David Howells 7d12e780e0 IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.

The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around.  On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).

Where appropriate, an arch may override the generic storage facility and do
something different with the variable.  On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.

Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions.  Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller.  A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.

I've build this code with allyesconfig for x86_64 and i386.  I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.

This will affect all archs.  Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:

	struct pt_regs *old_regs = set_irq_regs(regs);

And put the old one back at the end:

	set_irq_regs(old_regs);

Don't pass regs through to generic_handle_irq() or __do_IRQ().

In timer_interrupt(), this sort of change will be necessary:

	-	update_process_times(user_mode(regs));
	-	profile_tick(CPU_PROFILING, regs);
	+	update_process_times(user_mode(get_irq_regs()));
	+	profile_tick(CPU_PROFILING);

I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().

Some notes on the interrupt handling in the drivers:

 (*) input_dev() is now gone entirely.  The regs pointer is no longer stored in
     the input_dev struct.

 (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking.  It does
     something different depending on whether it's been supplied with a regs
     pointer or not.

 (*) Various IRQ handler function pointers have been moved to type
     irq_handler_t.

Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:10:12 +01:00

1355 lines
34 KiB
C

/*
* PMac DBDMA lowlevel functions
*
* Copyright (c) by Takashi Iwai <tiwai@suse.de>
* code based on dmasound.c.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <sound/driver.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <sound/core.h>
#include "pmac.h"
#include <sound/pcm_params.h>
#include <asm/pmac_feature.h>
#include <asm/pci-bridge.h>
/* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
static int awacs_freqs[8] = {
44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
};
/* fixed frequency table for tumbler */
static int tumbler_freqs[1] = {
44100
};
/*
* allocate DBDMA command arrays
*/
static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
{
unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
&rec->dma_base, GFP_KERNEL);
if (rec->space == NULL)
return -ENOMEM;
rec->size = size;
memset(rec->space, 0, rsize);
rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
return 0;
}
static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
{
if (rec->space) {
unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
}
}
/*
* pcm stuff
*/
/*
* look up frequency table
*/
unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
{
int i, ok, found;
ok = rec->cur_freqs;
if (rate > chip->freq_table[0])
return 0;
found = 0;
for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
if (! (ok & 1)) continue;
found = i;
if (rate >= chip->freq_table[i])
break;
}
return found;
}
/*
* check whether another stream is active
*/
static inline int another_stream(int stream)
{
return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
}
/*
* allocate buffers
*/
static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
}
/*
* release buffers
*/
static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs)
{
snd_pcm_lib_free_pages(subs);
return 0;
}
/*
* get a stream of the opposite direction
*/
static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
{
switch (stream) {
case SNDRV_PCM_STREAM_PLAYBACK:
return &chip->playback;
case SNDRV_PCM_STREAM_CAPTURE:
return &chip->capture;
default:
snd_BUG();
return NULL;
}
}
/*
* wait while run status is on
*/
static inline void
snd_pmac_wait_ack(struct pmac_stream *rec)
{
int timeout = 50000;
