Mesen/Core/PPU.cpp

1497 lines
50 KiB
C++

#include "stdafx.h"
#include <memory>
#include "PPU.h"
#include "CPU.h"
#include "APU.h"
#include "EmulationSettings.h"
#include "VideoDecoder.h"
#include "BaseMapper.h"
#include "ControlManager.h"
#include "MemoryManager.h"
#include "Console.h"
PPU::PPU(std::shared_ptr<Console> console)
{
_console = console;
_masterClock = 0;
_masterClockDivider = 4;
_settings = _console->GetSettings();
_outputBuffers[0] = new uint16_t[256 * 240];
_outputBuffers[1] = new uint16_t[256 * 240];
_currentOutputBuffer = _outputBuffers[0];
memset(_outputBuffers[0], 0, 256 * 240 * sizeof(uint16_t));
memset(_outputBuffers[1], 0, 256 * 240 * sizeof(uint16_t));
if(_console->GetSettings()->GetRamPowerOnState() == RamPowerOnState::Random) {
_console->InitializeRam(_paletteRAM, 0x20);
for(int i = 0; i < 0x20; i++) {
_paletteRAM[i] &= 0x3F;
}
} else {
//When not using random ram, use a static state at power on (matches blargg's old palette test rom)
constexpr uint8_t paletteRamBootValues[0x20] {
0x09, 0x01, 0x00, 0x01, 0x00, 0x02, 0x02, 0x0D, 0x08, 0x10, 0x08, 0x24, 0x00, 0x00, 0x04, 0x2C,
0x09, 0x01, 0x34, 0x03, 0x00, 0x04, 0x00, 0x14, 0x08, 0x3A, 0x00, 0x02, 0x00, 0x20, 0x2C, 0x08
};
memcpy(_paletteRAM, paletteRamBootValues, sizeof(_paletteRAM));
}
//This should (presumably) persist across resets
memset(_corruptOamRow, 0, sizeof(_corruptOamRow));
_console->InitializeRam(_spriteRAM, 0x100);
_console->InitializeRam(_secondarySpriteRAM, 0x20);
SetNesModel(NesModel::NTSC);
Reset();
}
PPU::~PPU()
{
delete[] _outputBuffers[0];
delete[] _outputBuffers[1];
}
void PPU::Reset()
{
_masterClock = 0;
_preventVblFlag = false;
_needStateUpdate = false;
_prevRenderingEnabled = false;
_renderingEnabled = false;
_ignoreVramRead = 0;
_openBus = 0;
memset(_openBusDecayStamp, 0, sizeof(_openBusDecayStamp));
_state = {};
_flags = {};
_statusFlags = {};
_previousTile = {};
_currentTile = {};
_nextTile = {};
_ppuBusAddress = 0;
_intensifyColorBits = 0;
_paletteRamMask = 0x3F;
_lastUpdatedPixel = -1;
_lastSprite = nullptr;
_oamCopybuffer = 0;
_spriteInRange = false;
_sprite0Added = false;
_spriteAddrH = 0;
_spriteAddrL = 0;
_oamCopyDone = false;
memset(_hasSprite, 0, sizeof(_hasSprite));
memset(_spriteTiles, 0, sizeof(_spriteTiles));
_spriteCount = 0;
_secondaryOAMAddr = 0;
_sprite0Visible = false;
_spriteIndex = 0;
_openBus = 0;
memset(_openBusDecayStamp, 0, sizeof(_openBusDecayStamp));
_ignoreVramRead = 0;
//First execution will be cycle 0, scanline 0
_scanline = -1;
_cycle = 340;
_frameCount = 1;
_memoryReadBuffer = 0;
_overflowBugCounter = 0;
_updateVramAddrDelay = 0;
_updateVramAddr = 0;
_firstVisibleSpriteAddr = 0;
_lastVisibleSpriteAddr = 0;
memset(_oamDecayCycles, 0, sizeof(_oamDecayCycles));
_enableOamDecay = _settings->CheckFlag(EmulationFlags::EnableOamDecay);
UpdateMinimumDrawCycles();
}
void PPU::SetNesModel(NesModel model)
{
_nesModel = model;
switch(_nesModel) {
case NesModel::Auto:
//Should never be Auto
break;
case NesModel::NTSC:
_nmiScanline = 241;
_vblankEnd = 260;
_standardNmiScanline = 241;
_standardVblankEnd = 260;
_masterClockDivider = 4;
break;
case NesModel::PAL:
_nmiScanline = 241;
_vblankEnd = 310;
_standardNmiScanline = 241;
_standardVblankEnd = 310;
_masterClockDivider = 5;
break;
case NesModel::Dendy:
_nmiScanline = 291;
_vblankEnd = 310;
_standardNmiScanline = 291;
_standardVblankEnd = 310;
_masterClockDivider = 5;
break;
}
_nmiScanline += _settings->GetPpuExtraScanlinesBeforeNmi();
_palSpriteEvalScanline = _nmiScanline + 24;
_standardVblankEnd += _settings->GetPpuExtraScanlinesBeforeNmi();
_vblankEnd += _settings->GetPpuExtraScanlinesAfterNmi() + _settings->GetPpuExtraScanlinesBeforeNmi();
}
double PPU::GetOverclockRate()
{
uint32_t regularVblankEnd;
switch(_nesModel) {
default:
case NesModel::NTSC: regularVblankEnd = 260; break;
case NesModel::PAL: regularVblankEnd = 310; break;
case NesModel::Dendy: regularVblankEnd = 310; break;
}
return (double)(_vblankEnd + 2) / (regularVblankEnd + 2);
}
void PPU::GetState(PPUDebugState &state)
{
state.ControlFlags = _flags;
state.StatusFlags = _statusFlags;
state.State = _state;
state.Cycle = _cycle;
state.Scanline = _scanline;
state.FrameCount = _frameCount;
state.NmiScanline = _nmiScanline;
state.ScanlineCount = _vblankEnd + 2;
state.SafeOamScanline = _nesModel == NesModel::NTSC ? _nmiScanline + 19 : _palSpriteEvalScanline;
state.BusAddress = _ppuBusAddress;
state.MemoryReadBuffer = _memoryReadBuffer;
}
void PPU::SetState(PPUDebugState &state)
{
_flags = state.ControlFlags;
_statusFlags = state.StatusFlags;
_state = state.State;
_cycle = state.Cycle;
_scanline = state.Scanline;
_frameCount = state.FrameCount;
UpdateMinimumDrawCycles();
_paletteRamMask = _flags.Grayscale ? 0x30 : 0x3F;
if(_nesModel == NesModel::NTSC) {
_intensifyColorBits = (_flags.IntensifyGreen ? 0x40 : 0x00) | (_flags.IntensifyRed ? 0x80 : 0x00) | (_flags.IntensifyBlue ? 0x100 : 0x00);
} else if(_nesModel == NesModel::PAL || _nesModel == NesModel::Dendy) {
//"Note that on the Dendy and PAL NES, the green and red bits swap meaning."
