mirror of
https://github.com/joel16/android_kernel_sony_msm8994_rework.git
synced 2024-12-26 14:06:17 +00:00
5fbcf9a5c6
Resend using accessors instead of volatile qualifiers per hch comments, and easier to understand convenience macros per rja comments. Patch to apply volatile semantics when accessing MMR's in various SN files. Signed-off-by: Mark Maule <maule@sgi.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
275 lines
5.7 KiB
C
275 lines
5.7 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved.
|
|
*/
|
|
|
|
#ifndef _ASM_SN_IO_H
|
|
#define _ASM_SN_IO_H
|
|
#include <linux/compiler.h>
|
|
#include <asm/intrinsics.h>
|
|
|
|
extern void * sn_io_addr(unsigned long port) __attribute_const__; /* Forward definition */
|
|
extern void __sn_mmiowb(void); /* Forward definition */
|
|
|
|
extern int numionodes;
|
|
|
|
#define __sn_mf_a() ia64_mfa()
|
|
|
|
extern void sn_dma_flush(unsigned long);
|
|
|
|
#define __sn_inb ___sn_inb
|
|
#define __sn_inw ___sn_inw
|
|
#define __sn_inl ___sn_inl
|
|
#define __sn_outb ___sn_outb
|
|
#define __sn_outw ___sn_outw
|
|
#define __sn_outl ___sn_outl
|
|
#define __sn_readb ___sn_readb
|
|
#define __sn_readw ___sn_readw
|
|
#define __sn_readl ___sn_readl
|
|
#define __sn_readq ___sn_readq
|
|
#define __sn_readb_relaxed ___sn_readb_relaxed
|
|
#define __sn_readw_relaxed ___sn_readw_relaxed
|
|
#define __sn_readl_relaxed ___sn_readl_relaxed
|
|
#define __sn_readq_relaxed ___sn_readq_relaxed
|
|
|
|
/*
|
|
* Convenience macros for setting/clearing bits using the above accessors
|
|
*/
|
|
|
|
#define __sn_setq_relaxed(addr, val) \
|
|
writeq((__sn_readq_relaxed(addr) | (val)), (addr))
|
|
#define __sn_clrq_relaxed(addr, val) \
|
|
writeq((__sn_readq_relaxed(addr) & ~(val)), (addr))
|
|
|
|
/*
|
|
* The following routines are SN Platform specific, called when
|
|
* a reference is made to inX/outX set macros. SN Platform
|
|
* inX set of macros ensures that Posted DMA writes on the
|
|
* Bridge is flushed.
|
|
*
|
|
* The routines should be self explainatory.
|
|
*/
|
|
|
|
static inline unsigned int
|
|
___sn_inb (unsigned long port)
|
|
{
|
|
volatile unsigned char *addr;
|
|
unsigned char ret = -1;
|
|
|
|
if ((addr = sn_io_addr(port))) {
|
|
ret = *addr;
|
|
__sn_mf_a();
|
|
sn_dma_flush((unsigned long)addr);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline unsigned int
|
|
___sn_inw (unsigned long port)
|
|
{
|
|
volatile unsigned short *addr;
|
|
unsigned short ret = -1;
|
|
|
|
if ((addr = sn_io_addr(port))) {
|
|
ret = *addr;
|
|
__sn_mf_a();
|
|
sn_dma_flush((unsigned long)addr);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline unsigned int
|
|
___sn_inl (unsigned long port)
|
|
{
|
|
volatile unsigned int *addr;
|
|
unsigned int ret = -1;
|
|
|
|
if ((addr = sn_io_addr(port))) {
|
|
ret = *addr;
|
|
__sn_mf_a();
|
|
sn_dma_flush((unsigned long)addr);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline void
|
|
___sn_outb (unsigned char val, unsigned long port)
|
|
{
|
|
volatile unsigned char *addr;
|
|
|
|
if ((addr = sn_io_addr(port))) {
|
|
*addr = val;
|
|
__sn_mmiowb();
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
___sn_outw (unsigned short val, unsigned long port)
|
|
{
|
|
volatile unsigned short *addr;
|
|
|
|
if ((addr = sn_io_addr(port))) {
|
|
*addr = val;
|
|
__sn_mmiowb();
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
___sn_outl (unsigned int val, unsigned long port)
|
|
{
|
|
volatile unsigned int *addr;
|
|
|
|
if ((addr = sn_io_addr(port))) {
|
|
*addr = val;
|
|
__sn_mmiowb();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The following routines are SN Platform specific, called when
|
|
* a reference is made to readX/writeX set macros. SN Platform
|
|
* readX set of macros ensures that Posted DMA writes on the
|
|
* Bridge is flushed.