while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
udelay(1);
}
/*
* set the format and rate to the chip.
* call the lowlevel function if defined (e.g. for AWACS).
*/
static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
{
/* set up frequency and format */
out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
if (chip->set_format)
chip->set_format(chip);
}
/*
* stop the DMA transfer
*/
static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
{
out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
snd_pmac_wait_ack(rec);
}
/*
* set the command pointer address
*/
static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
{
out_le32(&rec->dma->cmdptr, cmd->addr);
}
/*
* start the DMA
*/
static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
{
out_le32(&rec->dma->control, status | (status << 16));
}
/*
* prepare playback/capture stream
*/
static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
{
int i;
volatile struct dbdma_cmd __iomem *cp;
struct snd_pcm_runtime *runtime = subs->runtime;
int rate_index;
long offset;
struct pmac_stream *astr;
rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
rec->period_size = snd_pcm_lib_period_bytes(subs);
rec->nperiods = rec->dma_size / rec->period_size;
rec->cur_period = 0;
rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
/* set up constraints */
astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
if (! astr)
return -EINVAL;
astr->cur_freqs = 1 << rate_index;
astr->cur_formats = 1 << runtime->format;
chip->rate_index = rate_index;
chip->format = runtime->format;
/* We really want to execute a DMA stop command, after the AWACS
* is initialized.
* For reasons I don't understand, it stops the hissing noise
* common to many PowerBook G3 systems and random noise otherwise
* captured on iBook2's about every third time. -ReneR
*/
spin_lock_irq(&chip->reg_lock);
snd_pmac_dma_stop(rec);
st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
snd_pmac_dma_set_command(rec, &chip->extra_dma);
snd_pmac_dma_run(rec, RUN);
spin_unlock_irq(&chip->reg_lock);
mdelay(5);
spin_lock_irq(&chip->reg_lock);
/* continuous DMA memory type doesn't provide the physical address,
* so we need to resolve the address here...
*/
offset = runtime->dma_addr;
for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
st_le32(&cp->phy_addr, offset);
st_le16(&cp->req_count, rec->period_size);
/*st_le16(&cp->res_count, 0);*/
st_le16(&cp->xfer_status, 0);
offset += rec->period_size;
}
/* make loop */
st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
st_le32(&cp->cmd_dep, rec->cmd.addr);
snd_pmac_dma_stop(rec);
snd_pmac_dma_set_command(rec, &rec->cmd);
spin_unlock_irq(&chip->reg_lock);
return 0;
}
/*
* PCM trigger/stop
*/
static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
struct snd_pcm_substream *subs, int cmd)
{
volatile struct dbdma_cmd __iomem *cp;
int i, command;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
if (rec->running)
return -EBUSY;
command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
spin_lock(&chip->reg_lock);
snd_pmac_beep_stop(chip);
snd_pmac_pcm_set_format(chip);
for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
out_le16(&cp->command, command);
snd_pmac_dma_set_command(rec, &rec->cmd);
(void)in_le32(&rec->dma->status);
snd_pmac_dma_run(rec, RUN|WAKE);
rec->running = 1;
spin_unlock(&chip->reg_lock);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
spin_lock(&chip->reg_lock);
rec->running = 0;
/*printk("stopped!!\n");*/
snd_pmac_dma_stop(rec);
for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
out_le16(&cp->command, DBDMA_STOP);
spin_unlock(&chip->reg_lock);
break;
default:
return -EINVAL;
}
return 0;
}
/*
* return the current pointer
*/
inline
static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
struct pmac_stream *rec,
struct snd_pcm_substream *subs)
{
int count = 0;
#if 1 /* hmm.. how can we get the current dma pointer?? */
int stat;
volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
stat = ld_le16(&cp->xfer_status);
if (stat & (ACTIVE|DEAD)) {
count = in_le16(&cp->res_count);
if (count)
count = rec->period_size - count;
}
#endif
count += rec->cur_period * rec->period_size;
/*printk("pointer=%d\n", count);*/
return bytes_to_frames(subs->runtime, count);
}
/*
* playback
*/
static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
{
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
}
static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
int cmd)
{
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
}
static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
{
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
}
/*
* capture
*/
static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
{
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
}
static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
int cmd)
{
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
}
static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
{
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
}
/*
* update playback/capture pointer from interrupts
*/
static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
{
volatile struct dbdma_cmd __iomem *cp;
int c;
int stat;
spin_lock(&chip->reg_lock);
if (rec->running) {
cp = &rec->cmd.cmds[rec->cur_period];
for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
stat = ld_le16(&cp->xfer_status);
if (! (stat & ACTIVE))
break;
/*printk("update frag %d\n", rec->cur_period);*/
st_le16(&cp->xfer_status, 0);
st_le16(&cp->req_count, rec->period_size);
/*st_le16(&cp->res_count, 0);*/
rec->cur_period++;
if (rec->cur_period >= rec->nperiods) {
rec->cur_period = 0;
cp = rec->cmd.cmds;
} else
cp++;
spin_unlock(&chip->reg_lock);
snd_pcm_period_elapsed(rec->substream);
spin_lock(&chip->reg_lock);
}
}
spin_unlock(&chip->reg_lock);
}
/*
* hw info
*/
static struct snd_pcm_hardware snd_pmac_playback =
{
.info = (SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_RESUME),
.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_8000_44100,
.rate_min = 7350,
.rate_max = 44100,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 131072,
.period_bytes_min = 256,
.period_bytes_max = 16384,
.periods_min = 3,
.periods_max = PMAC_MAX_FRAGS,
};
static struct snd_pcm_hardware snd_pmac_capture =
{
.info = (SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_RESUME),
.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_8000_44100,
.rate_min = 7350,
.rate_max = 44100,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 131072,
.period_bytes_min = 256,
.period_bytes_max = 16384,
.periods_min = 3,
.periods_max = PMAC_MAX_FRAGS,
};
#if 0 // NYI
static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_pmac *chip = rule->private;
struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
int i, freq_table[8], num_freqs;
if (! rec)
return -EINVAL;
num_freqs = 0;
for (i = chip->num_freqs - 1; i >= 0; i--) {
if (rec->cur_freqs & (1 << i))
freq_table[num_freqs++] = chip->freq_table[i];
}
return snd_interval_list(hw_param_interval(params, rule->var),
num_freqs, freq_table, 0);
}
static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_pmac *chip = rule->private;
struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
if (! rec)
return -EINVAL;
return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
rec->cur_formats);
}
#endif // NYI
static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
struct snd_pcm_substream *subs)
{
struct snd_pcm_runtime *runtime = subs->runtime;
int i, j, fflags;
static int typical_freqs[] = {
44100,
22050,
11025,
0,
};
static int typical_freq_flags[] = {
SNDRV_PCM_RATE_44100,
SNDRV_PCM_RATE_22050,
SNDRV_PCM_RATE_11025,
0,
};
/* look up frequency table and fill bit mask */
runtime->hw.rates = 0;
fflags = chip->freqs_ok;
for (i = 0; typical_freqs[i]; i++) {
for (j = 0; j < chip->num_freqs; j++) {
