBto555PixelAlpha(SDL_BlitInfo *info)
compositioning used (>>8 instead of /255) doesn't handle
it correctly. Also special-case alpha=0 for speed?
Benchmark this! */
if(alpha == (SDL_ALPHA_OPAQUE >> 3)) {
if(alpha) {
if(alpha == (SDL_ALPHA_OPAQUE >> 3)) {
*dstp = (s >> 9 & 0x7c00) + (s >> 6 & 0x3e0)
+ (s >> 3 & 0x1f);
} else {
} else {
Uint32 d = *dstp;
/*
* convert source and destination to G0RAB65565
@ -558,6 +1219,7 @@ static void BlitARGBto555PixelAlpha(SDL_BlitInfo *info)
d += (s - d) * alpha >> 5;
d &= 0x03e07c1f;
*dstp = d | d >> 16;
}
}
srcp++;
dstp++;
@ -583,7 +1245,8 @@ static void BlitNtoNSurfaceAlpha(SDL_BlitInfo *info)
unsigned sA = srcfmt->alpha;
unsigned dA = dstfmt->Amask ? SDL_ALPHA_OPAQUE : 0;
while ( height-- ) {
if(sA) {
while ( height-- ) {
DUFFS_LOOP4(
{
Uint32 pixel;
@ -603,6 +1266,7 @@ static void BlitNtoNSurfaceAlpha(SDL_BlitInfo *info)
width);
src += srcskip;
dst += dstskip;
}
}
}
@ -634,7 +1298,7 @@ static void BlitNtoNSurfaceAlphaKey(SDL_BlitInfo *info)
unsigned dG;
unsigned dB;
RETRIEVE_RGB_PIXEL(src, srcbpp, pixel);
if(pixel != ckey) {
if(sA && pixel != ckey) {
RGB_FROM_PIXEL(pixel, srcfmt, sR, sG, sB);
DISEMBLE_RGB(dst, dstbpp, dstfmt, pixel, dR, dG, dB);
ALPHA_BLEND(sR, sG, sB, sA, dR, dG, dB);
@ -686,9 +1350,11 @@ static void BlitNtoNPixelAlpha(SDL_BlitInfo *info)
unsigned sA;
unsigned dA;
DISEMBLE_RGBA(src, srcbpp, srcfmt, pixel, sR, sG, sB, sA);
DISEMBLE_RGBA(dst, dstbpp, dstfmt, pixel, dR, dG, dB, dA);
ALPHA_BLEND(sR, sG, sB, sA, dR, dG, dB);
ASSEMBLE_RGBA(dst, dstbpp, dstfmt, dR, dG, dB, dA);
if(sA) {
DISEMBLE_RGBA(dst, dstbpp, dstfmt, pixel, dR, dG, dB, dA);
ALPHA_BLEND(sR, sG, sB, sA, dR, dG, dB);
ASSEMBLE_RGBA(dst, dstbpp, dstfmt, dR, dG, dB, dA);
}
src += srcbpp;
dst += dstbpp;
},
@ -719,9 +1385,23 @@ SDL_loblit SDL_CalculateAlphaBlit(SDL_Surface *surface, int blit_index)
case 2:
if(surface->map->identity) {
if(df->Gmask == 0x7e0)
{
#if defined(i386) && defined(__GNUC__) && defined(USE_ASMBLIT)
if((CPU_Flags()&MMX_CPU)!=0)
return Blit565to565SurfaceAlphaMMX;
else
#endif
return Blit565to565SurfaceAlpha;
}
else if(df->Gmask == 0x3e0)
{
#if defined(i386) && defined(__GNUC__) && defined(USE_ASMBLIT)
if((CPU_Flags()&MMX_CPU)!=0)
return Blit555to555SurfaceAlphaMMX;
else
#endif
return Blit555to555SurfaceAlpha;
}
}
return BlitNtoNSurfaceAlpha;
@ -731,7 +1411,14 @@ SDL_loblit SDL_CalculateAlphaBlit(SDL_Surface *surface, int blit_index)
&& sf->Bmask == df->Bmask
&& (sf->Rmask | sf->Gmask | sf->Bmask) == 0xffffff
&& sf->BytesPerPixel == 4)
{
#if defined(i386) && defined(__GNUC__) && defined(USE_ASMBLIT)
if((CPU_Flags()&MMX_CPU)!=0)
return BlitRGBtoRGBSurfaceAlphaMMX;
else
#endif
return BlitRGBtoRGBSurfaceAlpha;
}
else
return BlitNtoNSurfaceAlpha;
@ -764,7 +1451,19 @@ SDL_loblit SDL_CalculateAlphaBlit(SDL_Surface *surface, int blit_index)
&& sf->Gmask == df->Gmask
&& sf->Bmask == df->Bmask
&& sf->BytesPerPixel == 4)
return BlitRGBtoRGBPixelAlpha;
{
#if defined(i386) && defined(__GNUC__) && defined(USE_ASMBLIT)
Uint32 f;
f=CPU_Flags();
if((f&(TDNOW_CPU|MMX_CPU))==(TDNOW_CPU|MMX_CPU))
return BlitRGBtoRGBPixelAlphaMMX3DNOW;
else
if((f&MMX_CPU)!=0)
return BlitRGBtoRGBPixelAlphaMMX;
else
#endif
return BlitRGBtoRGBPixelAlpha;
}
return BlitNtoNPixelAlpha;
case 3:

706
src/video/mmx.h Normal file
View File

@ -0,0 +1,706 @@
/* mmx.h
MultiMedia eXtensions GCC interface library for IA32.
