android_kernel_sony_msm8994.../security/security.c
David P. Quigley 1ee65e37e9 LSM/SELinux: inode_{get,set,notify}secctx hooks to access LSM security context information.
This patch introduces three new hooks. The inode_getsecctx hook is used to get
all relevant information from an LSM about an inode. The inode_setsecctx is
used to set both the in-core and on-disk state for the inode based on a context
derived from inode_getsecctx.The final hook inode_notifysecctx will notify the
LSM of a change for the in-core state of the inode in question. These hooks are
for use in the labeled NFS code and addresses concerns of how to set security
on an inode in a multi-xattr LSM. For historical reasons Stephen Smalley's
explanation of the reason for these hooks is pasted below.

Quote Stephen Smalley

inode_setsecctx:  Change the security context of an inode.  Updates the
in core security context managed by the security module and invokes the
fs code as needed (via __vfs_setxattr_noperm) to update any backing
xattrs that represent the context.  Example usage:  NFS server invokes
this hook to change the security context in its incore inode and on the
backing file system to a value provided by the client on a SETATTR
operation.

inode_notifysecctx:  Notify the security module of what the security
context of an inode should be.  Initializes the incore security context
managed by the security module for this inode.  Example usage:  NFS
client invokes this hook to initialize the security context in its
incore inode to the value provided by the server for the file when the
server returned the file's attributes to the client.

Signed-off-by: David P. Quigley <dpquigl@tycho.nsa.gov>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-10 10:11:24 +10:00

1305 lines
32 KiB
C

/*
* Security plug functions
*
* Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
* Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
* Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/capability.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/security.h>
/* Boot-time LSM user choice */
static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
/* things that live in capability.c */
extern struct security_operations default_security_ops;
extern void security_fixup_ops(struct security_operations *ops);
struct security_operations *security_ops; /* Initialized to NULL */
static inline int verify(struct security_operations *ops)
{
/* verify the security_operations structure exists */
if (!ops)
return -EINVAL;
security_fixup_ops(ops);
return 0;
}
static void __init do_security_initcalls(void)
{
initcall_t *call;
call = __security_initcall_start;
while (call < __security_initcall_end) {
(*call) ();
call++;
}
}
/**
* security_init - initializes the security framework
*
* This should be called early in the kernel initialization sequence.
*/
int __init security_init(void)
{
printk(KERN_INFO "Security Framework initialized\n");
security_fixup_ops(&default_security_ops);
security_ops = &default_security_ops;
do_security_initcalls();
return 0;
}
/* Save user chosen LSM */
static int __init choose_lsm(char *str)
{
strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
return 1;
}
__setup("security=", choose_lsm);
/**
* security_module_enable - Load given security module on boot ?
* @ops: a pointer to the struct security_operations that is to be checked.
*
* Each LSM must pass this method before registering its own operations
* to avoid security registration races. This method may also be used
* to check if your LSM is currently loaded during kernel initialization.
*
* Return true if:
* -The passed LSM is the one chosen by user at boot time,
* -or user didn't specify a specific LSM and we're the first to ask
* for registration permission,
* -or the passed LSM is currently loaded.
* Otherwise, return false.
*/
int __init security_module_enable(struct security_operations *ops)
{
if (!*chosen_lsm)
strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
return 0;
return 1;
}
/**
* register_security - registers a security framework with the kernel
* @ops: a pointer to the struct security_options that is to be registered
*
* This function allows a security module to register itself with the
* kernel security subsystem. Some rudimentary checking is done on the @ops
* value passed to this function. You'll need to check first if your LSM
* is allowed to register its @ops by calling security_module_enable(@ops).
*
* If there is already a security module registered with the kernel,
* an error will be returned. Otherwise %0 is returned on success.
