#pragma once #include "stdafx.h" #include "../BlipBuffer/Blip_Buffer.h" #include "APU.h" #include "IMemoryHandler.h" #include "ApuEnvelope.h" class SquareChannel : public ApuEnvelope { private: const vector> _dutySequences = { { { 0, 1, 0, 0, 0, 0, 0, 0 }, { 0, 1, 1, 0, 0, 0, 0, 0 }, { 0, 1, 1, 1, 1, 0, 0, 0 }, { 1, 0, 0, 1, 1, 1, 1, 1 } } }; bool _isChannel1 = false; uint8_t _duty = 0; uint8_t _dutyPos = 0; bool _sweepEnabled = false; uint8_t _sweepPeriod = 0; bool _sweepNegate = false; uint8_t _sweepShift = 0; bool _reloadSweep = false; uint8_t _sweepDivider = 0; uint32_t _sweepTargetPeriod = 0; bool IsMuted() { //A period of t < 8, either set explicitly or via a sweep period update, silences the corresponding pulse channel. return _period < 8 || _sweepTargetPeriod > 0x7FF; } void InitializeSweep(uint8_t regValue) { _sweepEnabled = (regValue & 0x80) == 0x80; _sweepNegate = (regValue & 0x08) == 0x08; //The divider's period is set to P + 1 _sweepPeriod = ((regValue & 0x70) >> 4) + 1; _sweepShift = (regValue & 0x07); //Side effects: Sets the reload flag _reloadSweep = true; } void UpdateTargetPeriod(bool setPeriod) { uint16_t shiftResult = (_period >> _sweepShift); if(_sweepNegate) { _sweepTargetPeriod = _period - shiftResult; if(_isChannel1) { // As a result, a negative sweep on pulse channel 1 will subtract the shifted period value minus 1 _sweepTargetPeriod++; } } else { _sweepTargetPeriod = _period + shiftResult; } if(setPeriod && _sweepShift > 0 && _period >= 8 && _sweepTargetPeriod <= 0x7FF) { _period = _sweepTargetPeriod; } } protected: void Clock() { _dutyPos = (_dutyPos - 1) & 0x07; if(IsMuted()) { AddOutput(0); } else { AddOutput(_dutySequences[_duty][_dutyPos] * GetVolume()); } } public: SquareChannel(AudioChannel channel, Blip_Buffer *buffer, bool isChannel1) : ApuEnvelope(channel, buffer) { SetVolume(0.1128); _isChannel1 = isChannel1; } virtual void Reset(bool softReset) { ApuEnvelope::Reset(softReset); _duty = 0; _dutyPos = 0; _sweepEnabled = false; _sweepPeriod = 0; _sweepNegate = false; _sweepShift = 0; _reloadSweep = false; _sweepDivider = 0; _sweepTargetPeriod = 0; } virtual void StreamState(bool saving) { ApuEnvelope::StreamState(saving); Stream(_duty); Stream(_dutyPos); Stream(_sweepEnabled); Stream(_sweepPeriod); Stream(_sweepNegate); Stream(_sweepShift); Stream(_reloadSweep); Stream(_sweepDivider); Stream(_sweepTargetPeriod); } void GetMemoryRanges(MemoryRanges &ranges) { if(_isChannel1) { ranges.AddHandler(MemoryOperation::Write, 0x4000, 0x4003); } else { ranges.AddHandler(MemoryOperation::Write, 0x4004, 0x4007); } } void WriteRAM(uint16_t addr, uint8_t value) { APU::StaticRun(); switch(addr & 0x03) { case 0: //4000 & 4004 InitializeLengthCounter((value & 0x20) == 0x20); InitializeEnvelope(value); _duty = (value & 0xC0) >> 6; break; case 1: //4001 & 4005 InitializeSweep(value); break; case 2: //4002 & 4006 _period &= ~0x00FF; _period |= value; break; case 3: //4003 & 4007 LoadLengthCounter(value >> 3); _period &= ~0x0700; _period |= (value & 0x07) << 8; //The sequencer is restarted at the first value of the current sequence. _timer = _period + 1; _dutyPos = 0; //The envelope is also restarted. ResetEnvelope(); break; } } void TickSweep() { if(_reloadSweep) { if(_sweepDivider == 0 && _sweepEnabled) { //If the divider's counter was zero before the reload and the sweep is enabled, the pulse's period is also adjusted UpdateTargetPeriod(true); } _sweepDivider = _sweepPeriod; _reloadSweep = false; } else { if(_sweepDivider > 0) { _sweepDivider--; } else if(_sweepEnabled) { UpdateTargetPeriod(true); _sweepDivider = _sweepPeriod; } } } void Run(uint32_t targetCycle) { UpdateTargetPeriod(false); ApuLengthCounter::Run(targetCycle); } };