To use this library, simply include this header file
and compile with GCC. You MUST have inlining enabled
in order for mmx_ok() to work; this can be done by
simply using -O on the GCC command line.
Compiling with -DMMX_TRACE will cause detailed trace
output to be sent to stderr for each mmx operation.
This adds lots of code, and obviously slows execution to
a crawl, but can be very useful for debugging.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR ANY PARTICULAR PURPOSE.
1997-99 by H. Dietz and R. Fisher
Notes:
It appears that the latest gas has the pand problem fixed, therefore
I'll undefine BROKEN_PAND by default.
*/
#ifndef _MMX_H
#define _MMX_H
/* Warning: at this writing, the version of GAS packaged
with most Linux distributions does not handle the
parallel AND operation mnemonic correctly. If the
symbol BROKEN_PAND is defined, a slower alternative
coding will be used. If execution of mmxtest results
in an illegal instruction fault, define this symbol.
*/
#undef BROKEN_PAND
/* The type of an value that fits in an MMX register
(note that long long constant values MUST be suffixed
by LL and unsigned long long values by ULL, lest
they be truncated by the compiler)
*/
typedef union {
long long q; /* Quadword (64-bit) value */
unsigned long long uq; /* Unsigned Quadword */
int d[2]; /* 2 Doubleword (32-bit) values */
unsigned int ud[2]; /* 2 Unsigned Doubleword */
short w[4]; /* 4 Word (16-bit) values */
unsigned short uw[4]; /* 4 Unsigned Word */
char b[8]; /* 8 Byte (8-bit) values */
unsigned char ub[8]; /* 8 Unsigned Byte */
float s[2]; /* Single-precision (32-bit) value */
} __attribute__ ((aligned (8))) mmx_t; /* On an 8-byte (64-bit) boundary */
#if 0
/* Function to test if multimedia instructions are supported...