*/
int register_security(struct security_operations *ops)
{
if (verify(ops)) {
printk(KERN_DEBUG "%s could not verify "
"security_operations structure.\n", __func__);
return -EINVAL;
}
if (security_ops != &default_security_ops)
return -EAGAIN;
security_ops = ops;
return 0;
}
/* Security operations */
int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
{
return security_ops->ptrace_access_check(child, mode);
}
int security_ptrace_traceme(struct task_struct *parent)
{
return security_ops->ptrace_traceme(parent);
}
int security_capget(struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
return security_ops->capget(target, effective, inheritable, permitted);
}
int security_capset(struct cred *new, const struct cred *old,
const kernel_cap_t *effective,
const kernel_cap_t *inheritable,
const kernel_cap_t *permitted)
{
return security_ops->capset(new, old,
effective, inheritable, permitted);
}
int security_capable(int cap)
{
return security_ops->capable(current, current_cred(), cap,
SECURITY_CAP_AUDIT);
}
int security_real_capable(struct task_struct *tsk, int cap)
{
const struct cred *cred;
int ret;
cred = get_task_cred(tsk);
ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
put_cred(cred);
return ret;
}
int security_real_capable_noaudit(struct task_struct *tsk, int cap)
{
const struct cred *cred;
int ret;
cred = get_task_cred(tsk);
ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
put_cred(cred);
return ret;
}
int security_acct(struct file *file)
{
return security_ops->acct(file);
}
int security_sysctl(struct ctl_table *table, int op)
{
return security_ops->sysctl(table, op);
}
int security_quotactl(int cmds, int type, int id, struct super_block *sb)
{
return security_ops->quotactl(cmds, type, id, sb);
}
int security_quota_on(struct dentry *dentry)
{
return security_ops->quota_on(dentry);
}
int security_syslog(int type)
{
return security_ops->syslog(type);
}
int security_settime(struct timespec *ts, struct timezone *tz)
{
return security_ops->settime(ts, tz);
}
int security_vm_enough_memory(long pages)
{
WARN_ON(current->mm == NULL);
return security_ops->vm_enough_memory(current->mm, pages);
}
int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
{
WARN_ON(mm == NULL);
return security_ops->vm_enough_memory(mm, pages);
}
int security_vm_enough_memory_kern(long pages)
{
/* If current->mm is a kernel thread then we will pass NULL,
for this specific case that is fine */
return security_ops->vm_enough_memory(current->mm, pages);
}
int security_bprm_set_creds(struct linux_binprm *bprm)
{
return security_ops->bprm_set_creds(bprm);
}
int security_bprm_check(struct linux_binprm *bprm)
{
return security_ops->bprm_check_security(bprm);
}
void security_bprm_committing_creds(struct linux_binprm *bprm)
{
security_ops->bprm_committing_creds(bprm);
}
void security_bprm_committed_creds(struct linux_binprm *bprm)
{
security_ops->bprm_committed_creds(bprm);
}
int security_bprm_secureexec(struct linux_binprm *bprm)
{
return security_ops->bprm_secureexec(bprm);
}
int security_sb_alloc(struct super_block *sb)
{
return security_ops->sb_alloc_security(sb);
}
void security_sb_free(struct super_block *sb)
{
security_ops->sb_free_security(sb);
}
int security_sb_copy_data(char *orig, char *copy)
{
return security_ops->sb_copy_data(orig, copy);
}
EXPORT_SYMBOL(security_sb_copy_data);
int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
{
return security_ops->sb_kern_mount(sb, flags, data);
}
int security_sb_show_options(struct seq_file *m, struct super_block *sb)
{
return security_ops->sb_show_options(m, sb);
}
int security_sb_statfs(struct dentry *dentry)
{
return security_ops->sb_statfs(dentry);
}
int security_sb_mount(char *dev_name, struct path *path,
char *type, unsigned long flags, void *data)
{
return security_ops->sb_mount(dev_name, path, type, flags, data);
}
int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
{
return security_ops->sb_check_sb(mnt, path);
}
int security_sb_umount(struct vfsmount *mnt, int flags)
{
return security_ops->sb_umount(mnt, flags);
}
void security_sb_umount_close(struct vfsmount *mnt)
{
security_ops->sb_umount_close(mnt);
}
void security_sb_umount_busy(struct vfsmount *mnt)
{
security_ops->sb_umount_busy(mnt);
}
void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
{
security_ops->sb_post_remount(mnt, flags, data);
}
void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
{
security_ops->sb_post_addmount(mnt, mountpoint);