_intensifyColorBits = (_flags.IntensifyRed ? 0x40 : 0x00) | (_flags.IntensifyGreen ? 0x80 : 0x00) | (_flags.IntensifyBlue ? 0x100 : 0x00);
}
}
void PPU::UpdateVideoRamAddr()
{
if(_scanline >= 240 || !IsRenderingEnabled()) {
_state.VideoRamAddr = (_state.VideoRamAddr + (_flags.VerticalWrite ? 32 : 1)) & 0x7FFF;
//Trigger memory read when setting the vram address - needed by MMC3 IRQ counter
//"Should be clocked when A12 changes to 1 via $2007 read/write"
SetBusAddress(_state.VideoRamAddr & 0x3FFF);
} else {
//"During rendering (on the pre-render line and the visible lines 0-239, provided either background or sprite rendering is enabled), "
//it will update v in an odd way, triggering a coarse X increment and a Y increment simultaneously"
IncHorizontalScrolling();
IncVerticalScrolling();
}
}
void PPU::SetOpenBus(uint8_t mask, uint8_t value)
{
//Decay expired bits, set new bits and update stamps on each individual bit
if(mask == 0xFF) {
//Shortcut when mask is 0xFF - all bits are set to the value and stamps updated
_openBus = value;
for(int i = 0; i < 8; i++) {
_openBusDecayStamp[i] = _frameCount;
}
} else {
uint16_t openBus = (_openBus << 8);
for(int i = 0; i < 8; i++) {
openBus >>= 1;
if(mask & 0x01) {
if(value & 0x01) {
openBus |= 0x80;
} else {
openBus &= 0xFF7F;
}
_openBusDecayStamp[i] = _frameCount;
} else if(_frameCount - _openBusDecayStamp[i] > 30) {
openBus &= 0xFF7F;
}
value >>= 1;
mask >>= 1;
}
_openBus = (uint8_t)openBus;
}
}
uint8_t PPU::ApplyOpenBus(uint8_t mask, uint8_t value)
{
SetOpenBus(~mask, value);
return value | (_openBus & mask);
}
void PPU::ProcessStatusRegOpenBus(uint8_t &openBusMask, uint8_t &returnValue)
{
switch(_settings->GetPpuModel()) {
case PpuModel::Ppu2C05A: openBusMask = 0x00; returnValue |= 0x1B; break;
case PpuModel::Ppu2C05B: openBusMask = 0x00; returnValue |= 0x3D; break;
case PpuModel::Ppu2C05C: openBusMask = 0x00; returnValue |= 0x1C; break;
case PpuModel::Ppu2C05D: openBusMask = 0x00; returnValue |= 0x1B; break;
case PpuModel::Ppu2C05E: openBusMask = 0x00; break;
default: break;
}
}
uint8_t PPU::PeekRAM(uint16_t addr)
{
//Used by debugger to get register values without side-effects (heavily edited copy of ReadRAM)
uint8_t openBusMask = 0xFF;
uint8_t returnValue = 0;
switch(GetRegisterID(addr)) {
case PPURegisters::Status:
returnValue = ((uint8_t)_statusFlags.SpriteOverflow << 5) | ((uint8_t)_statusFlags.Sprite0Hit << 6) | ((uint8_t)_statusFlags.VerticalBlank << 7);
if(_scanline == _nmiScanline && _cycle < 3) {
//Clear vertical blank flag
returnValue &= 0x7F;
}
openBusMask = 0x1F;
ProcessStatusRegOpenBus(openBusMask, returnValue);
break;
case PPURegisters::SpriteData:
if(!_settings->CheckFlag(EmulationFlags::DisablePpu2004Reads)) {
if(_scanline <= 239 && IsRenderingEnabled()) {
if(_cycle >= 257 && _cycle <= 320) {
uint8_t step = ((_cycle - 257) % 8) > 3 ? 3 : ((_cycle - 257) % 8);
uint8_t addr = (_cycle - 257) / 8 * 4 + step;
returnValue = _secondarySpriteRAM[addr];
} else {
returnValue = _oamCopybuffer;
}
} else {
returnValue = _spriteRAM[_state.SpriteRamAddr];
}
openBusMask = 0x00;
}
break;
case PPURegisters::VideoMemoryData:
returnValue = _memoryReadBuffer;
if((_state.VideoRamAddr & 0x3FFF) >= 0x3F00 && !_settings->CheckFlag(EmulationFlags::DisablePaletteRead)) {
returnValue = (ReadPaletteRAM(_state.VideoRamAddr) & _paletteRamMask) | (_openBus & 0xC0);
openBusMask = 0xC0;
} else {
openBusMask = 0x00;
}
break;
default:
break;
}
return returnValue | (_openBus & openBusMask);
}
uint8_t PPU::ReadRAM(uint16_t addr)
{
uint8_t openBusMask = 0xFF;
uint8_t returnValue = 0;
switch(GetRegisterID(addr)) {
case PPURegisters::Status:
_state.WriteToggle = false;
UpdateStatusFlag();
returnValue = _state.Status;
openBusMask = 0x1F;
ProcessStatusRegOpenBus(openBusMask, returnValue);
break;
case PPURegisters::SpriteData:
if(!_settings->CheckFlag(EmulationFlags::DisablePpu2004Reads)) {
if(_scanline <= 239 && IsRenderingEnabled()) {
//While the screen is begin drawn
if(_cycle >= 257 && _cycle <= 320) {
//If we're doing sprite rendering, set OAM copy buffer to its proper value. This is done here for performance.
//It's faster to only do this here when it's needed, rather than splitting LoadSpriteTileInfo() into an 8-step process
uint8_t step = ((_cycle - 257) % 8) > 3 ? 3 : ((_cycle - 257) % 8);
_secondaryOAMAddr = (_cycle - 257) / 8 * 4 + step;
_oamCopybuffer = _secondarySpriteRAM[_secondaryOAMAddr];
}
//Return the value that PPU is currently using for sprite evaluation/rendering
returnValue = _oamCopybuffer;
} else {
returnValue = ReadSpriteRam(_state.SpriteRamAddr);
}
openBusMask = 0x00;
}
break;
case PPURegisters::VideoMemoryData:
if(_ignoreVramRead) {
//2 reads to $2007 in quick succession (2 consecutive CPU cycles) causes the 2nd read to be ignored (normally depends on PPU/CPU timing, but this is the simplest solution)
//Return open bus in this case? (which will match the last value read)
openBusMask = 0xFF;
} else {
returnValue = _memoryReadBuffer;
_memoryReadBuffer = ReadVram(_ppuBusAddress & 0x3FFF, MemoryOperationType::Read);
if((_ppuBusAddress & 0x3FFF) >= 0x3F00 && !_settings->CheckFlag(EmulationFlags::DisablePaletteRead)) {
//Note: When grayscale is turned on, the read values also have the grayscale mask applied to them
returnValue = (ReadPaletteRAM(_ppuBusAddress) & _paletteRamMask) | (_openBus & 0xC0);
openBusMask = 0xC0;
} else {
openBusMask = 0x00;
}
_ignoreVramRead = 6;
_needStateUpdate = true;
_needVideoRamIncrement = true;
}
break;
default:
break;
}
return ApplyOpenBus(openBusMask, returnValue);
}
void PPU::WriteRAM(uint16_t addr, uint8_t value)
{
if(addr != 0x4014) {
SetOpenBus(0xFF, value);
}
switch(GetRegisterID(addr)) {
case PPURegisters::Control:
if(_settings->GetPpuModel() >= PpuModel::Ppu2C05A && _settings->GetPpuModel() <= PpuModel::Ppu2C05E) {
SetMaskRegister(value);
} else {
SetControlRegister(value);
}
break;
case PPURegisters::Mask:
if(_settings->GetPpuModel() >= PpuModel::Ppu2C05A && _settings->GetPpuModel() <= PpuModel::Ppu2C05E) {
SetControlRegister(value);
} else {
SetMaskRegister(value);
}
break;
case PPURegisters::SpriteAddr:
_state.SpriteRamAddr = value;
break;
case PPURegisters::SpriteData:
if((_scanline >= 240 && (_nesModel != NesModel::PAL || _scanline < _palSpriteEvalScanline)) || !IsRenderingEnabled()) {
if((_state.SpriteRamAddr & 0x03) == 0x02) {
//"The three unimplemented bits of each sprite's byte 2 do not exist in the PPU and always read back as 0 on PPU revisions that allow reading PPU OAM through OAMDATA ($2004)"
value &= 0xE3;
}
WriteSpriteRam(_state.SpriteRamAddr, value);
_state.SpriteRamAddr = (_state.SpriteRamAddr + 1) & 0xFF;
} else {
//"Writes to OAMDATA during rendering (on the pre-render line and the visible lines 0-239, provided either sprite or background rendering is enabled) do not modify values in OAM,
//but do perform a glitchy increment of OAMADDR, bumping only the high 6 bits"
_state.SpriteRamAddr = (_state.SpriteRamAddr + 4) & 0xFF;
}
break;
case PPURegisters::ScrollOffsets:
if(_state.WriteToggle) {
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x73E0) | ((value & 0xF8) << 2) | ((value & 0x07) << 12);
} else {
_state.XScroll = value & 0x07;
uint16_t newAddr = (_state.TmpVideoRamAddr & ~0x001F) | (value >> 3);
ProcessTmpAddrScrollGlitch(newAddr, _console->GetMemoryManager()->GetOpenBus() >> 3, 0x001F);
}
_state.WriteToggle = !_state.WriteToggle;
break;
case PPURegisters::VideoMemoryAddr:
if(_state.WriteToggle) {
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x00FF) | value;
//Video RAM update is apparently delayed by 3 PPU cycles (based on Visual NES findings)
_needStateUpdate = true;
_updateVramAddrDelay = 3;
_updateVramAddr = _state.TmpVideoRamAddr;
} else {
uint16_t newAddr = (_state.TmpVideoRamAddr & ~0xFF00) | ((value & 0x3F) << 8);
ProcessTmpAddrScrollGlitch(newAddr, _console->GetMemoryManager()->GetOpenBus() << 8, 0x0C00);
}
_state.WriteToggle = !_state.WriteToggle;
break;
case PPURegisters::VideoMemoryData:
if((_ppuBusAddress & 0x3FFF) >= 0x3F00) {
WritePaletteRAM(_ppuBusAddress, value);
} else {
if(_scanline >= 240 || !IsRenderingEnabled()) {
_console->GetMapper()->WriteVRAM(_ppuBusAddress & 0x3FFF, value);
} else {
//During rendering, the value written is ignored, and instead the address' LSB is used (not confirmed, based on Visual NES)
_console->GetMapper()->WriteVRAM(_ppuBusAddress & 0x3FFF, _ppuBusAddress & 0xFF);
}
}
_needStateUpdate = true;
_needVideoRamIncrement = true;
break;
case PPURegisters::SpriteDMA:
_console->GetCpu()->RunDMATransfer(value);
break;
default:
break;
}
}
uint8_t PPU::ReadPaletteRAM(uint16_t addr)
{
addr &= 0x1F;
if(addr == 0x10 || addr == 0x14 || addr == 0x18 || addr == 0x1C) {
addr &= ~0x10;
}
return _paletteRAM[addr];
}
void PPU::WritePaletteRAM(uint16_t addr, uint8_t value)
{
addr &= 0x1F;
value &= 0x3F;
if(addr == 0x00 || addr == 0x10) {
_paletteRAM[0x00] = value;
_paletteRAM[0x10] = value;
} else if(addr == 0x04 || addr == 0x14) {
_paletteRAM[0x04] = value;
_paletteRAM[0x14] = value;
} else if(addr == 0x08 || addr == 0x18) {
_paletteRAM[0x08] = value;
_paletteRAM[0x18] = value;
} else if(addr == 0x0C || addr == 0x1C) {
_paletteRAM[0x0C] = value;
_paletteRAM[0x1C] = value;
} else {
_paletteRAM[addr] = value;
}
}
bool PPU::IsRenderingEnabled()
{
return _renderingEnabled;
}
void PPU::ProcessTmpAddrScrollGlitch(uint16_t normalAddr, uint16_t value, uint16_t mask)
{
_state.TmpVideoRamAddr = normalAddr;
if(_cycle == 257 && _settings->CheckFlag(EmulationFlags::EnablePpu2000ScrollGlitch) && _scanline < 240 && IsRenderingEnabled()) {
//Use open bus to set some parts of V (glitch that occurs when writing to $2000/$2005/$2006 on cycle 257)
_state.VideoRamAddr = (_state.VideoRamAddr & ~mask) | (value & mask);
}
}
void PPU::SetControlRegister(uint8_t value)
{
_state.Control = value;
uint8_t nameTable = (_state.Control & 0x03);
uint16_t normalAddr = (_state.TmpVideoRamAddr & ~0x0C00) | (nameTable << 10);
ProcessTmpAddrScrollGlitch(normalAddr, _console->GetMemoryManager()->GetOpenBus() << 10, 0x0400);
_flags.VerticalWrite = (_state.Control & 0x04) == 0x04;
_flags.SpritePatternAddr = ((_state.Control & 0x08) == 0x08) ? 0x1000 : 0x0000;
_flags.BackgroundPatternAddr = ((_state.Control & 0x10) == 0x10) ? 0x1000 : 0x0000;
_flags.LargeSprites = (_state.Control & 0x20) == 0x20;
_flags.VBlank = (_state.Control & 0x80) == 0x80;
//"By toggling NMI_output ($2000 bit 7) during vertical blank without reading $2002, a program can cause /NMI to be pulled low multiple times, causing multiple NMIs to be generated."
if(!_flags.VBlank) {
_console->GetCpu()->ClearNmiFlag();
} else if(_flags.VBlank && _statusFlags.VerticalBlank) {
_console->GetCpu()->SetNmiFlag();
}
}
void PPU::UpdateColorBitMasks()
{
//"Bit 0 controls a greyscale mode, which causes the palette to use only the colors from the grey column: $00, $10, $20, $30. This is implemented as a bitwise AND with $30 on any value read from PPU $3F00-$3FFF"
_paletteRamMask = _flags.Grayscale ? 0x30 : 0x3F;
_intensifyColorBits = (_flags.IntensifyRed ? 0x40 : 0x00) | (_flags.IntensifyGreen ? 0x80 : 0x00) | (_flags.IntensifyBlue ? 0x100 : 0x00);
}
void PPU::UpdateMinimumDrawCycles()
{
_minimumDrawBgCycle = _flags.BackgroundEnabled ? ((_flags.BackgroundMask || _settings->CheckFlag(EmulationFlags::ForceBackgroundFirstColumn)) ? 0 : 8) : 300;
_minimumDrawSpriteCycle = _flags.SpritesEnabled ? ((_flags.SpriteMask || _settings->CheckFlag(EmulationFlags::ForceSpritesFirstColumn)) ? 0 : 8) : 300;
_minimumDrawSpriteStandardCycle = _flags.SpritesEnabled ? (_flags.SpriteMask ? 0 : 8) : 300;
}
void PPU::SetMaskRegister(uint8_t value)
{
_state.Mask = value;
_flags.Grayscale = (_state.Mask & 0x01) == 0x01;
_flags.BackgroundMask = (_state.Mask & 0x02) == 0x02;
_flags.SpriteMask = (_state.Mask & 0x04) == 0x04;
_flags.BackgroundEnabled = (_state.Mask & 0x08) == 0x08;
_flags.SpritesEnabled = (_state.Mask & 0x10) == 0x10;
_flags.IntensifyBlue = (_state.Mask & 0x80) == 0x80;
if(_nesModel == NesModel::NTSC) {
_flags.IntensifyRed = (_state.Mask & 0x20) == 0x20;
_flags.IntensifyGreen = (_state.Mask & 0x40) == 0x40;
} else if(_nesModel == NesModel::PAL || _nesModel == NesModel::Dendy) {
//"Note that on the Dendy and PAL NES, the green and red bits swap meaning."