if ((chip->freqs_ok & (1 << j)) &&
chip->freq_table[j] == typical_freqs[i]) {
runtime->hw.rates |= typical_freq_flags[i];
fflags &= ~(1 << j);
break;
}
}
}
if (fflags) /* rest */
runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
/* check for minimum and maximum rates */
for (i = 0; i < chip->num_freqs; i++) {
if (chip->freqs_ok & (1 << i)) {
runtime->hw.rate_max = chip->freq_table[i];
break;
}
}
for (i = chip->num_freqs - 1; i >= 0; i--) {
if (chip->freqs_ok & (1 << i)) {
runtime->hw.rate_min = chip->freq_table[i];
break;
}
}
runtime->hw.formats = chip->formats_ok;
if (chip->can_capture) {
if (! chip->can_duplex)
runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
}
runtime->private_data = rec;
rec->substream = subs;
#if 0 /* FIXME: still under development.. */
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
snd_pmac_hw_rule_rate, chip, rec->stream, -1);
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
snd_pmac_hw_rule_format, chip, rec->stream, -1);
#endif
runtime->hw.periods_max = rec->cmd.size - 1;
if (chip->can_duplex)
snd_pcm_set_sync(subs);
/* constraints to fix choppy sound */
snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
return 0;
}
static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
struct snd_pcm_substream *subs)
{
struct pmac_stream *astr;
snd_pmac_dma_stop(rec);
astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
if (! astr)
return -EINVAL;
/* reset constraints */
astr->cur_freqs = chip->freqs_ok;
astr->cur_formats = chip->formats_ok;
return 0;
}
static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
{
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
subs->runtime->hw = snd_pmac_playback;
return snd_pmac_pcm_open(chip, &chip->playback, subs);
}
static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
{
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
subs->runtime->hw = snd_pmac_capture;
return snd_pmac_pcm_open(chip, &chip->capture, subs);
}
static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
{
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_close(chip, &chip->playback, subs);
}
static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
{
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_close(chip, &chip->capture, subs);
}
/*
*/
static struct snd_pcm_ops snd_pmac_playback_ops = {
.open = snd_pmac_playback_open,
.close = snd_pmac_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_pmac_pcm_hw_params,
.hw_free = snd_pmac_pcm_hw_free,
.prepare = snd_pmac_playback_prepare,
.trigger = snd_pmac_playback_trigger,
.pointer = snd_pmac_playback_pointer,
};
static struct snd_pcm_ops snd_pmac_capture_ops = {
.open = snd_pmac_capture_open,
.close = snd_pmac_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_pmac_pcm_hw_params,
.hw_free = snd_pmac_pcm_hw_free,
.prepare = snd_pmac_capture_prepare,
.trigger = snd_pmac_capture_trigger,
.pointer = snd_pmac_capture_pointer,
};
int __init snd_pmac_pcm_new(struct snd_pmac *chip)
{
struct snd_pcm *pcm;
int err;
int num_captures = 1;
if (! chip->can_capture)
num_captures = 0;
err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
if (err < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
if (chip->can_capture)
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
pcm->private_data = chip;
pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
strcpy(pcm->name, chip->card->shortname);
chip->pcm = pcm;
chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
if (chip->can_byte_swap)
chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
chip->playback.cur_formats = chip->formats_ok;
chip->capture.cur_formats = chip->formats_ok;
chip->playback.cur_freqs = chip->freqs_ok;
chip->capture.cur_freqs = chip->freqs_ok;
/* preallocate 64k buffer */
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
&chip->pdev->dev,
64 * 1024, 64 * 1024);
return 0;
}
static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
{