*/
inline extern int
mm_support(void)
{
/* Returns 1 if MMX instructions are supported,
3 if Cyrix MMX and Extended MMX instructions are supported
5 if AMD MMX and 3DNow! instructions are supported
0 if hardware does not support any of these
*/
register int rval = 0;
__asm__ __volatile__ (
/* See if CPUID instruction is supported ... */
/* ... Get copies of EFLAGS into eax and ecx */
"pushf\n\t"
"popl %%eax\n\t"
"movl %%eax, %%ecx\n\t"
/* ... Toggle the ID bit in one copy and store */
/* to the EFLAGS reg */
"xorl $0x200000, %%eax\n\t"
"push %%eax\n\t"
"popf\n\t"
/* ... Get the (hopefully modified) EFLAGS */
"pushf\n\t"
"popl %%eax\n\t"
/* ... Compare and test result */
"xorl %%eax, %%ecx\n\t"
"testl $0x200000, %%ecx\n\t"
"jz NotSupported1\n\t" /* CPUID not supported */
/* Get standard CPUID information, and
go to a specific vendor section */
"movl $0, %%eax\n\t"
"cpuid\n\t"
/* Check for Intel */
"cmpl $0x756e6547, %%ebx\n\t"
"jne TryAMD\n\t"
"cmpl $0x49656e69, %%edx\n\t"
"jne TryAMD\n\t"
"cmpl $0x6c65746e, %%ecx\n"
"jne TryAMD\n\t"
"jmp Intel\n\t"
/* Check for AMD */
"\nTryAMD:\n\t"
"cmpl $0x68747541, %%ebx\n\t"
"jne TryCyrix\n\t"
"cmpl $0x69746e65, %%edx\n\t"
"jne TryCyrix\n\t"
"cmpl $0x444d4163, %%ecx\n"
"jne TryCyrix\n\t"
"jmp AMD\n\t"
/* Check for Cyrix */
"\nTryCyrix:\n\t"
"cmpl $0x69727943, %%ebx\n\t"
"jne NotSupported2\n\t"
"cmpl $0x736e4978, %%edx\n\t"
"jne NotSupported3\n\t"
"cmpl $0x64616574, %%ecx\n\t"
"jne NotSupported4\n\t"
/* Drop through to Cyrix... */
/* Cyrix Section */
/* See if extended CPUID level 80000001 is supported */
/* The value of CPUID/80000001 for the 6x86MX is undefined
according to the Cyrix CPU Detection Guide (Preliminary
Rev. 1.01 table 1), so we'll check the value of eax for
CPUID/0 to see if standard CPUID level 2 is supported.
According to the table, the only CPU which supports level
2 is also the only one which supports extended CPUID levels.
*/
"cmpl $0x2, %%eax\n\t"
"jne MMXtest\n\t" /* Use standard CPUID instead */
/* Extended CPUID supported (in theory), so get extended
features */
"movl $0x80000001, %%eax\n\t"
"cpuid\n\t"
"testl $0x00800000, %%eax\n\t" /* Test for MMX */
"jz NotSupported5\n\t" /* MMX not supported */
"testl $0x01000000, %%eax\n\t" /* Test for Ext'd MMX */
"jnz EMMXSupported\n\t"
"movl $1, %0:\n\n\t" /* MMX Supported */
"jmp Return\n\n"
"EMMXSupported:\n\t"
"movl $3, %0:\n\n\t" /* EMMX and MMX Supported */
"jmp Return\n\t"
/* AMD Section */
"AMD:\n\t"
/* See if extended CPUID is supported */
"movl $0x80000000, %%eax\n\t"
"cpuid\n\t"
"cmpl $0x80000000, %%eax\n\t"
"jl MMXtest\n\t" /* Use standard CPUID instead */
/* Extended CPUID supported, so get extended features */
"movl $0x80000001, %%eax\n\t"
"cpuid\n\t"
"testl $0x00800000, %%edx\n\t" /* Test for MMX */
"jz NotSupported6\n\t" /* MMX not supported */
"testl $0x80000000, %%edx\n\t" /* Test for 3DNow! */
"jnz ThreeDNowSupported\n\t"
"movl $1, %0:\n\n\t" /* MMX Supported */
"jmp Return\n\n"
"ThreeDNowSupported:\n\t"
"movl $5, %0:\n\n\t" /* 3DNow! and MMX Supported */
"jmp Return\n\t"
/* Intel Section */
"Intel:\n\t"
/* Check for MMX */
"MMXtest:\n\t"
"movl $1, %%eax\n\t"
"cpuid\n\t"
"testl $0x00800000, %%edx\n\t" /* Test for MMX */
"jz NotSupported7\n\t" /* MMX Not supported */
"movl $1, %0:\n\n\t" /* MMX Supported */
"jmp Return\n\t"
/* Nothing supported */
"\nNotSupported1:\n\t"
"#movl $101, %0:\n\n\t"
"\nNotSupported2:\n\t"
"#movl $102, %0:\n\n\t"
"\nNotSupported3:\n\t"
"#movl $103, %0:\n\n\t"
"\nNotSupported4:\n\t"
"#movl $104, %0:\n\n\t"
"\nNotSupported5:\n\t"
"#movl $105, %0:\n\n\t"
"\nNotSupported6:\n\t"
"#movl $106, %0:\n\n\t"
"\nNotSupported7:\n\t"
"#movl $107, %0:\n\n\t"
"movl $0, %0:\n\n\t"
"Return:\n\t"
: "=a" (rval)
: /* no input */
: "eax", "ebx", "ecx", "edx"
);
/* Return */
return(rval);
}
/* Function to test if mmx instructions are supported...