_flags.IntensifyRed = (_state.Mask & 0x40) == 0x40;
_flags.IntensifyGreen = (_state.Mask & 0x20) == 0x20;
}
if(_renderingEnabled != (_flags.BackgroundEnabled | _flags.SpritesEnabled)) {
_needStateUpdate = true;
}
UpdateMinimumDrawCycles();
UpdateGrayscaleAndIntensifyBits();
}
void PPU::UpdateStatusFlag()
{
_state.Status = ((uint8_t)_statusFlags.SpriteOverflow << 5) |
((uint8_t)_statusFlags.Sprite0Hit << 6) |
((uint8_t)_statusFlags.VerticalBlank << 7);
_statusFlags.VerticalBlank = false;
_console->GetCpu()->ClearNmiFlag();
if(_scanline == _nmiScanline && _cycle == 0) {
//"Reading one PPU clock before reads it as clear and never sets the flag or generates NMI for that frame."
_preventVblFlag = true;
}
}
//Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Wrapping_around
void PPU::IncVerticalScrolling()
{
uint16_t addr = _state.VideoRamAddr;
if((addr & 0x7000) != 0x7000) {
// if fine Y < 7
addr += 0x1000; // increment fine Y
} else {
// fine Y = 0
addr &= ~0x7000;
int y = (addr & 0x03E0) >> 5; // let y = coarse Y
if(y == 29) {
y = 0; // coarse Y = 0
addr ^= 0x0800; // switch vertical nametable
} else if(y == 31){
y = 0; // coarse Y = 0, nametable not switched
} else {
y++; // increment coarse Y
}
addr = (addr & ~0x03E0) | (y << 5); // put coarse Y back into v
}
_state.VideoRamAddr = addr;
}
//Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Wrapping_around
void PPU::IncHorizontalScrolling()
{
//Increase coarse X scrolling value.
uint16_t addr = _state.VideoRamAddr;
if((addr & 0x001F) == 31) {
//When the value is 31, wrap around to 0 and switch nametable
addr = (addr & ~0x001F) ^ 0x0400;
} else {
addr++;
}
_state.VideoRamAddr = addr;
}
//Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Tile_and_attribute_fetching
uint16_t PPU::GetNameTableAddr()
{
return 0x2000 | (_state.VideoRamAddr & 0x0FFF);
}
//Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Tile_and_attribute_fetching
uint16_t PPU::GetAttributeAddr()
{
return 0x23C0 | (_state.VideoRamAddr & 0x0C00) | ((_state.VideoRamAddr >> 4) & 0x38) | ((_state.VideoRamAddr >> 2) & 0x07);
}
void PPU::SetBusAddress(uint16_t addr)
{
_ppuBusAddress = addr;
_console->GetMapper()->NotifyVRAMAddressChange(addr);
}
uint8_t PPU::ReadVram(uint16_t addr, MemoryOperationType type)
{
SetBusAddress(addr);
return _console->GetMapper()->ReadVRAM(addr, type);
}
void PPU::WriteVram(uint16_t addr, uint8_t value)
{
SetBusAddress(addr);
_console->GetMapper()->WriteVRAM(addr, value);
}
void PPU::LoadTileInfo()
{
if(IsRenderingEnabled()) {
switch(_cycle & 0x07) {
case 1: {
_previousTile = _currentTile;
_currentTile = _nextTile;
_state.LowBitShift |= _nextTile.LowByte;
_state.HighBitShift |= _nextTile.HighByte;
uint8_t tileIndex = ReadVram(GetNameTableAddr());
_nextTile.TileAddr = (tileIndex << 4) | (_state.VideoRamAddr >> 12) | _flags.BackgroundPatternAddr;
_nextTile.OffsetY = _state.VideoRamAddr >> 12;
break;
}
case 3: {
uint8_t shift = ((_state.VideoRamAddr >> 4) & 0x04) | (_state.VideoRamAddr & 0x02);
_nextTile.PaletteOffset = ((ReadVram(GetAttributeAddr()) >> shift) & 0x03) << 2;
break;
}
case 5:
_nextTile.LowByte = ReadVram(_nextTile.TileAddr);
_nextTile.AbsoluteTileAddr = _console->GetMapper()->ToAbsoluteChrAddress(_nextTile.TileAddr);
break;
case 7:
_nextTile.HighByte = ReadVram(_nextTile.TileAddr + 8);
break;
}
}
}
void PPU::LoadSprite(uint8_t spriteY, uint8_t tileIndex, uint8_t attributes, uint8_t spriteX, bool extraSprite)
{
bool backgroundPriority = (attributes & 0x20) == 0x20;
bool horizontalMirror = (attributes & 0x40) == 0x40;
bool verticalMirror = (attributes & 0x80) == 0x80;
uint16_t tileAddr;
uint8_t lineOffset;
if(verticalMirror) {
lineOffset = (_flags.LargeSprites ? 15 : 7) - (_scanline - spriteY);
} else {
lineOffset = _scanline - spriteY;
}
if(_flags.LargeSprites) {
tileAddr = (((tileIndex & 0x01) ? 0x1000 : 0x0000) | ((tileIndex & ~0x01) << 4)) + (lineOffset >= 8 ? lineOffset + 8 : lineOffset);
} else {
tileAddr = ((tileIndex << 4) | _flags.SpritePatternAddr) + lineOffset;
}
bool fetchLastSprite = true;
if((_spriteIndex < _spriteCount || extraSprite) && spriteY < 240) {
SpriteInfo &info = _spriteTiles[_spriteIndex];
info.BackgroundPriority = backgroundPriority;
info.HorizontalMirror = horizontalMirror;
info.VerticalMirror = verticalMirror;
info.PaletteOffset = ((attributes & 0x03) << 2) | 0x10;
if(extraSprite) {
//Use DebugReadVRAM for extra sprites to prevent side-effects.