}
int security_sb_pivotroot(struct path *old_path, struct path *new_path)
{
return security_ops->sb_pivotroot(old_path, new_path);
}
void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
{
security_ops->sb_post_pivotroot(old_path, new_path);
}
int security_sb_set_mnt_opts(struct super_block *sb,
struct security_mnt_opts *opts)
{
return security_ops->sb_set_mnt_opts(sb, opts);
}
EXPORT_SYMBOL(security_sb_set_mnt_opts);
void security_sb_clone_mnt_opts(const struct super_block *oldsb,
struct super_block *newsb)
{
security_ops->sb_clone_mnt_opts(oldsb, newsb);
}
EXPORT_SYMBOL(security_sb_clone_mnt_opts);
int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
{
return security_ops->sb_parse_opts_str(options, opts);
}
EXPORT_SYMBOL(security_sb_parse_opts_str);
int security_inode_alloc(struct inode *inode)
{
inode->i_security = NULL;
return security_ops->inode_alloc_security(inode);
}
void security_inode_free(struct inode *inode)
{
security_ops->inode_free_security(inode);
}
int security_inode_init_security(struct inode *inode, struct inode *dir,
char **name, void **value, size_t *len)
{
if (unlikely(IS_PRIVATE(inode)))
return -EOPNOTSUPP;
return security_ops->inode_init_security(inode, dir, name, value, len);
}
EXPORT_SYMBOL(security_inode_init_security);
#ifdef CONFIG_SECURITY_PATH
int security_path_mknod(struct path *path, struct dentry *dentry, int mode,
unsigned int dev)
{
if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
return 0;
return security_ops->path_mknod(path, dentry, mode, dev);
}
EXPORT_SYMBOL(security_path_mknod);
int security_path_mkdir(struct path *path, struct dentry *dentry, int mode)
{
if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
return 0;
return security_ops->path_mkdir(path, dentry, mode);
}
int security_path_rmdir(struct path *path, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
return 0;
return security_ops->path_rmdir(path, dentry);
}
int security_path_unlink(struct path *path, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
return 0;
return security_ops->path_unlink(path, dentry);
}
int security_path_symlink(struct path *path, struct dentry *dentry,
const char *old_name)
{
if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
return 0;
return security_ops->path_symlink(path, dentry, old_name);
}
int security_path_link(struct dentry *old_dentry, struct path *new_dir,
struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
return 0;
return security_ops->path_link(old_dentry, new_dir, new_dentry);
}
int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
struct path *new_dir, struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
(new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
return 0;
return security_ops->path_rename(old_dir, old_dentry, new_dir,
new_dentry);
}
int security_path_truncate(struct path *path, loff_t length,
unsigned int time_attrs)
{
if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
return 0;
return security_ops->path_truncate(path, length, time_attrs);
}
#endif
int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return security_ops->inode_create(dir, dentry, mode);
}
EXPORT_SYMBOL_GPL(security_inode_create);
int security_inode_link(struct dentry *old_dentry, struct inode *dir,
struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
return 0;
return security_ops->inode_link(old_dentry, dir, new_dentry);
}
int security_inode_unlink(struct inode *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_unlink(dir, dentry);
}
int security_inode_symlink(struct inode *dir, struct dentry *dentry,
const char *old_name)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return security_ops->inode_symlink(dir, dentry, old_name);
}
int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return security_ops->inode_mkdir(dir, dentry, mode);
}
EXPORT_SYMBOL_GPL(security_inode_mkdir);
int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_rmdir(dir, dentry);
}
int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return security_ops->inode_mknod(dir, dentry, mode, dev);
}
int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
(new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
return 0;
return security_ops->inode_rename(old_dir, old_dentry,
new_dir, new_dentry);
}
int security_inode_readlink(struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_readlink(dentry);
}
int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_follow_link(dentry, nd);
