mirror of
https://github.com/joel16/android_kernel_sony_msm8994_rework.git
synced 2025-01-09 21:40:29 +00:00
PCI-Express AER implemetation: aer howto document
PCI-Express AER (Advanced Error Reporting) provides more robust error reporting. The series of patches enable kernel support to AER. The initial patches were written by Tom Long Nguyen. I ported them to the kernel 2.6.18-rc3. Many thanks to Rajesh Shah and Narayanan Chandramouli for their great review comments and testing help. Patch 1 consists of the pciaer-howto.txt document. Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
parent
20d516602c
commit
47402400c6
253
Documentation/pcieaer-howto.txt
Normal file
253
Documentation/pcieaer-howto.txt
Normal file
@ -0,0 +1,253 @@
|
||||
The PCI Express Advanced Error Reporting Driver Guide HOWTO
|
||||
T. Long Nguyen <tom.l.nguyen@intel.com>
|
||||
Yanmin Zhang <yanmin.zhang@intel.com>
|
||||
07/29/2006
|
||||
|
||||
|
||||
1. Overview
|
||||
|
||||
1.1 About this guide
|
||||
|
||||
This guide describes the basics of the PCI Express Advanced Error
|
||||
Reporting (AER) driver and provides information on how to use it, as
|
||||
well as how to enable the drivers of endpoint devices to conform with
|
||||
PCI Express AER driver.
|
||||
|
||||
1.2 Copyright © Intel Corporation 2006.
|
||||
|
||||
1.3 What is the PCI Express AER Driver?
|
||||
|
||||
PCI Express error signaling can occur on the PCI Express link itself
|
||||
or on behalf of transactions initiated on the link. PCI Express
|
||||
defines two error reporting paradigms: the baseline capability and
|
||||
the Advanced Error Reporting capability. The baseline capability is
|
||||
required of all PCI Express components providing a minimum defined
|
||||
set of error reporting requirements. Advanced Error Reporting
|
||||
capability is implemented with a PCI Express advanced error reporting
|
||||
extended capability structure providing more robust error reporting.
|
||||
|
||||
The PCI Express AER driver provides the infrastructure to support PCI
|
||||
Express Advanced Error Reporting capability. The PCI Express AER
|
||||
driver provides three basic functions:
|
||||
|
||||
- Gathers the comprehensive error information if errors occurred.
|
||||
- Reports error to the users.
|
||||
- Performs error recovery actions.
|
||||
|
||||
AER driver only attaches root ports which support PCI-Express AER
|
||||
capability.
|
||||
|
||||
|
||||
2. User Guide
|
||||
|
||||
2.1 Include the PCI Express AER Root Driver into the Linux Kernel
|
||||
|
||||
The PCI Express AER Root driver is a Root Port service driver attached
|
||||
to the PCI Express Port Bus driver. If a user wants to use it, the driver
|
||||
has to be compiled. Option CONFIG_PCIEAER supports this capability. It
|
||||
depends on CONFIG_PCIEPORTBUS, so pls. set CONFIG_PCIEPORTBUS=y and
|
||||
CONFIG_PCIEAER = y.
|
||||
|
||||
2.2 Load PCI Express AER Root Driver
|
||||
There is a case where a system has AER support in BIOS. Enabling the AER
|
||||
Root driver and having AER support in BIOS may result unpredictable
|
||||
behavior. To avoid this conflict, a successful load of the AER Root driver
|
||||
requires ACPI _OSC support in the BIOS to allow the AER Root driver to
|
||||
request for native control of AER. See the PCI FW 3.0 Specification for
|
||||
details regarding OSC usage. Currently, lots of firmwares don't provide
|
||||
_OSC support while they use PCI Express. To support such firmwares,
|
||||
forceload, a parameter of type bool, could enable AER to continue to
|
||||
be initiated although firmwares have no _OSC support. To enable the
|
||||
walkaround, pls. add aerdriver.forceload=y to kernel boot parameter line
|
||||
when booting kernel. Note that forceload=n by default.
|
||||
|
||||
2.3 AER error output
|
||||
When a PCI-E AER error is captured, an error message will be outputed to
|
||||
console. If it's a correctable error, it is outputed as a warning.
|
||||
Otherwise, it is printed as an error. So users could choose different
|
||||
log level to filter out correctable error messages.
|
||||
|
||||
Below shows an example.