info.LowByte = _console->GetMapper()->DebugReadVRAM(tileAddr);
info.HighByte = _console->GetMapper()->DebugReadVRAM(tileAddr + 8);
} else {
fetchLastSprite = false;
info.LowByte = ReadVram(tileAddr);
info.HighByte = ReadVram(tileAddr + 8);
}
info.TileAddr = tileAddr;
info.AbsoluteTileAddr = _console->GetMapper()->ToAbsoluteChrAddress(tileAddr);
info.OffsetY = lineOffset;
info.SpriteX = spriteX;
if(_scanline >= 0) {
//Sprites read on prerender scanline are not shown on scanline 0
for(int i = 0; i < 8 && spriteX + i + 1 < 257; i++) {
_hasSprite[spriteX + i + 1] = true;
}
}
}
if(fetchLastSprite) {
//Fetches to sprite 0xFF for remaining sprites/hidden - used by MMC3 IRQ counter
lineOffset = 0;
tileIndex = 0xFF;
if(_flags.LargeSprites) {
tileAddr = (((tileIndex & 0x01) ? 0x1000 : 0x0000) | ((tileIndex & ~0x01) << 4)) + (lineOffset >= 8 ? lineOffset + 8 : lineOffset);
} else {
tileAddr = ((tileIndex << 4) | _flags.SpritePatternAddr) + lineOffset;
}
ReadVram(tileAddr);
ReadVram(tileAddr + 8);
}
_spriteIndex++;
}
void PPU::LoadExtraSprites()
{
if(_spriteCount == 8 && _settings->CheckFlag(EmulationFlags::RemoveSpriteLimit)) {
bool loadExtraSprites = true;
if(_settings->CheckFlag(EmulationFlags::AdaptiveSpriteLimit)) {
uint16_t lastPosition = 0xFFFF;
uint8_t identicalSpriteCount = 0;
uint8_t maxIdenticalSpriteCount = 0;
for(int i = 0; i < 64; i++) {
uint8_t y = _spriteRAM[i << 2];
if(_scanline >= y && _scanline < y + (_flags.LargeSprites ? 16 : 8)) {
uint8_t x = _spriteRAM[(i << 2) + 3];
uint16_t position = (y << 8) | x;
if(lastPosition != position) {
if(identicalSpriteCount > maxIdenticalSpriteCount) {
maxIdenticalSpriteCount = identicalSpriteCount;
}
lastPosition = position;
identicalSpriteCount = 1;
} else {
identicalSpriteCount++;
}
}
}
loadExtraSprites = identicalSpriteCount < 8 && maxIdenticalSpriteCount < 8;
}
if(loadExtraSprites) {
for(uint32_t i = (_lastVisibleSpriteAddr + 4) & 0xFC; i != (uint32_t) _firstVisibleSpriteAddr; i = (i + 4) & 0xFC) {
uint8_t spriteY = _spriteRAM[i];
if(_scanline >= spriteY && _scanline < spriteY + (_flags.LargeSprites ? 16 : 8)) {
LoadSprite(spriteY, _spriteRAM[i + 1], _spriteRAM[i + 2], _spriteRAM[i + 3], true);
_spriteCount++;
}
}
}
}
}
void PPU::LoadSpriteTileInfo()
{
uint8_t *spriteAddr = _secondarySpriteRAM + _spriteIndex * 4;
LoadSprite(*spriteAddr, *(spriteAddr+1), *(spriteAddr+2), *(spriteAddr+3), false);
}
void PPU::ShiftTileRegisters()
{
_state.LowBitShift <<= 1;
_state.HighBitShift <<= 1;
}
uint8_t PPU::GetPixelColor()
{
uint8_t offset = _state.XScroll;
uint8_t backgroundColor = 0;
uint8_t spriteBgColor = 0;
if(_cycle > _minimumDrawBgCycle) {
//BackgroundMask = false: Hide background in leftmost 8 pixels of screen
spriteBgColor = (((_state.LowBitShift << offset) & 0x8000) >> 15) | (((_state.HighBitShift << offset) & 0x8000) >> 14);
if(_settings->GetBackgroundEnabled()) {
backgroundColor = spriteBgColor;
}
}
if(_hasSprite[_cycle] && _cycle > _minimumDrawSpriteCycle) {
//SpriteMask = true: Hide sprites in leftmost 8 pixels of screen
for(uint8_t i = 0; i < _spriteCount; i++) {
int32_t shift = (int32_t)_cycle - _spriteTiles[i].SpriteX - 1;
if(shift >= 0 && shift < 8) {
_lastSprite = &_spriteTiles[i];
uint8_t spriteColor;
if(_spriteTiles[i].HorizontalMirror) {
spriteColor = ((_lastSprite->LowByte >> shift) & 0x01) | ((_lastSprite->HighByte >> shift) & 0x01) << 1;
} else {
spriteColor = ((_lastSprite->LowByte << shift) & 0x80) >> 7 | ((_lastSprite->HighByte << shift) & 0x80) >> 6;
}
if(spriteColor != 0) {
//First sprite without a 00 color, use it.
if(i == 0 && spriteBgColor != 0 && _sprite0Visible && _cycle != 256 && _flags.BackgroundEnabled && !_statusFlags.Sprite0Hit && _cycle > _minimumDrawSpriteStandardCycle) {
//"The hit condition is basically sprite zero is in range AND the first sprite output unit is outputting a non-zero pixel AND the background drawing unit is outputting a non-zero pixel."
//"Sprite zero hits do not register at x=255" (cycle 256)
//"... provided that background and sprite rendering are both enabled"
//"Should always miss when Y >= 239"
_statusFlags.Sprite0Hit = true;
}
if(_settings->GetSpritesEnabled() && (backgroundColor == 0 || !_spriteTiles[i].BackgroundPriority)) {
//Check sprite priority
return _lastSprite->PaletteOffset + spriteColor;
}
break;
}
}
}
}
return ((offset + ((_cycle - 1) & 0x07) < 8) ? _previousTile : _currentTile).PaletteOffset + backgroundColor;
}
void PPU::DrawPixel()
{
//This is called 3.7 million times per second - needs to be as fast as possible.
if(IsRenderingEnabled() || ((_state.VideoRamAddr & 0x3F00) != 0x3F00)) {
uint32_t color = GetPixelColor();
_currentOutputBuffer[(_scanline << 8) + _cycle - 1] = _paletteRAM[color & 0x03 ? color : 0];
} else {
//"If the current VRAM address points in the range $3F00-$3FFF during forced blanking, the color indicated by this palette location will be shown on screen instead of the backdrop color."
_currentOutputBuffer[(_scanline << 8) + _cycle - 1] = _paletteRAM[_state.VideoRamAddr & 0x1F];
}
}
uint16_t PPU::GetCurrentBgColor()
{
uint16_t color;
if(IsRenderingEnabled() || (_state.VideoRamAddr & 0x3F00) != 0x3F00) {
color = _paletteRAM[0];
} else {
color = _paletteRAM[_state.VideoRamAddr & 0x1F];
}
return (color & _paletteRamMask) | _intensifyColorBits;
}
void PPU::UpdateGrayscaleAndIntensifyBits()
{
if(_scanline < 0 || _scanline > _nmiScanline) {
UpdateColorBitMasks();
return;
}
int pixelNumber;
if(_scanline >= 240) {
pixelNumber = 61439;
} else if(_cycle < 3) {
pixelNumber = (_scanline << 8) - 1;
} else if(_cycle <= 258) {
pixelNumber = (_scanline << 8) + _cycle - 3;
} else {
pixelNumber = (_scanline << 8) + 255;
}
if(_paletteRamMask == 0x3F && _intensifyColorBits == 0) {
//Nothing to do (most common case)
UpdateColorBitMasks();
_lastUpdatedPixel = pixelNumber;
return;
}
if(_lastUpdatedPixel < pixelNumber) {
uint16_t *out = _currentOutputBuffer + _lastUpdatedPixel + 1;
while(_lastUpdatedPixel < pixelNumber) {
*out = (*out & _paletteRamMask) | _intensifyColorBits;
out++;
_lastUpdatedPixel++;
}
}
UpdateColorBitMasks();
}
void PPU::ProcessScanline()
{
//Only called for cycle 1+
if(_cycle <= 256) {