}
int security_inode_permission(struct inode *inode, int mask)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return security_ops->inode_permission(inode, mask);
}
int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_setattr(dentry, attr);
}
EXPORT_SYMBOL_GPL(security_inode_setattr);
int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_getattr(mnt, dentry);
}
void security_inode_delete(struct inode *inode)
{
if (unlikely(IS_PRIVATE(inode)))
return;
security_ops->inode_delete(inode);
}
int security_inode_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_setxattr(dentry, name, value, size, flags);
}
void security_inode_post_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return;
security_ops->inode_post_setxattr(dentry, name, value, size, flags);
}
int security_inode_getxattr(struct dentry *dentry, const char *name)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_getxattr(dentry, name);
}
int security_inode_listxattr(struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_listxattr(dentry);
}
int security_inode_removexattr(struct dentry *dentry, const char *name)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_removexattr(dentry, name);
}
int security_inode_need_killpriv(struct dentry *dentry)
{
return security_ops->inode_need_killpriv(dentry);
}
int security_inode_killpriv(struct dentry *dentry)
{
return security_ops->inode_killpriv(dentry);
}
int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return security_ops->inode_getsecurity(inode, name, buffer, alloc);
}
int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return security_ops->inode_setsecurity(inode, name, value, size, flags);
}
int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return security_ops->inode_listsecurity(inode, buffer, buffer_size);
}
void security_inode_getsecid(const struct inode *inode, u32 *secid)
{
security_ops->inode_getsecid(inode, secid);
}
int security_file_permission(struct file *file, int mask)
{
return security_ops->file_permission(file, mask);
}
int security_file_alloc(struct file *file)
{
return security_ops->file_alloc_security(file);
}
void security_file_free(struct file *file)
{
security_ops->file_free_security(file);
}
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
return security_ops->file_ioctl(file, cmd, arg);
}
int security_file_mmap(struct file *file, unsigned long reqprot,
unsigned long prot, unsigned long flags,
unsigned long addr, unsigned long addr_only)
{
return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
}
int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
unsigned long prot)
{
return security_ops->file_mprotect(vma, reqprot, prot);
}
int security_file_lock(struct file *file, unsigned int cmd)
{
return security_ops->file_lock(file, cmd);
}
int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
{
return security_ops->file_fcntl(file, cmd, arg);
}
int security_file_set_fowner(struct file *file)
{
return security_ops->file_set_fowner(file);
}
int security_file_send_sigiotask(struct task_struct *tsk,
struct fown_struct *fown, int sig)
{
return security_ops->file_send_sigiotask(tsk, fown, sig);
}
int security_file_receive(struct file *file)
{
return security_ops->file_receive(file);
}
int security_dentry_open(struct file *file, const struct cred *cred)
{
return security_ops->dentry_open(file, cred);
}
int security_task_create(unsigned long clone_flags)
{
return security_ops->task_create(clone_flags);
}
int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
{
return security_ops->cred_alloc_blank(cred, gfp);
}
void security_cred_free(struct cred *cred)
{
security_ops->cred_free(cred);
}
int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
{
return security_ops->cred_prepare(new, old, gfp);
}
void security_commit_creds(struct cred *new, const struct cred *old)
{
security_ops->cred_commit(new, old);
}
void security_transfer_creds(struct cred *new, const struct cred *old)
{
security_ops->cred_transfer(new, old);
}
int security_kernel_act_as(struct cred *new, u32 secid)
{
return security_ops->kernel_act_as(new, secid);
}
int security_kernel_create_files_as(struct cred *new, struct inode *inode)
{
return security_ops->kernel_create_files_as(new, inode);
}
int security_kernel_module_request(void)
{
return security_ops->kernel_module_request();
}
int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
{
return security_ops->task_setuid(id0, id1, id2, flags);
}
