mirror of
https://github.com/joel16/VITA-Homebrew-Sorter.git
synced 2024-11-27 05:10:43 +00:00
524 lines
16 KiB
C++
524 lines
16 KiB
C++
#include "sqlite3.h"
|
|
|
|
#include <assert.h>
|
|
#include <psp2/io/fcntl.h>
|
|
#include <psp2/io/stat.h>
|
|
#include <psp2/kernel/clib.h>
|
|
#include <psp2/kernel/threadmgr.h>
|
|
#include <psp2/rtc.h>
|
|
//#include <unistd.h>
|
|
|
|
#define MAXPATHNAME 512
|
|
|
|
/*
|
|
** Size of the write buffer used by journal files in bytes.
|
|
*/
|
|
#ifndef SQLITE_PSP2VFS_BUFFERSZ
|
|
# define SQLITE_PSP2VFS_BUFFERSZ 8192
|
|
#endif
|
|
|
|
/*
|
|
** The maximum pathname length supported by this VFS.
|
|
*/
|
|
#define MAXPATHNAME 512
|
|
|
|
/*
|
|
** When using this VFS, the sqlite3_file* handles that SQLite uses are
|
|
** actually pointers to instances of type PSP2File.
|
|
*/
|
|
typedef struct PSP2File PSP2File;
|
|
|
|
struct PSP2File {
|
|
sqlite3_file base = {0}; /* Base class. Must be first. */
|
|
SceUID fd = 0; /* File descriptor */
|
|
char *aBuffer = nullptr; /* Pointer to malloc'd buffer */
|
|
int nBuffer = 0; /* Valid bytes of data in zBuffer */
|
|
sqlite3_int64 iBufferOfst = 0; /* Offset in file of zBuffer[0] */
|
|
};
|
|
|
|
/*
|
|
** Write directly to the file passed as the first argument. Even if the
|
|
** file has a write-buffer (PSP2File.aBuffer), ignore it.
|
|
*/
|
|
static int psp2DirectWrite(PSP2File *p, const void *zBuf, int iAmt, sqlite_int64 iOfst) {
|
|
off_t ofst = 0; /* Return value from sceIoLseek() */
|
|
int nWrite = 0; /* Return value from sceIoWrite() */
|
|
|
|
ofst = sceIoLseek(p->fd, iOfst, SCE_SEEK_SET);
|
|
if (ofst != iOfst)
|
|
return SQLITE_IOERR_WRITE;
|
|
|
|
nWrite = sceIoWrite(p->fd, zBuf, iAmt);
|
|
if (nWrite != iAmt)
|
|
return SQLITE_IOERR_WRITE;
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Flush the contents of the PSP2File.aBuffer buffer to disk. This is a
|
|
** no-op if this particular file does not have a buffer (i.e. it is not
|
|
** a journal file) or if the buffer is currently empty.
|
|
*/
|
|
static int psp2FlushBuffer(PSP2File *p) {
|
|
int rc = SQLITE_OK;
|
|
|
|
if (p->nBuffer) {
|
|
rc = psp2DirectWrite(p, p->aBuffer, p->nBuffer, p->iBufferOfst);
|
|
p->nBuffer = 0;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Close a file.
|
|
*/
|
|
static int psp2Close(sqlite3_file *pFile) {
|
|
int rc = 0;
|
|
PSP2File *p = reinterpret_cast<PSP2File*>(pFile);
|
|
rc = psp2FlushBuffer(p);
|
|
sqlite3_free(p->aBuffer);
|
|
sceIoClose(p->fd);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Read data from a file.
|
|
*/
|
|
static int psp2Read(sqlite3_file *pFile, void *zBuf, int iAmt, sqlite_int64 iOfst) {
|
|
PSP2File *p = reinterpret_cast<PSP2File*>(pFile);