LoadTileInfo();
if(_prevRenderingEnabled && (_cycle & 0x07) == 0) {
IncHorizontalScrolling();
if(_cycle == 256) {
IncVerticalScrolling();
}
}
if(_scanline >= 0) {
DrawPixel();
ShiftTileRegisters();
//"Secondary OAM clear and sprite evaluation do not occur on the pre-render line"
ProcessSpriteEvaluation();
} else if(_cycle < 9) {
//Pre-render scanline logic
if(_cycle == 1) {
_statusFlags.VerticalBlank = false;
_console->GetCpu()->ClearNmiFlag();
}
if(_state.SpriteRamAddr >= 0x08 && IsRenderingEnabled() && !_settings->CheckFlag(EmulationFlags::DisableOamAddrBug)) {
//This should only be done if rendering is enabled (otherwise oam_stress test fails immediately)
//"If OAMADDR is not less than eight when rendering starts, the eight bytes starting at OAMADDR & 0xF8 are copied to the first eight bytes of OAM"
WriteSpriteRam(_cycle - 1, ReadSpriteRam((_state.SpriteRamAddr & 0xF8) + _cycle - 1));
}
}
} else if(_cycle >= 257 && _cycle <= 320) {
if(_cycle == 257) {
_spriteIndex = 0;
memset(_hasSprite, 0, sizeof(_hasSprite));
if(_prevRenderingEnabled) {
//copy horizontal scrolling value from t
_state.VideoRamAddr = (_state.VideoRamAddr & ~0x041F) | (_state.TmpVideoRamAddr & 0x041F);
}
}
if(IsRenderingEnabled()) {
//"OAMADDR is set to 0 during each of ticks 257-320 (the sprite tile loading interval) of the pre-render and visible scanlines." (When rendering)
_state.SpriteRamAddr = 0;
if((_cycle - 261) % 8 == 0) {
//Cycle 260, 268, etc. This is an approximation (each tile is actually loaded in 8 steps (e.g from 257 to 264))
LoadSpriteTileInfo();
} else if((_cycle - 257) % 8 == 0) {
//Garbage NT sprite fetch (257, 265, 273, etc.) - Required for proper MC-ACC IRQs (MMC3 clone)
ReadVram(GetNameTableAddr());
} else if((_cycle - 259) % 8 == 0) {
//Garbage AT sprite fetch
ReadVram(GetAttributeAddr());
}
if(_scanline == -1 && _cycle >= 280 && _cycle <= 304) {
//copy vertical scrolling value from t
_state.VideoRamAddr = (_state.VideoRamAddr & ~0x7BE0) | (_state.TmpVideoRamAddr & 0x7BE0);
}
}
} else if(_cycle >= 321 && _cycle <= 336) {
LoadTileInfo();
if(_cycle == 321) {
if(IsRenderingEnabled()) {
LoadExtraSprites();
_oamCopybuffer = _secondarySpriteRAM[0];
}
} else if(_prevRenderingEnabled && (_cycle == 328 || _cycle == 336)) {
_state.LowBitShift <<= 8;
_state.HighBitShift <<= 8;
IncHorizontalScrolling();
}
} else if(_cycle == 337 || _cycle == 339) {
if(IsRenderingEnabled()) {
_nextTile.TileAddr = ReadVram(GetNameTableAddr());
if(_scanline == -1 && _cycle == 339 && (_frameCount & 0x01) && _nesModel == NesModel::NTSC && _settings->GetPpuModel() == PpuModel::Ppu2C02) {
//This behavior is NTSC-specific - PAL frames are always the same number of cycles
//"With rendering enabled, each odd PPU frame is one PPU clock shorter than normal" (skip from 339 to 0, going over 340)
_cycle = 340;
}
}
}
}
void PPU::ProcessSpriteEvaluation()
{
if(IsRenderingEnabled() || (_nesModel == NesModel::PAL && _scanline >= _palSpriteEvalScanline)) {
if(_cycle < 65) {
//Clear secondary OAM at between cycle 1 and 64
_oamCopybuffer = 0xFF;
_secondarySpriteRAM[(_cycle - 1) >> 1] = 0xFF;
} else {
if(_cycle == 65) {
_sprite0Added = false;
_spriteInRange = false;
_secondaryOAMAddr = 0;
_overflowBugCounter = 0;
_oamCopyDone = false;
_spriteAddrH = (_state.SpriteRamAddr >> 2) & 0x3F;
_spriteAddrL = _state.SpriteRamAddr & 0x03;
_firstVisibleSpriteAddr = _spriteAddrH * 4;
_lastVisibleSpriteAddr = _firstVisibleSpriteAddr;
} else if(_cycle == 256) {
_sprite0Visible = _sprite0Added;
_spriteCount = (_secondaryOAMAddr >> 2);
}
if(_cycle & 0x01) {
//Read a byte from the primary OAM on odd cycles
_oamCopybuffer = ReadSpriteRam(_state.SpriteRamAddr);
} else {
if(_oamCopyDone) {
_spriteAddrH = (_spriteAddrH + 1) & 0x3F;
if(_secondaryOAMAddr >= 0x20) {
//"As seen above, a side effect of the OAM write disable signal is to turn writes to the secondary OAM into reads from it."
_oamCopybuffer = _secondarySpriteRAM[_secondaryOAMAddr & 0x1F];
}
} else {
if(!_spriteInRange && _scanline >= _oamCopybuffer && _scanline < _oamCopybuffer + (_flags.LargeSprites ? 16 : 8)) {
_spriteInRange = true;
}
if(_secondaryOAMAddr < 0x20) {
//Copy 1 byte to secondary OAM
_secondarySpriteRAM[_secondaryOAMAddr] = _oamCopybuffer;
if(_spriteInRange) {
_spriteAddrL++;
_secondaryOAMAddr++;
if(_spriteAddrH == 0) {
_sprite0Added = true;
}
//Note: Using "(_secondaryOAMAddr & 0x03) == 0" instead of "_spriteAddrL == 0" is required
//to replicate a hardware bug noticed in oam_flicker_test_reenable when disabling & re-enabling
//rendering on a single scanline
if((_secondaryOAMAddr & 0x03) == 0) {
//Done copying all 4 bytes
_spriteInRange = false;
_spriteAddrL = 0;
_lastVisibleSpriteAddr = _spriteAddrH * 4;
_spriteAddrH = (_spriteAddrH + 1) & 0x3F;
if(_spriteAddrH == 0) {
_oamCopyDone = true;
}
}
} else {
//Nothing to copy, skip to next sprite
_spriteAddrH = (_spriteAddrH + 1) & 0x3F;
if(_spriteAddrH == 0) {
_oamCopyDone = true;
}
}
} else {
//"As seen above, a side effect of the OAM write disable signal is to turn writes to the secondary OAM into reads from it."
_oamCopybuffer = _secondarySpriteRAM[_secondaryOAMAddr & 0x1F];
//8 sprites have been found, check next sprite for overflow + emulate PPU bug
if(_spriteInRange) {
//Sprite is visible, consider this to be an overflow
_statusFlags.SpriteOverflow = true;
_spriteAddrL = (_spriteAddrL + 1);
if(_spriteAddrL == 4) {
_spriteAddrH = (_spriteAddrH + 1) & 0x3F;
_spriteAddrL = 0;
}
if(_overflowBugCounter == 0) {
_overflowBugCounter = 3;
} else if(_overflowBugCounter > 0) {
_overflowBugCounter--;
if(_overflowBugCounter == 0) {
//"After it finishes "fetching" this sprite(and setting the overflow flag), it realigns back at the beginning of this line and then continues here on the next sprite"
_oamCopyDone = true;
_spriteAddrL = 0;
}
}
} else {
//Sprite isn't on this scanline, trigger sprite evaluation bug - increment both H & L at the same time
_spriteAddrH = (_spriteAddrH + 1) & 0x3F;
_spriteAddrL = (_spriteAddrL + 1) & 0x03;
if(_spriteAddrH == 0) {
_oamCopyDone = true;
}
}
}
}
_state.SpriteRamAddr = (_spriteAddrL & 0x03) | (_spriteAddrH << 2);
}
}
}
}