*/
inline extern int
mmx_ok(void)
{
/* Returns 1 if MMX instructions are supported, 0 otherwise */
return ( mm_support() & 0x1 );
}
#endif
/* Helper functions for the instruction macros that follow...
(note that memory-to-register, m2r, instructions are nearly
as efficient as register-to-register, r2r, instructions;
however, memory-to-memory instructions are really simulated
as a convenience, and are only 1/3 as efficient)
*/
#ifdef MMX_TRACE
/* Include the stuff for printing a trace to stderr...
*/
#include <stdio.h>
#define mmx_i2r(op, imm, reg) \
{ \
mmx_t mmx_trace; \
mmx_trace.uq = (imm); \
printf(#op "_i2r(" #imm "=0x%08x%08x, ", \
mmx_trace.d[1], mmx_trace.d[0]); \
__asm__ __volatile__ ("movq %%" #reg ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
printf(#reg "=0x%08x%08x) => ", \
mmx_trace.d[1], mmx_trace.d[0]); \
__asm__ __volatile__ (#op " %0, %%" #reg \
: /* nothing */ \
: "X" (imm)); \
__asm__ __volatile__ ("movq %%" #reg ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
printf(#reg "=0x%08x%08x\n", \
mmx_trace.d[1], mmx_trace.d[0]); \
}
#define mmx_m2r(op, mem, reg) \
{ \
mmx_t mmx_trace; \
mmx_trace = (mem); \
printf(#op "_m2r(" #mem "=0x%08x%08x, ", \
mmx_trace.d[1], mmx_trace.d[0]); \
__asm__ __volatile__ ("movq %%" #reg ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
printf(#reg "=0x%08x%08x) => ", \
mmx_trace.d[1], mmx_trace.d[0]); \
__asm__ __volatile__ (#op " %0, %%" #reg \
: /* nothing */ \
: "X" (mem)); \
__asm__ __volatile__ ("movq %%" #reg ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
printf(#reg "=0x%08x%08x\n", \
mmx_trace.d[1], mmx_trace.d[0]); \
}
#define mmx_r2m(op, reg, mem) \
{ \
mmx_t mmx_trace; \
__asm__ __volatile__ ("movq %%" #reg ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
printf(#op "_r2m(" #reg "=0x%08x%08x, ", \
mmx_trace.d[1], mmx_trace.d[0]); \
mmx_trace = (mem); \
printf(#mem "=0x%08x%08x) => ", \
mmx_trace.d[1], mmx_trace.d[0]); \
__asm__ __volatile__ (#op " %%" #reg ", %0" \
: "=X" (mem) \
: /* nothing */ ); \
mmx_trace = (mem); \
printf(#mem "=0x%08x%08x\n", \
mmx_trace.d[1], mmx_trace.d[0]); \
}
#define mmx_r2r(op, regs, regd) \
{ \
mmx_t mmx_trace; \
__asm__ __volatile__ ("movq %%" #regs ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
printf(#op "_r2r(" #regs "=0x%08x%08x, ", \
mmx_trace.d[1], mmx_trace.d[0]); \
__asm__ __volatile__ ("movq %%" #regd ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
printf(#regd "=0x%08x%08x) => ", \
mmx_trace.d[1], mmx_trace.d[0]); \
__asm__ __volatile__ (#op " %" #regs ", %" #regd); \
__asm__ __volatile__ ("movq %%" #regd ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
printf(#regd "=0x%08x%08x\n", \
mmx_trace.d[1], mmx_trace.d[0]); \
}
#define mmx_m2m(op, mems, memd) \
{ \
mmx_t mmx_trace; \
mmx_trace = (mems); \
printf(#op "_m2m(" #mems "=0x%08x%08x, ", \
mmx_trace.d[1], mmx_trace.d[0]); \
mmx_trace = (memd); \
printf(#memd "=0x%08x%08x) => ", \
mmx_trace.d[1], mmx_trace.d[0]); \
__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
#op " %1, %%mm0\n\t" \
"movq %%mm0, %0" \
: "=X" (memd) \
: "X" (mems)); \
mmx_trace = (memd); \
printf(#memd "=0x%08x%08x\n", \
mmx_trace.d[1], mmx_trace.d[0]); \
}
#else
/* These macros are a lot simpler without the tracing...