|
||||
+------ PCI-Express Device Error -----+
|
||||
Error Severity : Uncorrected (Fatal)
|
||||
PCIE Bus Error type : Transaction Layer
|
||||
Unsupported Request : First
|
||||
Requester ID : 0500
|
||||
VendorID=8086h, DeviceID=0329h, Bus=05h, Device=00h, Function=00h
|
||||
TLB Header:
|
||||
04000001 00200a03 05010000 00050100
|
||||
|
||||
In the example, 'Requester ID' means the ID of the device who sends
|
||||
the error message to root port. Pls. refer to pci express specs for
|
||||
other fields.
|
||||
|
||||
|
||||
3. Developer Guide
|
||||
|
||||
To enable AER aware support requires a software driver to configure
|
||||
the AER capability structure within its device and to provide callbacks.
|
||||
|
||||
To support AER better, developers need understand how AER does work
|
||||
firstly.
|
||||
|
||||
PCI Express errors are classified into two types: correctable errors
|
||||
and uncorrectable errors. This classification is based on the impacts
|
||||
of those errors, which may result in degraded performance or function
|
||||
failure.
|
||||
|
||||
Correctable errors pose no impacts on the functionality of the
|
||||
interface. The PCI Express protocol can recover without any software
|
||||
intervention or any loss of data. These errors are detected and
|
||||
corrected by hardware. Unlike correctable errors, uncorrectable
|
||||
errors impact functionality of the interface. Uncorrectable errors
|
||||
can cause a particular transaction or a particular PCI Express link
|
||||
to be unreliable. Depending on those error conditions, uncorrectable
|
||||
errors are further classified into non-fatal errors and fatal errors.
|
||||
Non-fatal errors cause the particular transaction to be unreliable,
|
||||
but the PCI Express link itself is fully functional. Fatal errors, on
|
||||
the other hand, cause the link to be unreliable.
|
||||
|
||||
When AER is enabled, a PCI Express device will automatically send an
|
||||
error message to the PCIE root port above it when the device captures
|
||||
an error. The Root Port, upon receiving an error reporting message,
|
||||
internally processes and logs the error message in its PCI Express
|
||||
capability structure. Error information being logged includes storing
|
||||
the error reporting agent's requestor ID into the Error Source
|
||||
Identification Registers and setting the error bits of the Root Error
|
||||
Status Register accordingly. If AER error reporting is enabled in Root
|
||||
Error Command Register, the Root Port generates an interrupt if an
|
||||
error is detected.
|
||||
|
||||
Note that the errors as described above are related to the PCI Express
|
||||
hierarchy and links. These errors do not include any device specific
|
||||
errors because device specific errors will still get sent directly to
|
||||
the device driver.
|
||||
|
||||
3.1 Configure the AER capability structure
|
||||
|
||||
AER aware drivers of PCI Express component need change the device
|
||||
control registers to enable AER. They also could change AER registers,
|
||||
including mask and severity registers. Helper function
|
||||
pci_enable_pcie_error_reporting could be used to enable AER. See
|
||||
section 3.3.
|
||||
|
||||
3.2. Provide callbacks
|
||||
|
||||
3.2.1 callback reset_link to reset pci express link
|
||||
|
||||
This callback is used to reset the pci express physical link when a
|
||||
fatal error happens. The root port aer service driver provides a
|
||||
default reset_link function, but different upstream ports might
|
||||
have different specifications to reset pci express link, so all
|
||||
upstream ports should provide their own reset_link functions.
|
||||
|
||||
In struct pcie_port_service_driver, a new pointer, reset_link, is
|
||||
added.
|
||||
|
||||
pci_ers_result_t (*reset_link) (struct pci_dev *dev);
|
||||
|
||||
Section 3.2.2.2 provides more detailed info on when to call
|
||||
reset_link.
|
||||
|
||||
3.2.2 PCI error-recovery callbacks
|
||||
|
||||
The PCI Express AER Root driver uses error callbacks to coordinate
|
||||
with downstream device drivers associated with a hierarchy in question
|
||||
when performing error recovery actions.
|
||||
|
||||
Data struct pci_driver has a pointer, err_handler, to point to
|
||||
pci_error_handlers who consists of a couple of callback function
|
||||
pointers. AER driver follows the rules defined in
|
||||
pci-error-recovery.txt except pci express specific parts (e.g.
|
||||
reset_link). Pls. refer to pci-error-recovery.txt for detailed
|
||||
definitions of the callbacks.
|
||||
|
||||
Below sections specify when to call the error callback functions.