uint8_t PPU::ReadSpriteRam(uint8_t addr)
{
if(!_enableOamDecay) {
return _spriteRAM[addr];
} else {
uint64_t elapsedCycles = _console->GetCpu()->GetCycleCount() - _oamDecayCycles[addr >> 3];
if(elapsedCycles <= PPU::OamDecayCycleCount) {
_oamDecayCycles[addr >> 3] = _console->GetCpu()->GetCycleCount();
} else {
//If this 8-byte row hasn't been read/written to in over 3000 cpu cycles (~1.7ms),
//decay the row (set it to addr, clear the bits that don't exist on some bytes)
for(int i = 0; i < 8; i++) {
int sprAddr = (addr & 0xF8) | i;
_spriteRAM[sprAddr] = (sprAddr & 0x03) == 0x02 ? (sprAddr & 0xE3) : sprAddr;
}
}
return _spriteRAM[addr];
}
}
void PPU::WriteSpriteRam(uint8_t addr, uint8_t value)
{
_spriteRAM[addr] = value;
if(_enableOamDecay) {
_oamDecayCycles[addr >> 3] = _console->GetCpu()->GetCycleCount();
}
}
uint16_t* PPU::GetScreenBuffer(bool previousBuffer)
{
return previousBuffer ? ((_currentOutputBuffer == _outputBuffers[0]) ? _outputBuffers[1] : _outputBuffers[0]) : _currentOutputBuffer;
}
void PPU::SendFrame()
{
UpdateGrayscaleAndIntensifyBits();
_console->GetVideoDecoder()->UpdateFrameSync(_currentOutputBuffer);
#if 0
_enableOamDecay = _settings->CheckFlag(EmulationFlags::EnableOamDecay);
#endif
}
void PPU::BeginVBlank()
{
TriggerNmi();
}
void PPU::TriggerNmi()
{
if(_flags.VBlank) {
_console->GetCpu()->SetNmiFlag();
}
}
void PPU::UpdateApuStatus()
{
APU* apu = _console->GetApu();
apu->SetApuStatus(true);
if(_scanline > 240) {
if(_scanline > _standardVblankEnd) {
//Disable APU for extra lines after NMI
apu->SetApuStatus(false);
} else if(_scanline >= _standardNmiScanline && _scanline < _nmiScanline) {
//Disable APU for extra lines before NMI
apu->SetApuStatus(false);
}
}
}
void PPU::DebugUpdateFrameBuffer(bool toGrayscale)
{
//Clear output buffer for "Draw partial frame" feature
if(toGrayscale) {
for(int i = 0; i < PPU::PixelCount; i++) {
_currentOutputBuffer[i] &= 0x30;
}
} else {
memset(_currentOutputBuffer, 0, PPU::PixelCount * 2);
}
}
void PPU::SetOamCorruptionFlags()
{
if(!_settings->CheckFlag(EmulationFlags::EnablePpuOamRowCorruption)) {
return;
}
//Note: Still pending more research, but this currently matches a portion of the issues that have been observed
//When rendering is disabled in some sections of the screen, either:
// A- During Secondary OAM clear (first ~64 cycles)
// B- During OAM tile fetching (cycle ~256 to cycle ~320)
//then OAM memory gets corrupted the next time the PPU starts rendering again (usually at the start of the next frame)
//This usually causes the first "row" of OAM (the first 8 bytes) to get copied over another, causing some sprites to be missing
//and causing an extra set of the first 2 sprites to appear on the screen (not possible to see them except via any overflow they may cause)
if(_cycle >= 0 && _cycle < 64) {
//Every 2 dots causes the corruption to shift down 1 OAM row (8 bytes)
_corruptOamRow[_cycle >> 1] = true;
} else if(_cycle >= 256 && _cycle < 320) {
//This section is in 8-dot segments.
//The first 3 dot increment the corrupted row by 1, and then the last 5 dots corrupt the next row for 5 dots.
uint8_t base = (_cycle - 256) >> 3;
uint8_t offset = std::min<uint8_t>(3, (_cycle - 256) & 0x07);
_corruptOamRow[base * 4 + offset] = true;
}
}
void PPU::ProcessOamCorruption()
{
if(!_settings->CheckFlag(EmulationFlags::EnablePpuOamRowCorruption)) {
return;
}
//Copy first OAM row over another row, as needed by corruption flags (can be over itself, which causes no actual harm)
for(int i = 0; i < 32; i++) {
if(_corruptOamRow[i]) {
if(i > 0) {
memcpy(_spriteRAM + i * 8, _spriteRAM, 8);
}
_corruptOamRow[i] = false;
}
}
}
void PPU::Exec()
{
if(_cycle < 340) {
//Process cycles 1 to 340
_cycle++;
if(_scanline < 240) {
ProcessScanline();
} else if(_cycle == 1 && _scanline == _nmiScanline) {
if(!_preventVblFlag) {
_statusFlags.VerticalBlank = true;
BeginVBlank();
}
_preventVblFlag = false;
} else if(_nesModel == NesModel::PAL && _scanline >= _palSpriteEvalScanline) {
//"On a PAL machine, because of its extended vertical blank, the PPU begins refreshing OAM roughly 21 scanlines after NMI[2], to prevent it
//from decaying during the longer hiatus of rendering. Additionally, it will continue to refresh during the visible portion of the screen
//even if rendering is disabled. Because of this, OAM DMA must be done near the beginning of vertical blank on PAL, and everywhere else
//it is liable to conflict with the refresh. Since the refresh can't be disabled like on the NTSC hardware, OAM decay does not occur at all on the PAL NES."
if(_cycle <= 256) {
ProcessSpriteEvaluation();
} else if(_cycle >= 257 && _cycle < 320) {
_state.SpriteRamAddr = 0;
}
}
} else {
//Process cycle 0
ProcessScanlineFirstCycle();
}
if(_needStateUpdate) {
UpdateState();
}
}
void PPU::ProcessScanlineFirstCycle()
{
_cycle = 0;
if(++_scanline > _vblankEnd) {
_lastUpdatedPixel = -1;
_scanline = -1;
//Force prerender scanline sprite fetches to load the dummy $FF tiles (fixes shaking in Ninja Gaiden 3 stage 1 after beating boss)
_spriteCount = 0;
if(_renderingEnabled) {
ProcessOamCorruption();
}
UpdateMinimumDrawCycles();
}
UpdateApuStatus();
if(_scanline == _settings->GetInputPollScanline()) {
_console->GetControlManager()->UpdateInputState();
}
//Cycle = 0
if(_scanline < 240) {
if(_scanline == -1) {
_statusFlags.SpriteOverflow = false;
_statusFlags.Sprite0Hit = false;
//Switch to alternate output buffer (VideoDecoder may still be decoding the last frame buffer)
_currentOutputBuffer = (_currentOutputBuffer == _outputBuffers[0]) ? _outputBuffers[1] : _outputBuffers[0];
} else if(_prevRenderingEnabled) {
if(_scanline > 0 || (!(_frameCount & 0x01) || _nesModel != NesModel::NTSC || _settings->GetPpuModel() != PpuModel::Ppu2C02)) {
//Set bus address to the tile address calculated from the unused NT fetches at the end of the previous scanline
//This doesn't happen on scanline 0 if the last dot of the previous frame was skipped
SetBusAddress((_nextTile.TileAddr << 4) | (_state.VideoRamAddr >> 12) | _flags.BackgroundPatternAddr);
}
}
} else if(_scanline == 240) {
//At the start of vblank, the bus address is set back to VideoRamAddr.