|
|
off_t ofst = 0; /* Return value from sceIoLseek() */
|
|
int nRead = 0; /* Return value from sceIoRead() */
|
|
int rc = 0; /* Return code from psp2FlushBuffer() */
|
|
|
|
/* Flush any data in the write buffer to disk in case this operation
|
|
** is trying to read data the file-region currently cached in the buffer.
|
|
** It would be possible to detect this case and possibly save an
|
|
** unnecessary write here, but in practice SQLite will rarely read from
|
|
** a journal file when there is data cached in the write-buffer.
|
|
*/
|
|
rc = psp2FlushBuffer(p);
|
|
if (rc != SQLITE_OK)
|
|
return rc;
|
|
|
|
ofst = sceIoLseek(p->fd, iOfst, SCE_SEEK_SET);
|
|
if (ofst != iOfst)
|
|
return SQLITE_IOERR_READ;
|
|
|
|
nRead = sceIoRead(p->fd, zBuf, iAmt);
|
|
|
|
if (nRead == iAmt)
|
|
return SQLITE_OK;
|
|
else if (nRead >= 0) {
|
|
if (nRead < iAmt)
|
|
sceClibMemset(&(static_cast<char*>(zBuf))[nRead], 0, iAmt-nRead);
|
|
|
|
return SQLITE_IOERR_SHORT_READ;
|
|
}
|
|
|
|
return SQLITE_IOERR_READ;
|
|
}
|
|
|
|
/*
|
|
** Write data to a crash-file.
|
|
*/
|
|
static int psp2Write(sqlite3_file *pFile, const void *zBuf, int iAmt, sqlite_int64 iOfst) {
|
|
PSP2File *p = reinterpret_cast<PSP2File*>(pFile);
|
|
|
|
if (p->aBuffer) {
|
|
char *z = const_cast<char*>(static_cast<const char *>(zBuf)); /* Pointer to remaining data to write */
|
|
int n = iAmt; /* Number of bytes at z */
|
|
sqlite3_int64 i = iOfst; /* File offset to write to */
|
|
|
|
while(n > 0) {
|
|
int nCopy; /* Number of bytes to copy into buffer */
|
|
|
|
/* If the buffer is full, or if this data is not being written directly
|
|
** following the data already buffered, flush the buffer. Flushing
|
|
** the buffer is a no-op if it is empty.
|
|
*/
|
|
if (p->nBuffer == SQLITE_PSP2VFS_BUFFERSZ || p->iBufferOfst+p->nBuffer != i) {
|
|
int rc = psp2FlushBuffer(p);
|
|
if (rc != SQLITE_OK)
|
|
return rc;
|
|
}
|
|
|
|
assert(p->nBuffer == 0 || p->iBufferOfst+p->nBuffer == i);
|
|
p->iBufferOfst = i - p->nBuffer;
|
|
|
|
/* Copy as much data as possible into the buffer. */
|
|
nCopy = SQLITE_PSP2VFS_BUFFERSZ - p->nBuffer;
|
|
if (nCopy > n)
|
|
nCopy = n;
|
|
|
|
sceClibMemcpy(&p->aBuffer[p->nBuffer], z, nCopy);
|
|
p->nBuffer += nCopy;
|
|
|
|
n -= nCopy;
|
|
i += nCopy;
|
|
z += nCopy;
|
|
}
|
|
}
|
|
else
|
|
return psp2DirectWrite(p, zBuf, iAmt, iOfst);
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Truncate a file. This is a no-op for this VFS (see header comments at
|
|
** the top of the file).
|
|
*/
|
|
static int psp2Truncate(sqlite3_file *pFile, sqlite_int64 size) {
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Sync the contents of the file to the persistent media.
|
|
*/
|
|
static int psp2Sync(sqlite3_file *pFile, int flags) {
|
|
PSP2File *p = reinterpret_cast<PSP2File*>(pFile);
|
|
int rc = 0;
|
|
|
|
rc = psp2FlushBuffer(p);
|
|
if (rc != SQLITE_OK)
|
|
return rc;
|
|
|
|
rc = sceIoSyncByFd(p->fd, 0);
|
|
return (rc == 0? SQLITE_OK : SQLITE_IOERR_FSYNC);
|
|
}
|
|
|
|
/*
|
|
** Write the size of the file in bytes to *pSize.
|
|
*/
|
|
static int psp2FileSize(sqlite3_file *pFile, sqlite_int64 *pSize) {
|
|
PSP2File *p = reinterpret_cast<PSP2File*>(pFile);
|
|
int rc = 0; /* Return code from sceIoGetstatByFd() call */
|
|
SceIoStat sStat = {0}; /* Output of sceIoGetstatByFd() call */
|
|
|
|
/* Flush the contents of the buffer to disk. As with the flush in the
|
|
** psp2Read() method, it would be possible to avoid this and save a write
|
|
** here and there. But in practice this comes up so infrequently it is
|
|
** not worth the trouble.
|
|
*/
|
|
rc = psp2FlushBuffer(p);
|
|
if (rc != SQLITE_OK)
|
|
return rc;
|
|
|
|
rc = sceIoGetstatByFd(p->fd, &sStat);
|
|
|
|
if (rc != 0)
|
|
return SQLITE_IOERR_FSTAT;
|
|
|
|
*pSize = sStat.st_size;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Locking functions. The xLock() and xUnlock() methods are both no-ops.