*/
#define mmx_i2r(op, imm, reg) \
__asm__ __volatile__ (#op " %0, %%" #reg \
: /* nothing */ \
: "X" (imm) )
#define mmx_m2r(op, mem, reg) \
__asm__ __volatile__ (#op " %0, %%" #reg \
: /* nothing */ \
: "X" (mem))
#define mmx_r2m(op, reg, mem) \
__asm__ __volatile__ (#op " %%" #reg ", %0" \
: "=X" (mem) \
: /* nothing */ )
#define mmx_r2r(op, regs, regd) \
__asm__ __volatile__ (#op " %" #regs ", %" #regd)
#define mmx_m2m(op, mems, memd) \
__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
#op " %1, %%mm0\n\t" \
"movq %%mm0, %0" \
: "=X" (memd) \
: "X" (mems))
#endif
/* 1x64 MOVe Quadword
(this is both a load and a store...
in fact, it is the only way to store)
*/
#define movq_m2r(var, reg) mmx_m2r(movq, var, reg)
#define movq_r2m(reg, var) mmx_r2m(movq, reg, var)
#define movq_r2r(regs, regd) mmx_r2r(movq, regs, regd)
#define movq(vars, vard) \
__asm__ __volatile__ ("movq %1, %%mm0\n\t" \
"movq %%mm0, %0" \
: "=X" (vard) \
: "X" (vars))
/* 1x32 MOVe Doubleword
(like movq, this is both load and store...
but is most useful for moving things between
mmx registers and ordinary registers)
*/
#define movd_m2r(var, reg) mmx_m2r(movd, var, reg)
#define movd_r2m(reg, var) mmx_r2m(movd, reg, var)
#define movd_r2r(regs, regd) mmx_r2r(movd, regs, regd)
#define movd(vars, vard) \
__asm__ __volatile__ ("movd %1, %%mm0\n\t" \
"movd %%mm0, %0" \
: "=X" (vard) \
: "X" (vars))
/* 2x32, 4x16, and 8x8 Parallel ADDs
*/
#define paddd_m2r(var, reg) mmx_m2r(paddd, var, reg)
#define paddd_r2r(regs, regd) mmx_r2r(paddd, regs, regd)
#define paddd(vars, vard) mmx_m2m(paddd, vars, vard)
#define paddw_m2r(var, reg) mmx_m2r(paddw, var, reg)
#define paddw_r2r(regs, regd) mmx_r2r(paddw, regs, regd)
#define paddw(vars, vard) mmx_m2m(paddw, vars, vard)
#define paddb_m2r(var, reg) mmx_m2r(paddb, var, reg)
#define paddb_r2r(regs, regd) mmx_r2r(paddb, regs, regd)
#define paddb(vars, vard) mmx_m2m(paddb, vars, vard)
/* 4x16 and 8x8 Parallel ADDs using Saturation arithmetic
*/
#define paddsw_m2r(var, reg) mmx_m2r(paddsw, var, reg)
#define paddsw_r2r(regs, regd) mmx_r2r(paddsw, regs, regd)
#define paddsw(vars, vard) mmx_m2m(paddsw, vars, vard)
#define paddsb_m2r(var, reg) mmx_m2r(paddsb, var, reg)
#define paddsb_r2r(regs, regd) mmx_r2r(paddsb, regs, regd)
#define paddsb(vars, vard) mmx_m2m(paddsb, vars, vard)
/* 4x16 and 8x8 Parallel ADDs using Unsigned Saturation arithmetic
*/
#define paddusw_m2r(var, reg) mmx_m2r(paddusw, var, reg)
#define paddusw_r2r(regs, regd) mmx_r2r(paddusw, regs, regd)
#define paddusw(vars, vard) mmx_m2m(paddusw, vars, vard)
#define paddusb_m2r(var, reg) mmx_m2r(paddusb, var, reg)
#define paddusb_r2r(regs, regd) mmx_r2r(paddusb, regs, regd)
#define paddusb(vars, vard) mmx_m2m(paddusb, vars, vard)
/* 2x32, 4x16, and 8x8 Parallel SUBs
*/
#define psubd_m2r(var, reg) mmx_m2r(psubd, var, reg)
#define psubd_r2r(regs, regd) mmx_r2r(psubd, regs, regd)
#define psubd(vars, vard) mmx_m2m(psubd, vars, vard)