//According to Visual NES, this occurs on scanline 240, cycle 1, but is done here on cycle for performance reasons
SetBusAddress(_state.VideoRamAddr);
SendFrame();
_frameCount++;
}
}
void PPU::UpdateState()
{
_needStateUpdate = false;
//Rendering enabled flag is apparently set with a 1 cycle delay (i.e setting it at cycle 5 will render cycle 6 like cycle 5 and then take the new settings for cycle 7)
if(_prevRenderingEnabled != _renderingEnabled) {
_prevRenderingEnabled = _renderingEnabled;
if(_scanline < 240) {
if(_prevRenderingEnabled) {
//Rendering was just enabled, perform oam corruption if any is pending
ProcessOamCorruption();
} else if(!_prevRenderingEnabled) {
//Rendering was just disabled by a write to $2001, check for oam row corruption glitch
SetOamCorruptionFlags();
//When rendering is disabled midscreen, set the vram bus back to the value of 'v'
SetBusAddress(_state.VideoRamAddr & 0x3FFF);
if(_cycle >= 65 && _cycle <= 256) {
//Disabling rendering during OAM evaluation will trigger a glitch causing the current address to be incremented by 1
//The increment can be "delayed" by 1 PPU cycle depending on whether or not rendering is disabled on an even/odd cycle
//e.g, if rendering is disabled on an even cycle, the following PPU cycle will increment the address by 5 (instead of 4)
// if rendering is disabled on an odd cycle, the increment will wait until the next odd cycle (at which point it will be incremented by 1)
//In practice, there is no way to see the difference, so we just increment by 1 at the end of the next cycle after rendering was disabled
_state.SpriteRamAddr++;
//Also corrupt H/L to replicate a bug found in oam_flicker_test_reenable when rendering is disabled around scanlines 128-136
//Reenabling the causes the OAM evaluation to restart misaligned, and ends up generating a single sprite that's offset by 1
//such that it's Y=tile index, index = attributes, attributes = x, and X = the next sprite's Y value
_spriteAddrH = (_state.SpriteRamAddr >> 2) & 0x3F;
_spriteAddrL = _state.SpriteRamAddr & 0x03;
}
}
}
}
if(_renderingEnabled != (_flags.BackgroundEnabled | _flags.SpritesEnabled)) {
_renderingEnabled = _flags.BackgroundEnabled | _flags.SpritesEnabled;
_needStateUpdate = true;
}
if(_updateVramAddrDelay > 0) {
_updateVramAddrDelay--;
if(_updateVramAddrDelay == 0) {
if(_settings->CheckFlag(EmulationFlags::EnablePpu2006ScrollGlitch) && _scanline < 240 && IsRenderingEnabled()) {
//When a $2006 address update lands on the Y or X increment, the written value is bugged and is ANDed with the incremented value
if(_cycle == 257) {
_state.VideoRamAddr &= _updateVramAddr;
} else if(_cycle > 0 && (_cycle & 0x07) == 0 && (_cycle <= 256 || _cycle > 320)) {
_state.VideoRamAddr = (_updateVramAddr & ~0x41F) | (_state.VideoRamAddr & _updateVramAddr & 0x41F);
} else {
_state.VideoRamAddr = _updateVramAddr;
}
} else {
_state.VideoRamAddr = _updateVramAddr;
}
//The glitches updates corrupt both V and T, so set the new value of V back into T
_state.TmpVideoRamAddr = _state.VideoRamAddr;
if(_scanline >= 240 || !IsRenderingEnabled()) {
//Only set the VRAM address on the bus if the PPU is not rendering
//More info here: https://forums.nesdev.com/viewtopic.php?p=132145#p132145
//Trigger bus address change when setting the vram address - needed by MMC3 IRQ counter
//"4) Should be clocked when A12 changes to 1 via $2006 write"
SetBusAddress(_state.VideoRamAddr & 0x3FFF);
}
} else {
_needStateUpdate = true;
}
}
if(_ignoreVramRead > 0) {
_ignoreVramRead--;
if(_ignoreVramRead > 0) {
_needStateUpdate = true;
}
}
if(_needVideoRamIncrement) {
//Delay vram address increment by 1 ppu cycle after a read/write to 2007
//This allows the full_palette tests to properly display single-pixel glitches
//that display the "wrong" color on the screen until the increment occurs (matches hardware)
_needVideoRamIncrement = false;
UpdateVideoRamAddr();
}
}
uint8_t* PPU::GetSpriteRam()
{
//Used by debugger
if(_enableOamDecay) {
for(int i = 0; i < 0x100; i++) {
//Apply OAM decay to sprite RAM before letting debugger access it
if((_console->GetCpu()->GetCycleCount() - _oamDecayCycles[i >> 3]) > PPU::OamDecayCycleCount) {
_spriteRAM[i] = 0x10;
}
}
}
return _spriteRAM;
}
uint32_t PPU::GetPixelBrightness(uint8_t x, uint8_t y)
{
//Used by Zapper, gives a rough approximation of the brightness level of the specific pixel
uint16_t pixelData = (_currentOutputBuffer[y << 8 | x] & _paletteRamMask) | _intensifyColorBits;
uint32_t argbColor = _settings->GetRgbPalette()[pixelData & 0x3F];
return (argbColor & 0xFF) + ((argbColor >> 8) & 0xFF) + ((argbColor >> 16) & 0xFF);
}
void PPU::StreamState(bool saving)
{
ArrayInfo<uint8_t> paletteRam = { _paletteRAM, 0x20 };
ArrayInfo<uint8_t> spriteRam = { _spriteRAM, 0x100 };
ArrayInfo<uint8_t> secondarySpriteRam = { _secondarySpriteRAM, 0x20 };
ArrayInfo<int32_t> openBusDecayStamp = { _openBusDecayStamp, 8 };
bool disablePpu2004Reads = false;
bool disablePaletteRead = false;
bool disableOamAddrBug = false;
if(saving) {
disablePpu2004Reads = _settings->CheckFlag(EmulationFlags::DisablePpu2004Reads);
disablePaletteRead = _settings->CheckFlag(EmulationFlags::DisablePaletteRead);
disableOamAddrBug = _settings->CheckFlag(EmulationFlags::DisableOamAddrBug);
}
Stream(_state.Control, _state.Mask, _state.Status, _state.SpriteRamAddr, _state.VideoRamAddr, _state.XScroll, _state.TmpVideoRamAddr, _state.WriteToggle,
_state.HighBitShift, _state.LowBitShift, _flags.VerticalWrite, _flags.SpritePatternAddr, _flags.BackgroundPatternAddr, _flags.LargeSprites, _flags.VBlank,
_flags.Grayscale, _flags.BackgroundMask, _flags.SpriteMask, _flags.BackgroundEnabled, _flags.SpritesEnabled, _flags.IntensifyRed, _flags.IntensifyGreen,
_flags.IntensifyBlue, _paletteRamMask, _intensifyColorBits, _statusFlags.SpriteOverflow, _statusFlags.Sprite0Hit, _statusFlags.VerticalBlank, _scanline,
_cycle, _frameCount, _memoryReadBuffer, _currentTile.LowByte, _currentTile.HighByte, _currentTile.PaletteOffset, _nextTile.LowByte, _nextTile.HighByte,
_nextTile.PaletteOffset, _nextTile.TileAddr, _previousTile.LowByte, _previousTile.HighByte, _previousTile.PaletteOffset, _spriteIndex, _spriteCount,
_secondaryOAMAddr, _sprite0Visible, _oamCopybuffer, _spriteInRange, _sprite0Added, _spriteAddrH, _spriteAddrL, _oamCopyDone, _nesModel,
_prevRenderingEnabled, _renderingEnabled, _openBus, _ignoreVramRead, paletteRam, spriteRam, secondarySpriteRam,
openBusDecayStamp, disablePpu2004Reads, disablePaletteRead, disableOamAddrBug, _overflowBugCounter, _updateVramAddr, _updateVramAddrDelay,
_needStateUpdate, _ppuBusAddress, _preventVblFlag, _masterClock, _needVideoRamIncrement);
for(int i = 0; i < _spriteCount; i++) {
Stream(_spriteTiles[i].SpriteX, _spriteTiles[i].LowByte, _spriteTiles[i].HighByte, _spriteTiles[i].PaletteOffset, _spriteTiles[i].HorizontalMirror, _spriteTiles[i].BackgroundPriority);
}
if(!saving) {
_settings->SetFlagState(EmulationFlags::DisablePpu2004Reads, disablePpu2004Reads);
_settings->SetFlagState(EmulationFlags::DisablePaletteRead, disablePaletteRead);
_settings->SetFlagState(EmulationFlags::DisableOamAddrBug, disableOamAddrBug);
SetNesModel(_nesModel);
UpdateMinimumDrawCycles();
for(int i = 0; i < 0x20; i++) {
//Set oam decay cycle to the current cycle to ensure it doesn't decay when loading a state
_oamDecayCycles[i] = _console->GetCpu()->GetCycleCount();
}
memset(_corruptOamRow, 0, sizeof(_corruptOamRow));
for(int i = 0; i < 257; i++) {
_hasSprite[i] = true;
}
_lastUpdatedPixel = -1;
UpdateApuStatus();
}
}