|
|
** The xCheckReservedLock() always indicates that no other process holds
|
|
** a reserved lock on the database file. This ensures that if a hot-journal
|
|
** file is found in the file-system it is rolled back.
|
|
*/
|
|
static int psp2Lock(sqlite3_file *pFile, int eLock) {
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
static int psp2Unlock(sqlite3_file *pFile, int eLock) {
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
static int psp2CheckReservedLock(sqlite3_file *pFile, int *pResOut) {
|
|
*pResOut = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** No xFileControl() verbs are implemented by this VFS.
|
|
*/
|
|
static int psp2FileControl(sqlite3_file *pFile, int op, void *pArg) {
|
|
return SQLITE_NOTFOUND;
|
|
}
|
|
|
|
/*
|
|
** The xSectorSize() and xDeviceCharacteristics() methods. These two
|
|
** may return special values allowing SQLite to optimize file-system
|
|
** access to some extent. But it is also safe to simply return 0.
|
|
*/
|
|
static int psp2SectorSize(sqlite3_file *pFile) {
|
|
return 0;
|
|
}
|
|
|
|
static int psp2DeviceCharacteristics(sqlite3_file *pFile) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Open a file handle.
|
|
*/
|
|
static int psp2Open(sqlite3_vfs *pVfs, const char *zName, sqlite3_file *pFile, int flags, int *pOutFlags) {
|
|
static const sqlite3_io_methods psp2io = {
|
|
1, /* iVersion */
|
|
psp2Close, /* xClose */
|
|
psp2Read, /* xRead */
|
|
psp2Write, /* xWrite */
|
|
psp2Truncate, /* xTruncate */
|
|
psp2Sync, /* xSync */
|
|
psp2FileSize, /* xFileSize */
|
|
psp2Lock, /* xLock */
|
|
psp2Unlock, /* xUnlock */
|
|
psp2CheckReservedLock, /* xCheckReservedLock */
|
|
psp2FileControl, /* xFileControl */
|
|
psp2SectorSize, /* xSectorSize */
|
|
psp2DeviceCharacteristics /* xDeviceCharacteristics */
|
|
};
|
|
|
|
PSP2File *p = reinterpret_cast<PSP2File*>(pFile); /* Populate this structure */
|
|
int oflags = 0; /* flags to pass to open() call */
|
|
char *aBuf = 0;
|
|
|
|
if (zName == 0)
|
|
return SQLITE_IOERR;
|
|
|
|
if (flags & SQLITE_OPEN_MAIN_JOURNAL) {
|
|
aBuf = reinterpret_cast<char*>(sqlite3_malloc(SQLITE_PSP2VFS_BUFFERSZ));
|
|
|
|
if (!aBuf)
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
if (flags & SQLITE_OPEN_EXCLUSIVE)
|
|
oflags |= SCE_O_EXCL;
|
|
if (flags & SQLITE_OPEN_CREATE)
|
|
oflags |= SCE_O_CREAT;
|
|
if (flags & SQLITE_OPEN_READONLY)
|
|
oflags |= SCE_O_RDONLY;
|
|
if (flags & SQLITE_OPEN_READWRITE)
|
|
oflags |= SCE_O_RDWR;
|
|
|
|
// TODO(xyz): sqlite tries to open inexistant journal and then tries to read from it, wtf?