out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
snd_pmac_wait_ack(&chip->playback);
out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
snd_pmac_wait_ack(&chip->capture);
}
/*
* handling beep
*/
void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
{
struct pmac_stream *rec = &chip->playback;
snd_pmac_dma_stop(rec);
st_le16(&chip->extra_dma.cmds->req_count, bytes);
st_le16(&chip->extra_dma.cmds->xfer_status, 0);
st_le32(&chip->extra_dma.cmds->cmd_dep, chip->extra_dma.addr);
st_le32(&chip->extra_dma.cmds->phy_addr, addr);
st_le16(&chip->extra_dma.cmds->command, OUTPUT_MORE + BR_ALWAYS);
out_le32(&chip->awacs->control,
(in_le32(&chip->awacs->control) & ~0x1f00)
| (speed << 8));
out_le32(&chip->awacs->byteswap, 0);
snd_pmac_dma_set_command(rec, &chip->extra_dma);
snd_pmac_dma_run(rec, RUN);
}
void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
{
snd_pmac_dma_stop(&chip->playback);
st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
snd_pmac_pcm_set_format(chip); /* reset format */
}
/*
* interrupt handlers
*/
static irqreturn_t
snd_pmac_tx_intr(int irq, void *devid)
{
struct snd_pmac *chip = devid;
snd_pmac_pcm_update(chip, &chip->playback);
return IRQ_HANDLED;
}
static irqreturn_t
snd_pmac_rx_intr(int irq, void *devid)
{
struct snd_pmac *chip = devid;
snd_pmac_pcm_update(chip, &chip->capture);
return IRQ_HANDLED;
}
static irqreturn_t
snd_pmac_ctrl_intr(int irq, void *devid)
{
struct snd_pmac *chip = devid;
int ctrl = in_le32(&chip->awacs->control);
/*printk("pmac: control interrupt.. 0x%x\n", ctrl);*/
if (ctrl & MASK_PORTCHG) {
/* do something when headphone is plugged/unplugged? */
if (chip->update_automute)
chip->update_automute(chip, 1);
}
if (ctrl & MASK_CNTLERR) {
int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
if (err && chip->model <= PMAC_SCREAMER)
snd_printk(KERN_DEBUG "error %x\n", err);
}
/* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
out_le32(&chip->awacs->control, ctrl);
return IRQ_HANDLED;
}
/*
* a wrapper to feature call for compatibility
*/
static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
{
if (ppc_md.feature_call)
ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
}
/*
* release resources
*/
static int snd_pmac_free(struct snd_pmac *chip)
{
/* stop sounds */
if (chip->initialized) {
snd_pmac_dbdma_reset(chip);
/* disable interrupts from awacs interface */
out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
}
snd_pmac_sound_feature(chip, 0);
/* clean up mixer if any */
if (chip->mixer_free)
chip->mixer_free(chip);
snd_pmac_detach_beep(chip);
/* release resources */
if (chip->irq >= 0)
free_irq(chip->irq, (void*)chip);
if (chip->tx_irq >= 0)
free_irq(chip->tx_irq, (void*)chip);
if (chip->rx_irq >= 0)
free_irq(chip->rx_irq, (void*)chip);
snd_pmac_dbdma_free(chip, &chip->playback.cmd);
snd_pmac_dbdma_free(chip, &chip->capture.cmd);
snd_pmac_dbdma_free(chip, &chip->extra_dma);
if (chip->macio_base)
iounmap(chip->macio_base);
if (chip->latch_base)
iounmap(chip->latch_base);
if (chip->awacs)
iounmap(chip->awacs);
if (chip->playback.dma)
iounmap(chip->playback.dma);
if (chip->capture.dma)
iounmap(chip->capture.dma);
if (chip->node) {
int i;
for (i = 0; i < 3; i++) {
if (chip->requested & (1 << i))
release_mem_region(chip->rsrc[i].start,
chip->rsrc[i].end -
chip->rsrc[i].start + 1);
}
}
if (chip->pdev)
pci_dev_put(chip->pdev);
kfree(chip);
return 0;
}
/*
* free the device
*/
static int snd_pmac_dev_free(struct snd_device *device)
{
struct snd_pmac *chip = device->device_data;
return snd_pmac_free(chip);
}
/*
* check the machine support byteswap (little-endian)
*/
static void __init detect_byte_swap(struct snd_pmac *chip)
{
struct device_node *mio;
/* if seems that Keylargo can't byte-swap */
for (mio = chip->node->parent; mio; mio = mio->parent) {
if (strcmp(mio->name, "mac-io") == 0) {
if (device_is_compatible(mio, "Keylargo"))
chip->can_byte_swap = 0;
break;
}
}