int security_task_fix_setuid(struct cred *new, const struct cred *old,
int flags)
{
return security_ops->task_fix_setuid(new, old, flags);
}
int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
{
return security_ops->task_setgid(id0, id1, id2, flags);
}
int security_task_setpgid(struct task_struct *p, pid_t pgid)
{
return security_ops->task_setpgid(p, pgid);
}
int security_task_getpgid(struct task_struct *p)
{
return security_ops->task_getpgid(p);
}
int security_task_getsid(struct task_struct *p)
{
return security_ops->task_getsid(p);
}
void security_task_getsecid(struct task_struct *p, u32 *secid)
{
security_ops->task_getsecid(p, secid);
}
EXPORT_SYMBOL(security_task_getsecid);
int security_task_setgroups(struct group_info *group_info)
{
return security_ops->task_setgroups(group_info);
}
int security_task_setnice(struct task_struct *p, int nice)
{
return security_ops->task_setnice(p, nice);
}
int security_task_setioprio(struct task_struct *p, int ioprio)
{
return security_ops->task_setioprio(p, ioprio);
}
int security_task_getioprio(struct task_struct *p)
{
return security_ops->task_getioprio(p);
}
int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
{
return security_ops->task_setrlimit(resource, new_rlim);
}
int security_task_setscheduler(struct task_struct *p,
int policy, struct sched_param *lp)
{
return security_ops->task_setscheduler(p, policy, lp);
}
int security_task_getscheduler(struct task_struct *p)
{
return security_ops->task_getscheduler(p);
}
int security_task_movememory(struct task_struct *p)
{
return security_ops->task_movememory(p);
}
int security_task_kill(struct task_struct *p, struct siginfo *info,
int sig, u32 secid)
{
return security_ops->task_kill(p, info, sig, secid);
}
int security_task_wait(struct task_struct *p)
{
return security_ops->task_wait(p);
}
int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5)
{
return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
}
void security_task_to_inode(struct task_struct *p, struct inode *inode)
{
security_ops->task_to_inode(p, inode);
}
int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
{
return security_ops->ipc_permission(ipcp, flag);
}
void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
{
security_ops->ipc_getsecid(ipcp, secid);
}
int security_msg_msg_alloc(struct msg_msg *msg)
{
return security_ops->msg_msg_alloc_security(msg);
}
void security_msg_msg_free(struct msg_msg *msg)
{
security_ops->msg_msg_free_security(msg);
}
int security_msg_queue_alloc(struct msg_queue *msq)
{
return security_ops->msg_queue_alloc_security(msq);
}
void security_msg_queue_free(struct msg_queue *msq)
{
security_ops->msg_queue_free_security(msq);
}
int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
{
return security_ops->msg_queue_associate(msq, msqflg);
}
int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
{
return security_ops->msg_queue_msgctl(msq, cmd);
}
int security_msg_queue_msgsnd(struct msg_queue *msq,
struct msg_msg *msg, int msqflg)
{
return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
}
int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
struct task_struct *target, long type, int mode)
{
return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
}
int security_shm_alloc(struct shmid_kernel *shp)
{
return security_ops->shm_alloc_security(shp);
}
void security_shm_free(struct shmid_kernel *shp)
{
security_ops->shm_free_security(shp);
}
int security_shm_associate(struct shmid_kernel *shp, int shmflg)
{
return security_ops->shm_associate(shp, shmflg);
}
int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
{
return security_ops->shm_shmctl(shp, cmd);
}
int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
{
return security_ops->shm_shmat(shp, shmaddr, shmflg);
}
int security_sem_alloc(struct sem_array *sma)
{
return security_ops->sem_alloc_security(sma);
}
void security_sem_free(struct sem_array *sma)
{
security_ops->sem_free_security(sma);
}
int security_sem_associate(struct sem_array *sma, int semflg)
{
return security_ops->sem_associate(sma, semflg);
}
int security_sem_semctl(struct sem_array *sma, int cmd)
{
return security_ops->sem_semctl(sma, cmd);
}
int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
unsigned nsops, int alter)
{
return security_ops->sem_semop(sma, sops, nsops, alter);
}
void security_d_instantiate(struct dentry *dentry, struct inode *inode)
{
if (unlikely(inode && IS_PRIVATE(inode)))
return;
security_ops->d_instantiate(dentry, inode);