|
|
// so force O_CREAT here
|
|
if (flags & SQLITE_OPEN_MAIN_JOURNAL && !(flags & SQLITE_OPEN_EXCLUSIVE))
|
|
oflags |= SCE_O_CREAT;
|
|
|
|
sceClibMemset(p, 0, sizeof(PSP2File));
|
|
p->fd = sceIoOpen(zName, oflags, 7);
|
|
|
|
if (p->fd < 0) {
|
|
sqlite3_free(aBuf);
|
|
return SQLITE_CANTOPEN;
|
|
}
|
|
|
|
p->aBuffer = aBuf;
|
|
|
|
if (pOutFlags)
|
|
*pOutFlags = flags;
|
|
|
|
p->base.pMethods = &psp2io;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Delete the file identified by argument zPath. If the dirSync parameter
|
|
** is non-zero, then ensure the file-system modification to delete the
|
|
** file has been synced to disk before returning.
|
|
*/
|
|
static int psp2Delete(sqlite3_vfs *pVfs, const char *zPath, int dirSync) {
|
|
int rc = 0; /* Return code */
|
|
// rc = unlink(zPath);
|
|
|
|
// if (rc != 0 && errno == ENOENT)
|
|
// return SQLITE_OK;
|
|
|
|
// if (rc == 0 && dirSync) {
|
|
// int dfd; /* File descriptor open on directory */
|
|
// int i; /* Iterator variable */
|
|
// char zDir[MAXPATHNAME + 1]; /* Name of directory containing file zPath */
|
|
|
|
// /* Figure out the directory name from the path of the file deleted. */
|
|
// sqlite3_snprintf(MAXPATHNAME, zDir, "%s", zPath);
|
|
// zDir[MAXPATHNAME] = '\0';
|
|
|
|
// for (i = strlen(zDir); i > 1 && zDir[i] != '/'; i++);
|
|
// zDir[i] = '\0';
|
|
|
|
// /* Open a file-descriptor on the directory. Sync. Close. */
|
|
// dfd = open(zDir, O_RDONLY, 0);
|
|
// if (dfd < 0)
|
|
// rc = -1;
|
|
// else {
|
|
// rc = fsync(dfd);
|
|
// close(dfd);
|
|
// }
|
|
// }
|
|
rc = sceIoRemove(zPath);
|
|
return (rc < 0? SQLITE_IOERR_DELETE : SQLITE_OK);
|
|
}
|
|
|
|
// #ifndef F_OK
|
|
// # define F_OK 0
|
|
// #endif
|
|
// #ifndef R_OK
|
|
// # define R_OK 4
|
|
// #endif
|
|
// #ifndef W_OK
|
|
// # define W_OK 2
|
|
// #endif
|
|
|
|
/*
|
|
** Query the file-system to see if the named file exists, is readable or
|
|
** is both readable and writable.
|
|
*/
|
|
static int psp2Access(sqlite3_vfs *pVfs, const char *zPath, int flags, int *pResOut) {
|
|
int rc = 0; /* access() return code */
|
|
// int eAccess = F_OK; /* Second argument to access() */
|
|
|
|
// assert(flags == SQLITE_ACCESS_EXISTS /* access(zPath, F_OK) */
|
|
// || flags == SQLITE_ACCESS_READ /* access(zPath, R_OK) */
|
|
// || flags == SQLITE_ACCESS_READWRITE /* access(zPath, R_OK|W_OK) */
|
|
// );
|
|
|
|
// if (flags == SQLITE_ACCESS_READWRITE)
|
|
// eAccess = R_OK|W_OK;
|
|
// if (flags == SQLITE_ACCESS_READ)
|
|
// eAccess = R_OK;
|
|
|
|
// rc = access(zPath, eAccess);
|
|
*pResOut = (rc == 0);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Argument zPath points to a nul-terminated string containing a file path.