/* it seems the Pismo & iBook can't byte-swap in hardware. */
if (machine_is_compatible("PowerBook3,1") ||
machine_is_compatible("PowerBook2,1"))
chip->can_byte_swap = 0 ;
if (machine_is_compatible("PowerBook2,1"))
chip->can_duplex = 0;
}
/*
* detect a sound chip
*/
static int __init snd_pmac_detect(struct snd_pmac *chip)
{
struct device_node *sound = NULL;
unsigned int *prop, l;
struct macio_chip* macio;
if (!machine_is(powermac))
return -ENODEV;
chip->subframe = 0;
chip->revision = 0;
chip->freqs_ok = 0xff; /* all ok */
chip->model = PMAC_AWACS;
chip->can_byte_swap = 1;
chip->can_duplex = 1;
chip->can_capture = 1;
chip->num_freqs = ARRAY_SIZE(awacs_freqs);
chip->freq_table = awacs_freqs;
chip->pdev = NULL;
chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
/* check machine type */
if (machine_is_compatible("AAPL,3400/2400")
|| machine_is_compatible("AAPL,3500"))
chip->is_pbook_3400 = 1;
else if (machine_is_compatible("PowerBook1,1")
|| machine_is_compatible("AAPL,PowerBook1998"))
chip->is_pbook_G3 = 1;
chip->node = find_devices("awacs");
if (chip->node)
sound = chip->node;
/*
* powermac G3 models have a node called "davbus"
* with a child called "sound".
*/
if (!chip->node)
chip->node = find_devices("davbus");
/*
* if we didn't find a davbus device, try 'i2s-a' since
* this seems to be what iBooks have
*/
if (! chip->node) {
chip->node = find_devices("i2s-a");
if (chip->node && chip->node->parent &&
chip->node->parent->parent) {
if (device_is_compatible(chip->node->parent->parent,
"K2-Keylargo"))
chip->is_k2 = 1;
}
}
if (! chip->node)
return -ENODEV;
if (!sound) {
sound = find_devices("sound");
while (sound && sound->parent != chip->node)
sound = sound->next;
}
if (! sound)
return -ENODEV;
prop = (unsigned int *) get_property(sound, "sub-frame", NULL);
if (prop && *prop < 16)
chip->subframe = *prop;
prop = (unsigned int *) get_property(sound, "layout-id", NULL);
if (prop) {
/* partly deprecate snd-powermac, for those machines
* that have a layout-id property for now */
printk(KERN_INFO "snd-powermac no longer handles any "
"machines with a layout-id property "
"in the device-tree, use snd-aoa.\n");
return -ENODEV;
}
/* This should be verified on older screamers */
if (device_is_compatible(sound, "screamer")) {
chip->model = PMAC_SCREAMER;
// chip->can_byte_swap = 0; /* FIXME: check this */
}
if (device_is_compatible(sound, "burgundy")) {
chip->model = PMAC_BURGUNDY;
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
if (device_is_compatible(sound, "daca")) {
chip->model = PMAC_DACA;
chip->can_capture = 0; /* no capture */
chip->can_duplex = 0;
// chip->can_byte_swap = 0; /* FIXME: check this */
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
if (device_is_compatible(sound, "tumbler")) {
chip->model = PMAC_TUMBLER;
chip->can_capture = 0; /* no capture */
chip->can_duplex = 0;
// chip->can_byte_swap = 0; /* FIXME: check this */
chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
chip->freq_table = tumbler_freqs;
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
if (device_is_compatible(sound, "snapper")) {
chip->model = PMAC_SNAPPER;
// chip->can_byte_swap = 0; /* FIXME: check this */
chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
chip->freq_table = tumbler_freqs;
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
prop = (unsigned int *)get_property(sound, "device-id", NULL);
if (prop)
chip->device_id = *prop;
chip->has_iic = (find_devices("perch") != NULL);
/* We need the PCI device for DMA allocations, let's use a crude method
* for now ...
*/
macio = macio_find(chip->node, macio_unknown);
if (macio == NULL)
printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
else {
struct pci_dev *pdev = NULL;
for_each_pci_dev(pdev) {
struct device_node *np = pci_device_to_OF_node(pdev);
if (np && np == macio->of_node) {
chip->pdev = pdev;
break;
}
}
}
if (chip->pdev == NULL)
printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