}
EXPORT_SYMBOL(security_d_instantiate);
int security_getprocattr(struct task_struct *p, char *name, char **value)
{
return security_ops->getprocattr(p, name, value);
}
int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
{
return security_ops->setprocattr(p, name, value, size);
}
int security_netlink_send(struct sock *sk, struct sk_buff *skb)
{
return security_ops->netlink_send(sk, skb);
}
int security_netlink_recv(struct sk_buff *skb, int cap)
{
return security_ops->netlink_recv(skb, cap);
}
EXPORT_SYMBOL(security_netlink_recv);
int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
{
return security_ops->secid_to_secctx(secid, secdata, seclen);
}
EXPORT_SYMBOL(security_secid_to_secctx);
int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
{
return security_ops->secctx_to_secid(secdata, seclen, secid);
}
EXPORT_SYMBOL(security_secctx_to_secid);
void security_release_secctx(char *secdata, u32 seclen)
{
security_ops->release_secctx(secdata, seclen);
}
EXPORT_SYMBOL(security_release_secctx);
int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
{
return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
}
EXPORT_SYMBOL(security_inode_notifysecctx);
int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
{
return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
}
EXPORT_SYMBOL(security_inode_setsecctx);
int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
{
return security_ops->inode_getsecctx(inode, ctx, ctxlen);
}
EXPORT_SYMBOL(security_inode_getsecctx);
#ifdef CONFIG_SECURITY_NETWORK
int security_unix_stream_connect(struct socket *sock, struct socket *other,
struct sock *newsk)
{
return security_ops->unix_stream_connect(sock, other, newsk);
}
EXPORT_SYMBOL(security_unix_stream_connect);
int security_unix_may_send(struct socket *sock, struct socket *other)
{
return security_ops->unix_may_send(sock, other);
}
EXPORT_SYMBOL(security_unix_may_send);
int security_socket_create(int family, int type, int protocol, int kern)
{
return security_ops->socket_create(family, type, protocol, kern);
}
int security_socket_post_create(struct socket *sock, int family,
int type, int protocol, int kern)
{
return security_ops->socket_post_create(sock, family, type,
protocol, kern);
}
int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
{
return security_ops->socket_bind(sock, address, addrlen);
}
int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
{
return security_ops->socket_connect(sock, address, addrlen);
}
int security_socket_listen(struct socket *sock, int backlog)
{
return security_ops->socket_listen(sock, backlog);
}
int security_socket_accept(struct socket *sock, struct socket *newsock)
{
return security_ops->socket_accept(sock, newsock);
}
int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
{
return security_ops->socket_sendmsg(sock, msg, size);
}
int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
int size, int flags)
{
return security_ops->socket_recvmsg(sock, msg, size, flags);
}
int security_socket_getsockname(struct socket *sock)
{
return security_ops->socket_getsockname(sock);
}
int security_socket_getpeername(struct socket *sock)
{
return security_ops->socket_getpeername(sock);
}
int security_socket_getsockopt(struct socket *sock, int level, int optname)
{
return security_ops->socket_getsockopt(sock, level, optname);
}
int security_socket_setsockopt(struct socket *sock, int level, int optname)
{
return security_ops->socket_setsockopt(sock, level, optname);
}
int security_socket_shutdown(struct socket *sock, int how)
{
return security_ops->socket_shutdown(sock, how);
}
int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
{
return security_ops->socket_sock_rcv_skb(sk, skb);
}
EXPORT_SYMBOL(security_sock_rcv_skb);
int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
int __user *optlen, unsigned len)
{
return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
}
int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
{
return security_ops->socket_getpeersec_dgram(sock, skb, secid);
}
EXPORT_SYMBOL(security_socket_getpeersec_dgram);
int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
{
return security_ops->sk_alloc_security(sk, family, priority);
}
void security_sk_free(struct sock *sk)
{
security_ops->sk_free_security(sk);
}
void security_sk_clone(const struct sock *sk, struct sock *newsk)
{
security_ops->sk_clone_security(sk, newsk);
}
void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