|
|
** If zPath is an absolute path, then it is copied as is into the output
|
|
** buffer. Otherwise, if it is a relative path, then the equivalent full
|
|
** path is written to the output buffer.
|
|
**
|
|
** This function assumes that paths are UNIX style. Specifically, that:
|
|
**
|
|
** 1. Path components are separated by a '/'. and
|
|
** 2. Full paths begin with a '/' character.
|
|
*/
|
|
static int psp2FullPathname(sqlite3_vfs *pVfs, const char *zPath, int nPathOut, char *zPathOut) {
|
|
// char zDir[MAXPATHNAME + 1];
|
|
// if (zPath[0] == '/') {
|
|
// zDir[0] = '\0';
|
|
// }
|
|
// else {
|
|
// if (getcwd(zDir, sizeof(zDir)) == 0)
|
|
// return SQLITE_IOERR;
|
|
// }
|
|
|
|
// zDir[MAXPATHNAME] = '\0';
|
|
// sqlite3_snprintf(nPathOut, zPathOut, "%s/%s", zDir, zPath);
|
|
// zPathOut[nPathOut - 1] = '\0';
|
|
|
|
sqlite3_snprintf(nPathOut, zPathOut, zPath);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** The following four VFS methods:
|
|
**
|
|
** xDlOpen
|
|
** xDlError
|
|
** xDlSym
|
|
** xDlClose
|
|
**
|
|
** are supposed to implement the functionality needed by SQLite to load
|
|
** extensions compiled as shared objects. This simple VFS does not support
|
|
** this functionality, so the following functions are no-ops.
|
|
*/
|
|
static void *psp2DlOpen(sqlite3_vfs *pVfs, const char *zPath) {
|
|
return 0;
|
|
}
|
|
static void psp2DlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg) {
|
|
sqlite3_snprintf(nByte, zErrMsg, "Loadable extensions are not supported");
|
|
zErrMsg[nByte-1] = '\0';
|
|
}
|
|
static void (*psp2DlSym(sqlite3_vfs *pVfs, void *pH, const char *z))(void) {
|
|
return 0;
|
|
}
|
|
static void psp2DlClose(sqlite3_vfs *pVfs, void *pHandle) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Parameter zByte points to a buffer nByte bytes in size. Populate this
|
|
** buffer with pseudo-random data.
|
|
*/
|
|
static int psp2Randomness(sqlite3_vfs *pVfs, int nByte, char *zByte) {
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Sleep for at least nMicro microseconds. Return the (approximate) number
|
|
** of microseconds slept for.
|
|
*/
|
|
static int psp2Sleep(sqlite3_vfs *pVfs, int nMicro) {
|
|
sceKernelDelayThread(nMicro);
|
|
return nMicro;
|
|
}
|
|
|
|
/*
|
|
** Set *pTime to the current UTC time expressed as a Julian day. Return
|
|
** SQLITE_OK if successful, or an error code otherwise.
|
|
**
|
|
** http://en.wikipedia.org/wiki/Julian_day
|
|
**
|
|
** This implementation is not very good. The current time is rounded to
|
|
** an integer number of seconds. Also, assuming time_t is a signed 32-bit
|
|
** value, it will stop working some time in the year 2038 AD (the so-called
|
|
** "year 2038" problem that afflicts systems that store time this way).
|
|
*/
|
|
static int psp2CurrentTime(sqlite3_vfs *pVfs, double *pTime) {
|
|
time_t t = 0;
|
|
SceDateTime time = {0};
|
|
sceRtcGetCurrentClock(&time, 0);
|
|
sceRtcGetTime_t(&time, &t);
|
|
*pTime = t/86400.0 + 2440587.5;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This function returns a pointer to the VFS implemented in this file.
|
|
** To make the VFS available to SQLite:
|
|
**
|
|
** sqlite3_vfs_register(sqlite3_psp2vfs(), 0);
|
|
*/
|
|
sqlite3_vfs *sqlite3_psp2vfs(void) {
|
|
static sqlite3_vfs psp2vfs = {
|
|
1, /* iVersion */
|
|
sizeof(PSP2File), /* szOsFile */
|
|
MAXPATHNAME, /* mxPathname */
|
|
0, /* pNext */
|
|
"psp2", /* zName */
|
|
0, /* pAppData */
|
|
psp2Open, /* xOpen */
|
|
psp2Delete, /* xDelete */
|
|
psp2Access, /* xAccess */
|
|
psp2FullPathname, /* xFullPathname */
|
|
psp2DlOpen, /* xDlOpen */
|
|
psp2DlError, /* xDlError */
|
|
psp2DlSym, /* xDlSym */
|
|
psp2DlClose, /* xDlClose */
|
|
psp2Randomness, /* xRandomness */
|
|
psp2Sleep, /* xSleep */
|
|
psp2CurrentTime, /* xCurrentTime */
|
|
};
|
|
|
|
return &psp2vfs;
|
|
}
|
|
|
|
int sqlite3_os_init(void) {
|
|
if (sqlite3_vfs_register(sqlite3_psp2vfs(), 1) != SQLITE_OK)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sqlite3_os_end(void) {
|
|
return sqlite3_vfs_unregister(sqlite3_psp2vfs());
|
|
}
|