" device !\n");
detect_byte_swap(chip);
/* look for a property saying what sample rates
are available */
prop = (unsigned int *) get_property(sound, "sample-rates", &l);
if (! prop)
prop = (unsigned int *) get_property(sound,
"output-frame-rates", &l);
if (prop) {
int i;
chip->freqs_ok = 0;
for (l /= sizeof(int); l > 0; --l) {
unsigned int r = *prop++;
/* Apple 'Fixed' format */
if (r >= 0x10000)
r >>= 16;
for (i = 0; i < chip->num_freqs; ++i) {
if (r == chip->freq_table[i]) {
chip->freqs_ok |= (1 << i);
break;
}
}
}
} else {
/* assume only 44.1khz */
chip->freqs_ok = 1;
}
return 0;
}
/*
* exported - boolean info callbacks for ease of programming
*/
int snd_pmac_boolean_stereo_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
int snd_pmac_boolean_mono_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
#ifdef PMAC_SUPPORT_AUTOMUTE
/*
* auto-mute
*/
static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = chip->auto_mute;
return 0;
}
static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
if (ucontrol->value.integer.value[0] != chip->auto_mute) {
chip->auto_mute = ucontrol->value.integer.value[0];
if (chip->update_automute)
chip->update_automute(chip, 1);
return 1;
}
return 0;
}
static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
if (chip->detect_headphone)
ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
else
ucontrol->value.integer.value[0] = 0;
return 0;
}
static struct snd_kcontrol_new auto_mute_controls[] __initdata = {
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Auto Mute Switch",
.info = snd_pmac_boolean_mono_info,
.get = pmac_auto_mute_get,
.put = pmac_auto_mute_put,
},
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Headphone Detection",
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = snd_pmac_boolean_mono_info,
.get = pmac_hp_detect_get,
},
};
int __init snd_pmac_add_automute(struct snd_pmac *chip)
{
int err;
chip->auto_mute = 1;
err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
if (err < 0) {
printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
return err;
}
chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
return snd_ctl_add(chip->card, chip->hp_detect_ctl);
}
#endif /* PMAC_SUPPORT_AUTOMUTE */
/*
* create and detect a pmac chip record
*/
int __init snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
{
struct snd_pmac *chip;
struct device_node *np;
int i, err;
unsigned int irq;
unsigned long ctrl_addr, txdma_addr, rxdma_addr;
static struct snd_device_ops ops = {
.dev_free = snd_pmac_dev_free,
};
*chip_return = NULL;
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (chip == NULL)
return -ENOMEM;
chip->card = card;
spin_lock_init(&chip->reg_lock);
chip->irq = chip->tx_irq = chip->rx_irq = -1;
chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
if ((err = snd_pmac_detect(chip)) < 0)
goto __error;
if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0) {
err = -ENOMEM;
goto __error;
}
np = chip->node;
chip->requested = 0;
if (chip->is_k2) {
static char *rnames[] = {
"Sound Control", "Sound DMA" };
for (i = 0; i < 2; i ++) {
if (of_address_to_resource(np->parent, i,
&chip->rsrc[i])) {
printk(KERN_ERR "snd: can't translate rsrc "
" %d (%s)\n", i, rnames[i]);
err = -ENODEV;
goto __error;
}
if (request_mem_region(chip->rsrc[i].start,
chip->rsrc[i].end -
chip->rsrc[i].start + 1,
rnames[i]) == NULL) {
printk(KERN_ERR "snd: can't request rsrc "
" %d (%s: 0x%016llx:%016llx)\n",
i, rnames[i],
(unsigned long long)chip->rsrc[i].start,
(unsigned long long)chip->rsrc[i].end);
err = -ENODEV;
goto __error;
}
chip->requested |= (1 << i);
}
ctrl_addr = chip->rsrc[0].start;
txdma_addr = chip->rsrc[1].start;
rxdma_addr = txdma_addr + 0x100;
} else {
static char *rnames[] = {
"Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
for (i = 0; i < 3; i ++) {
if (of_address_to_resource(np, i,
&chip->rsrc[i])) {
printk(KERN_ERR "snd: can't translate rsrc "
" %d (%s)\n", i, rnames[i]);