|
||||
|
||||
3.2.2.1 Correctable errors
|
||||
|
||||
Correctable errors pose no impacts on the functionality of
|
||||
the interface. The PCI Express protocol can recover without any
|
||||
software intervention or any loss of data. These errors do not
|
||||
require any recovery actions. The AER driver clears the device's
|
||||
correctable error status register accordingly and logs these errors.
|
||||
|
||||
3.2.2.2 Non-correctable (non-fatal and fatal) errors
|
||||
|
||||
If an error message indicates a non-fatal error, performing link reset
|
||||
at upstream is not required. The AER driver calls error_detected(dev,
|
||||
pci_channel_io_normal) to all drivers associated within a hierarchy in
|
||||
question. for example,
|
||||
EndPoint<==>DownstreamPort B<==>UpstreamPort A<==>RootPort.
|
||||
If Upstream port A captures an AER error, the hierarchy consists of
|
||||
Downstream port B and EndPoint.
|
||||
|
||||
A driver may return PCI_ERS_RESULT_CAN_RECOVER,
|
||||
PCI_ERS_RESULT_DISCONNECT, or PCI_ERS_RESULT_NEED_RESET, depending on
|
||||
whether it can recover or the AER driver calls mmio_enabled as next.
|
||||
|
||||
If an error message indicates a fatal error, kernel will broadcast
|
||||
error_detected(dev, pci_channel_io_frozen) to all drivers within
|
||||
a hierarchy in question. Then, performing link reset at upstream is
|
||||
necessary. As different kinds of devices might use different approaches
|
||||
to reset link, AER port service driver is required to provide the
|
||||
function to reset link. Firstly, kernel looks for if the upstream
|
||||
component has an aer driver. If it has, kernel uses the reset_link
|
||||
callback of the aer driver. If the upstream component has no aer driver
|
||||
and the port is downstream port, we will use the aer driver of the
|
||||
root port who reports the AER error. As for upstream ports,
|
||||
they should provide their own aer service drivers with reset_link
|
||||
function. If error_detected returns PCI_ERS_RESULT_CAN_RECOVER and
|
||||
reset_link returns PCI_ERS_RESULT_RECOVERED, the error handling goes
|
||||
to mmio_enabled.
|
||||
|
||||
3.3 helper functions
|
||||
|
||||
3.3.1 int pci_find_aer_capability(struct pci_dev *dev);
|
||||
pci_find_aer_capability locates the PCI Express AER capability
|
||||
in the device configuration space. If the device doesn't support
|
||||
PCI-Express AER, the function returns 0.
|
||||
|
||||
3.3.2 int pci_enable_pcie_error_reporting(struct pci_dev *dev);
|
||||
pci_enable_pcie_error_reporting enables the device to send error
|
||||
messages to root port when an error is detected. Note that devices
|
||||
don't enable the error reporting by default, so device drivers need
|
||||
call this function to enable it.
|
||||
|
||||
3.3.3 int pci_disable_pcie_error_reporting(struct pci_dev *dev);
|
||||
pci_disable_pcie_error_reporting disables the device to send error
|
||||
messages to root port when an error is detected.
|
||||
|
||||
3.3.4 int pci_cleanup_aer_uncorrect_error_status(struct pci_dev *dev);
|
||||
pci_cleanup_aer_uncorrect_error_status cleanups the uncorrectable
|
||||
error status register.
|
||||
|
||||
3.4 Frequent Asked Questions
|
||||
|
||||
Q: What happens if a PCI Express device driver does not provide an
|
||||
error recovery handler (pci_driver->err_handler is equal to NULL)?
|
||||
|
||||
A: The devices attached with the driver won't be recovered. If the
|
||||
error is fatal, kernel will print out warning messages. Please refer
|
||||
to section 3 for more information.
|
||||
|
||||
Q: What happens if an upstream port service driver does not provide
|
||||
callback reset_link?
|
||||
|
||||
A: Fatal error recovery will fail if the errors are reported by the
|
||||
upstream ports who are attached by the service driver.
|
||||
|
||||
Q: How does this infrastructure deal with driver that is not PCI
|
||||
Express aware?
|
||||
|
||||
A: This infrastructure calls the error callback functions of the
|
||||
driver when an error happens. But if the driver is not aware of
|
||||
PCI Express, the device might not report its own errors to root
|
||||
port.
|
||||
|
||||
Q: What modifications will that driver need to make it compatible
|
||||
with the PCI Express AER Root driver?
|
||||
|
||||
A: It could call the helper functions to enable AER in devices and
|
||||
cleanup uncorrectable status register. Pls. refer to section 3.3.
|
||||
|
Loading…
Reference in New Issue
Block a user