android_kernel_sony_msm8994/crypto/internal.h
Herbert Xu 5cb1454b86 [CRYPTO] Allow multiple implementations of the same algorithm
This is the first step on the road towards asynchronous support in
the Crypto API.  It adds support for having multiple crypto_alg objects
for the same algorithm registered in the system.

For example, each device driver would register a crypto_alg object
for each algorithm that it supports.  While at the same time the
user may load software implementations of those same algorithms.

Users of the Crypto API may then select a specific implementation
by name, or choose any implementation for a given algorithm with
the highest priority.

The priority field is a 32-bit signed integer.  In future it will be
possible to modify it from user-space.

This also provides a solution to the problem of selecting amongst
various AES implementations, that is, aes vs. aes-i586 vs. aes-padlock.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2006-01-09 14:15:37 -08:00

113 lines
2.8 KiB
C

/*
* Cryptographic API.
*
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
* Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#ifndef _CRYPTO_INTERNAL_H
#define _CRYPTO_INTERNAL_H
#include <linux/crypto.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/kernel.h>
#include <linux/rwsem.h>
#include <linux/slab.h>
#include <asm/kmap_types.h>
extern struct list_head crypto_alg_list;
extern struct rw_semaphore crypto_alg_sem;
extern enum km_type crypto_km_types[];
static inline enum km_type crypto_kmap_type(int out)
{
return crypto_km_types[(in_softirq() ? 2 : 0) + out];
}
static inline void *crypto_kmap(struct page *page, int out)
{
return kmap_atomic(page, crypto_kmap_type(out));
}
static inline void crypto_kunmap(void *vaddr, int out)
{
kunmap_atomic(vaddr, crypto_kmap_type(out));
}
static inline void crypto_yield(struct crypto_tfm *tfm)
{
if (tfm->crt_flags & CRYPTO_TFM_REQ_MAY_SLEEP)
cond_resched();
}
#ifdef CONFIG_CRYPTO_HMAC
int crypto_alloc_hmac_block(struct crypto_tfm *tfm);
void crypto_free_hmac_block(struct crypto_tfm *tfm);
#else
static inline int crypto_alloc_hmac_block(struct crypto_tfm *tfm)
{
return 0;
}
static inline void crypto_free_hmac_block(struct crypto_tfm *tfm)
{ }
#endif
#ifdef CONFIG_PROC_FS
void __init crypto_init_proc(void);
#else
static inline void crypto_init_proc(void)
{ }
#endif
static inline unsigned int crypto_digest_ctxsize(struct crypto_alg *alg,
int flags)
{
return alg->cra_ctxsize;
}
static inline unsigned int crypto_cipher_ctxsize(struct crypto_alg *alg,
int flags)
{
unsigned int len = alg->cra_ctxsize;
switch (flags & CRYPTO_TFM_MODE_MASK) {
case CRYPTO_TFM_MODE_CBC:
len = ALIGN(len, (unsigned long)alg->cra_alignmask + 1);
len += alg->cra_blocksize;
break;
}
return len;
}
static inline unsigned int crypto_compress_ctxsize(struct crypto_alg *alg,
int flags)
{
return alg->cra_ctxsize;
}
int crypto_init_digest_flags(struct crypto_tfm *tfm, u32 flags);
int crypto_init_cipher_flags(struct crypto_tfm *tfm, u32 flags);
int crypto_init_compress_flags(struct crypto_tfm *tfm, u32 flags);
int crypto_init_digest_ops(struct crypto_tfm *tfm);
int crypto_init_cipher_ops(struct crypto_tfm *tfm);
int crypto_init_compress_ops(struct crypto_tfm *tfm);
void crypto_exit_digest_ops(struct crypto_tfm *tfm);
void crypto_exit_cipher_ops(struct crypto_tfm *tfm);
void crypto_exit_compress_ops(struct crypto_tfm *tfm);
#endif /* _CRYPTO_INTERNAL_H */