#define psubw_m2r(var, reg) mmx_m2r(psubw, var, reg)
#define psubw_r2r(regs, regd) mmx_r2r(psubw, regs, regd)
#define psubw(vars, vard) mmx_m2m(psubw, vars, vard)
#define psubb_m2r(var, reg) mmx_m2r(psubb, var, reg)
#define psubb_r2r(regs, regd) mmx_r2r(psubb, regs, regd)
#define psubb(vars, vard) mmx_m2m(psubb, vars, vard)
/* 4x16 and 8x8 Parallel SUBs using Saturation arithmetic
*/
#define psubsw_m2r(var, reg) mmx_m2r(psubsw, var, reg)
#define psubsw_r2r(regs, regd) mmx_r2r(psubsw, regs, regd)
#define psubsw(vars, vard) mmx_m2m(psubsw, vars, vard)
#define psubsb_m2r(var, reg) mmx_m2r(psubsb, var, reg)
#define psubsb_r2r(regs, regd) mmx_r2r(psubsb, regs, regd)
#define psubsb(vars, vard) mmx_m2m(psubsb, vars, vard)
/* 4x16 and 8x8 Parallel SUBs using Unsigned Saturation arithmetic
*/
#define psubusw_m2r(var, reg) mmx_m2r(psubusw, var, reg)
#define psubusw_r2r(regs, regd) mmx_r2r(psubusw, regs, regd)
#define psubusw(vars, vard) mmx_m2m(psubusw, vars, vard)
#define psubusb_m2r(var, reg) mmx_m2r(psubusb, var, reg)
#define psubusb_r2r(regs, regd) mmx_r2r(psubusb, regs, regd)
#define psubusb(vars, vard) mmx_m2m(psubusb, vars, vard)
/* 4x16 Parallel MULs giving Low 4x16 portions of results
*/
#define pmullw_m2r(var, reg) mmx_m2r(pmullw, var, reg)
#define pmullw_r2r(regs, regd) mmx_r2r(pmullw, regs, regd)
#define pmullw(vars, vard) mmx_m2m(pmullw, vars, vard)
/* 4x16 Parallel MULs giving High 4x16 portions of results
*/
#define pmulhw_m2r(var, reg) mmx_m2r(pmulhw, var, reg)
#define pmulhw_r2r(regs, regd) mmx_r2r(pmulhw, regs, regd)
#define pmulhw(vars, vard) mmx_m2m(pmulhw, vars, vard)
/* 4x16->2x32 Parallel Mul-ADD
(muls like pmullw, then adds adjacent 16-bit fields
in the multiply result to make the final 2x32 result)
*/
#define pmaddwd_m2r(var, reg) mmx_m2r(pmaddwd, var, reg)
#define pmaddwd_r2r(regs, regd) mmx_r2r(pmaddwd, regs, regd)
#define pmaddwd(vars, vard) mmx_m2m(pmaddwd, vars, vard)
/* 1x64 bitwise AND
*/
#ifdef BROKEN_PAND
#define pand_m2r(var, reg) \
{ \
mmx_m2r(pandn, (mmx_t) -1LL, reg); \
mmx_m2r(pandn, var, reg); \
}
#define pand_r2r(regs, regd) \
{ \
mmx_m2r(pandn, (mmx_t) -1LL, regd); \
mmx_r2r(pandn, regs, regd) \
}
#define pand(vars, vard) \
{ \
movq_m2r(vard, mm0); \
mmx_m2r(pandn, (mmx_t) -1LL, mm0); \
mmx_m2r(pandn, vars, mm0); \
movq_r2m(mm0, vard); \
}
#else
#define pand_m2r(var, reg) mmx_m2r(pand, var, reg)
#define pand_r2r(regs, regd) mmx_r2r(pand, regs, regd)
#define pand(vars, vard) mmx_m2m(pand, vars, vard)
#endif
/* 1x64 bitwise AND with Not the destination
*/
#define pandn_m2r(var, reg) mmx_m2r(pandn, var, reg)
#define pandn_r2r(regs, regd) mmx_r2r(pandn, regs, regd)
#define pandn(vars, vard) mmx_m2m(pandn, vars, vard)
/* 1x64 bitwise OR
*/
#define por_m2r(var, reg) mmx_m2r(por, var, reg)
#define por_r2r(regs, regd) mmx_r2r(por, regs, regd)
#define por(vars, vard) mmx_m2m(por, vars, vard)
/* 1x64 bitwise eXclusive OR
*/