{
security_ops->sk_getsecid(sk, &fl->secid);
}
EXPORT_SYMBOL(security_sk_classify_flow);
void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
{
security_ops->req_classify_flow(req, fl);
}
EXPORT_SYMBOL(security_req_classify_flow);
void security_sock_graft(struct sock *sk, struct socket *parent)
{
security_ops->sock_graft(sk, parent);
}
EXPORT_SYMBOL(security_sock_graft);
int security_inet_conn_request(struct sock *sk,
struct sk_buff *skb, struct request_sock *req)
{
return security_ops->inet_conn_request(sk, skb, req);
}
EXPORT_SYMBOL(security_inet_conn_request);
void security_inet_csk_clone(struct sock *newsk,
const struct request_sock *req)
{
security_ops->inet_csk_clone(newsk, req);
}
void security_inet_conn_established(struct sock *sk,
struct sk_buff *skb)
{
security_ops->inet_conn_established(sk, skb);
}
int security_tun_dev_create(void)
{
return security_ops->tun_dev_create();
}
EXPORT_SYMBOL(security_tun_dev_create);
void security_tun_dev_post_create(struct sock *sk)
{
return security_ops->tun_dev_post_create(sk);
}
EXPORT_SYMBOL(security_tun_dev_post_create);
int security_tun_dev_attach(struct sock *sk)
{
return security_ops->tun_dev_attach(sk);
}
EXPORT_SYMBOL(security_tun_dev_attach);
#endif /* CONFIG_SECURITY_NETWORK */
#ifdef CONFIG_SECURITY_NETWORK_XFRM
int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
{
return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
}
EXPORT_SYMBOL(security_xfrm_policy_alloc);
int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
struct xfrm_sec_ctx **new_ctxp)
{
return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
}
void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
{
security_ops->xfrm_policy_free_security(ctx);
}
EXPORT_SYMBOL(security_xfrm_policy_free);
int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
{
return security_ops->xfrm_policy_delete_security(ctx);
}
int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
{
return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
}
EXPORT_SYMBOL(security_xfrm_state_alloc);
int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
struct xfrm_sec_ctx *polsec, u32 secid)
{
if (!polsec)
return 0;
/*
* We want the context to be taken from secid which is usually
* from the sock.
*/
return security_ops->xfrm_state_alloc_security(x, NULL, secid);
}
int security_xfrm_state_delete(struct xfrm_state *x)
{
return security_ops->xfrm_state_delete_security(x);
}
EXPORT_SYMBOL(security_xfrm_state_delete);
void security_xfrm_state_free(struct xfrm_state *x)
{
security_ops->xfrm_state_free_security(x);
}
int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
{
return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
}
int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
struct xfrm_policy *xp, struct flowi *fl)
{
return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
}
int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
{
return security_ops->xfrm_decode_session(skb, secid, 1);
}
void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
{
int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
BUG_ON(rc);
}
EXPORT_SYMBOL(security_skb_classify_flow);
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
#ifdef CONFIG_KEYS
int security_key_alloc(struct key *key, const struct cred *cred,
unsigned long flags)
{
return security_ops->key_alloc(key, cred, flags);
}
void security_key_free(struct key *key)
{
security_ops->key_free(key);
}
int security_key_permission(key_ref_t key_ref,
const struct cred *cred, key_perm_t perm)
{
return security_ops->key_permission(key_ref, cred, perm);
}
int security_key_getsecurity(struct key *key, char **_buffer)
{
return security_ops->key_getsecurity(key, _buffer);
}
int security_key_session_to_parent(const struct cred *cred,
const struct cred *parent_cred,
struct key *key)
{
return security_ops->key_session_to_parent(cred, parent_cred, key);
}
#endif /* CONFIG_KEYS */
#ifdef CONFIG_AUDIT
int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
{
return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
}
int security_audit_rule_known(struct audit_krule *krule)
{
return security_ops->audit_rule_known(krule);
}
void security_audit_rule_free(void *lsmrule)
{
security_ops->audit_rule_free(lsmrule);
}
int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
struct audit_context *actx)
{
return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
}
#endif /* CONFIG_AUDIT */