err = -ENODEV;
goto __error;
}
if (request_mem_region(chip->rsrc[i].start,
chip->rsrc[i].end -
chip->rsrc[i].start + 1,
rnames[i]) == NULL) {
printk(KERN_ERR "snd: can't request rsrc "
" %d (%s: 0x%016llx:%016llx)\n",
i, rnames[i],
(unsigned long long)chip->rsrc[i].start,
(unsigned long long)chip->rsrc[i].end);
err = -ENODEV;
goto __error;
}
chip->requested |= (1 << i);
}
ctrl_addr = chip->rsrc[0].start;
txdma_addr = chip->rsrc[1].start;
rxdma_addr = chip->rsrc[2].start;
}
chip->awacs = ioremap(ctrl_addr, 0x1000);
chip->playback.dma = ioremap(txdma_addr, 0x100);
chip->capture.dma = ioremap(rxdma_addr, 0x100);
if (chip->model <= PMAC_BURGUNDY) {
irq = irq_of_parse_and_map(np, 0);
if (request_irq(irq, snd_pmac_ctrl_intr, 0,
"PMac", (void*)chip)) {
snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n",
irq);
err = -EBUSY;
goto __error;
}
chip->irq = irq;
}
irq = irq_of_parse_and_map(np, 1);
if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){
snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
err = -EBUSY;
goto __error;
}
chip->tx_irq = irq;
irq = irq_of_parse_and_map(np, 2);
if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) {
snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
err = -EBUSY;
goto __error;
}
chip->rx_irq = irq;
snd_pmac_sound_feature(chip, 1);
/* reset */
if (chip->model == PMAC_AWACS)
out_le32(&chip->awacs->control, 0x11);
/* Powerbooks have odd ways of enabling inputs such as
an expansion-bay CD or sound from an internal modem
or a PC-card modem. */
if (chip->is_pbook_3400) {
/* Enable CD and PC-card sound inputs. */
/* This is done by reading from address
* f301a000, + 0x10 to enable the expansion-bay
* CD sound input, + 0x80 to enable the PC-card
* sound input. The 0x100 enables the SCSI bus
* terminator power.
*/
chip->latch_base = ioremap (0xf301a000, 0x1000);
in_8(chip->latch_base + 0x190);
} else if (chip->is_pbook_G3) {
struct device_node* mio;
for (mio = chip->node->parent; mio; mio = mio->parent) {
if (strcmp(mio->name, "mac-io") == 0) {
struct resource r;
if (of_address_to_resource(mio, 0, &r) == 0)
chip->macio_base =
ioremap(r.start, 0x40);
break;
}
}
/* Enable CD sound input. */
/* The relevant bits for writing to this byte are 0x8f.
* I haven't found out what the 0x80 bit does.
* For the 0xf bits, writing 3 or 7 enables the CD
* input, any other value disables it. Values
* 1, 3, 5, 7 enable the microphone. Values 0, 2,
* 4, 6, 8 - f enable the input from the modem.
*/
if (chip->macio_base)
out_8(chip->macio_base + 0x37, 3);
}
/* Reset dbdma channels */
snd_pmac_dbdma_reset(chip);
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
goto __error;
*chip_return = chip;
return 0;
__error:
if (chip->pdev)
pci_dev_put(chip->pdev);
snd_pmac_free(chip);
return err;
}
/*
* sleep notify for powerbook
*/
#ifdef CONFIG_PM
/*
* Save state when going to sleep, restore it afterwards.
*/
void snd_pmac_suspend(struct snd_pmac *chip)
{
unsigned long flags;
snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
if (chip->suspend)
chip->suspend(chip);
snd_pcm_suspend_all(chip->pcm);
spin_lock_irqsave(&chip->reg_lock, flags);
snd_pmac_beep_stop(chip);
spin_unlock_irqrestore(&chip->reg_lock, flags);
if (chip->irq >= 0)
disable_irq(chip->irq);
if (chip->tx_irq >= 0)
disable_irq(chip->tx_irq);
if (chip->rx_irq >= 0)
disable_irq(chip->rx_irq);
snd_pmac_sound_feature(chip, 0);
}
void snd_pmac_resume(struct snd_pmac *chip)
{
snd_pmac_sound_feature(chip, 1);
if (chip->resume)
chip->resume(chip);
/* enable CD sound input */
if (chip->macio_base && chip->is_pbook_G3)
out_8(chip->macio_base + 0x37, 3);
else if (chip->is_pbook_3400)
in_8(chip->latch_base + 0x190);
snd_pmac_pcm_set_format(chip);
if (chip->irq >= 0)
enable_irq(chip->irq);
if (chip->tx_irq >= 0)
enable_irq(chip->tx_irq);
if (chip->rx_irq >= 0)
enable_irq(chip->rx_irq);
snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
}
#endif /* CONFIG_PM */