#define pxor_m2r(var, reg) mmx_m2r(pxor, var, reg)
#define pxor_r2r(regs, regd) mmx_r2r(pxor, regs, regd)
#define pxor(vars, vard) mmx_m2m(pxor, vars, vard)
/* 2x32, 4x16, and 8x8 Parallel CoMPare for EQuality
(resulting fields are either 0 or -1)
*/
#define pcmpeqd_m2r(var, reg) mmx_m2r(pcmpeqd, var, reg)
#define pcmpeqd_r2r(regs, regd) mmx_r2r(pcmpeqd, regs, regd)
#define pcmpeqd(vars, vard) mmx_m2m(pcmpeqd, vars, vard)
#define pcmpeqw_m2r(var, reg) mmx_m2r(pcmpeqw, var, reg)
#define pcmpeqw_r2r(regs, regd) mmx_r2r(pcmpeqw, regs, regd)
#define pcmpeqw(vars, vard) mmx_m2m(pcmpeqw, vars, vard)
#define pcmpeqb_m2r(var, reg) mmx_m2r(pcmpeqb, var, reg)
#define pcmpeqb_r2r(regs, regd) mmx_r2r(pcmpeqb, regs, regd)
#define pcmpeqb(vars, vard) mmx_m2m(pcmpeqb, vars, vard)
/* 2x32, 4x16, and 8x8 Parallel CoMPare for Greater Than
(resulting fields are either 0 or -1)
*/
#define pcmpgtd_m2r(var, reg) mmx_m2r(pcmpgtd, var, reg)
#define pcmpgtd_r2r(regs, regd) mmx_r2r(pcmpgtd, regs, regd)
#define pcmpgtd(vars, vard) mmx_m2m(pcmpgtd, vars, vard)
#define pcmpgtw_m2r(var, reg) mmx_m2r(pcmpgtw, var, reg)
#define pcmpgtw_r2r(regs, regd) mmx_r2r(pcmpgtw, regs, regd)
#define pcmpgtw(vars, vard) mmx_m2m(pcmpgtw, vars, vard)
#define pcmpgtb_m2r(var, reg) mmx_m2r(pcmpgtb, var, reg)
#define pcmpgtb_r2r(regs, regd) mmx_r2r(pcmpgtb, regs, regd)
#define pcmpgtb(vars, vard) mmx_m2m(pcmpgtb, vars, vard)
/* 1x64, 2x32, and 4x16 Parallel Shift Left Logical
*/
#define psllq_i2r(imm, reg) mmx_i2r(psllq, imm, reg)
#define psllq_m2r(var, reg) mmx_m2r(psllq, var, reg)
#define psllq_r2r(regs, regd) mmx_r2r(psllq, regs, regd)
#define psllq(vars, vard) mmx_m2m(psllq, vars, vard)
#define pslld_i2r(imm, reg) mmx_i2r(pslld, imm, reg)
#define pslld_m2r(var, reg) mmx_m2r(pslld, var, reg)
#define pslld_r2r(regs, regd) mmx_r2r(pslld, regs, regd)
#define pslld(vars, vard) mmx_m2m(pslld, vars, vard)
#define psllw_i2r(imm, reg) mmx_i2r(psllw, imm, reg)
#define psllw_m2r(var, reg) mmx_m2r(psllw, var, reg)
#define psllw_r2r(regs, regd) mmx_r2r(psllw, regs, regd)
#define psllw(vars, vard) mmx_m2m(psllw, vars, vard)
/* 1x64, 2x32, and 4x16 Parallel Shift Right Logical
*/
#define psrlq_i2r(imm, reg) mmx_i2r(psrlq, imm, reg)
#define psrlq_m2r(var, reg) mmx_m2r(psrlq, var, reg)
#define psrlq_r2r(regs, regd) mmx_r2r(psrlq, regs, regd)
#define psrlq(vars, vard) mmx_m2m(psrlq, vars, vard)
#define psrld_i2r(imm, reg) mmx_i2r(psrld, imm, reg)
#define psrld_m2r(var, reg) mmx_m2r(psrld, var, reg)
#define psrld_r2r(regs, regd) mmx_r2r(psrld, regs, regd)
#define psrld(vars, vard) mmx_m2m(psrld, vars, vard)
#define psrlw_i2r(imm, reg) mmx_i2r(psrlw, imm, reg)
#define psrlw_m2r(var, reg) mmx_m2r(psrlw, var, reg)
#define psrlw_r2r(regs, regd) mmx_r2r(psrlw, regs, regd)
#define psrlw(vars, vard) mmx_m2m(psrlw, vars, vard)
/* 2x32 and 4x16 Parallel Shift Right Arithmetic
*/
#define psrad_i2r(imm, reg) mmx_i2r(psrad, imm, reg)