|
|
*
|
|
* The routines should be self explainatory.
|
|
*/
|
|
|
|
static inline unsigned char
|
|
___sn_readb (const volatile void __iomem *addr)
|
|
{
|
|
unsigned char val;
|
|
|
|
val = *(volatile unsigned char __force *)addr;
|
|
__sn_mf_a();
|
|
sn_dma_flush((unsigned long)addr);
|
|
return val;
|
|
}
|
|
|
|
static inline unsigned short
|
|
___sn_readw (const volatile void __iomem *addr)
|
|
{
|
|
unsigned short val;
|
|
|
|
val = *(volatile unsigned short __force *)addr;
|
|
__sn_mf_a();
|
|
sn_dma_flush((unsigned long)addr);
|
|
return val;
|
|
}
|
|
|
|
static inline unsigned int
|
|
___sn_readl (const volatile void __iomem *addr)
|
|
{
|
|
unsigned int val;
|
|
|
|
val = *(volatile unsigned int __force *)addr;
|
|
__sn_mf_a();
|
|
sn_dma_flush((unsigned long)addr);
|
|
return val;
|
|
}
|
|
|
|
static inline unsigned long
|
|
___sn_readq (const volatile void __iomem *addr)
|
|
{
|
|
unsigned long val;
|
|
|
|
val = *(volatile unsigned long __force *)addr;
|
|
__sn_mf_a();
|
|
sn_dma_flush((unsigned long)addr);
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* For generic and SN2 kernels, we have a set of fast access
|
|
* PIO macros. These macros are provided on SN Platform
|
|
* because the normal inX and readX macros perform an
|
|
* additional task of flushing Post DMA request on the Bridge.
|
|
*
|
|
* These routines should be self explainatory.
|
|
*/
|
|
|
|
static inline unsigned int
|
|
sn_inb_fast (unsigned long port)
|
|
{
|
|
volatile unsigned char *addr = (unsigned char *)port;
|
|
unsigned char ret;
|
|
|
|
ret = *addr;
|
|
__sn_mf_a();
|
|
return ret;
|
|
}
|
|
|
|
static inline unsigned int
|
|
sn_inw_fast (unsigned long port)
|
|
{
|
|
volatile unsigned short *addr = (unsigned short *)port;
|
|
unsigned short ret;
|
|
|
|
ret = *addr;
|
|
__sn_mf_a();
|
|
return ret;
|
|
}
|
|
|
|
static inline unsigned int
|
|
sn_inl_fast (unsigned long port)
|
|
{
|
|
volatile unsigned int *addr = (unsigned int *)port;
|
|
unsigned int ret;
|
|
|
|
ret = *addr;
|
|
__sn_mf_a();
|
|
return ret;
|
|
}
|
|
|
|
static inline unsigned char
|
|
___sn_readb_relaxed (const volatile void __iomem *addr)
|
|
{
|
|
return *(volatile unsigned char __force *)addr;
|
|
}
|
|
|
|
static inline unsigned short
|
|
___sn_readw_relaxed (const volatile void __iomem *addr)
|
|
{
|
|
return *(volatile unsigned short __force *)addr;
|
|
}
|
|
|
|
static inline unsigned int
|
|
___sn_readl_relaxed (const volatile void __iomem *addr)
|
|
{
|
|
return *(volatile unsigned int __force *) addr;
|
|
}
|
|
|
|
static inline unsigned long
|
|
___sn_readq_relaxed (const volatile void __iomem *addr)
|
|
{
|
|
return *(volatile unsigned long __force *) addr;
|
|
}
|
|
|
|
struct pci_dev;
|
|
|
|
static inline int
|
|
sn_pci_set_vchan(struct pci_dev *pci_dev, unsigned long *addr, int vchan)
|
|
{
|
|
|
|
if (vchan > 1) {
|
|
return -1;
|
|
}
|
|
|
|
if (!(*addr >> 32)) /* Using a mask here would be cleaner */
|
|
return 0; /* but this generates better code */
|
|
|
|
if (vchan == 1) {
|
|
/* Set Bit 57 */
|
|
*addr |= (1UL << 57);
|
|
} else {
|
|
/* Clear Bit 57 */
|
|
*addr &= ~(1UL << 57);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* _ASM_SN_IO_H */
|