#define psrad_m2r(var, reg) mmx_m2r(psrad, var, reg)
#define psrad_r2r(regs, regd) mmx_r2r(psrad, regs, regd)
#define psrad(vars, vard) mmx_m2m(psrad, vars, vard)
#define psraw_i2r(imm, reg) mmx_i2r(psraw, imm, reg)
#define psraw_m2r(var, reg) mmx_m2r(psraw, var, reg)
#define psraw_r2r(regs, regd) mmx_r2r(psraw, regs, regd)
#define psraw(vars, vard) mmx_m2m(psraw, vars, vard)
/* 2x32->4x16 and 4x16->8x8 PACK and Signed Saturate
(packs source and dest fields into dest in that order)
*/
#define packssdw_m2r(var, reg) mmx_m2r(packssdw, var, reg)
#define packssdw_r2r(regs, regd) mmx_r2r(packssdw, regs, regd)
#define packssdw(vars, vard) mmx_m2m(packssdw, vars, vard)
#define packsswb_m2r(var, reg) mmx_m2r(packsswb, var, reg)
#define packsswb_r2r(regs, regd) mmx_r2r(packsswb, regs, regd)
#define packsswb(vars, vard) mmx_m2m(packsswb, vars, vard)
/* 4x16->8x8 PACK and Unsigned Saturate
(packs source and dest fields into dest in that order)
*/
#define packuswb_m2r(var, reg) mmx_m2r(packuswb, var, reg)
#define packuswb_r2r(regs, regd) mmx_r2r(packuswb, regs, regd)
#define packuswb(vars, vard) mmx_m2m(packuswb, vars, vard)
/* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK Low
(interleaves low half of dest with low half of source
as padding in each result field)
*/
#define punpckldq_m2r(var, reg) mmx_m2r(punpckldq, var, reg)
#define punpckldq_r2r(regs, regd) mmx_r2r(punpckldq, regs, regd)
#define punpckldq(vars, vard) mmx_m2m(punpckldq, vars, vard)
#define punpcklwd_m2r(var, reg) mmx_m2r(punpcklwd, var, reg)
#define punpcklwd_r2r(regs, regd) mmx_r2r(punpcklwd, regs, regd)
#define punpcklwd(vars, vard) mmx_m2m(punpcklwd, vars, vard)
#define punpcklbw_m2r(var, reg) mmx_m2r(punpcklbw, var, reg)
#define punpcklbw_r2r(regs, regd) mmx_r2r(punpcklbw, regs, regd)
#define punpcklbw(vars, vard) mmx_m2m(punpcklbw, vars, vard)
/* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK High
(interleaves high half of dest with high half of source
as padding in each result field)
*/
#define punpckhdq_m2r(var, reg) mmx_m2r(punpckhdq, var, reg)
#define punpckhdq_r2r(regs, regd) mmx_r2r(punpckhdq, regs, regd)
#define punpckhdq(vars, vard) mmx_m2m(punpckhdq, vars, vard)
#define punpckhwd_m2r(var, reg) mmx_m2r(punpckhwd, var, reg)
#define punpckhwd_r2r(regs, regd) mmx_r2r(punpckhwd, regs, regd)
#define punpckhwd(vars, vard) mmx_m2m(punpckhwd, vars, vard)
#define punpckhbw_m2r(var, reg) mmx_m2r(punpckhbw, var, reg)
#define punpckhbw_r2r(regs, regd) mmx_r2r(punpckhbw, regs, regd)
#define punpckhbw(vars, vard) mmx_m2m(punpckhbw, vars, vard)
/* Empty MMx State
(used to clean-up when going from mmx to float use
of the registers that are shared by both; note that
there is no float-to-mmx operation needed, because
only the float tag word info is corruptible)
*/
#ifdef MMX_TRACE
#define emms() \
{ \
printf("emms()\n"); \
__asm__ __volatile__ ("emms"); \
}
#else
#define emms() __asm__ __volatile__ ("emms")
#endif
#endif