Mesen/Core/PPU.cpp

508 lines
14 KiB
C++

#include "stdafx.h"
#include "PPU.h"
#include "CPU.h"
uint32_t PPU_PALETTE_RGB[] = {
0x666666, 0x002A88, 0x1412A7, 0x3B00A4, 0x5C007E,
0x6E0040, 0x6C0600, 0x561D00, 0x333500, 0x0B4800,
0x005200, 0x004F08, 0x00404D, 0x000000, 0x000000,
0x000000, 0xADADAD, 0x155FD9, 0x4240FF, 0x7527FE,
0xA01ACC, 0xB71E7B, 0xB53120, 0x994E00, 0x6B6D00,
0x388700, 0x0C9300, 0x008F32, 0x007C8D, 0x000000,
0x000000, 0x000000, 0xFFFEFF, 0x64B0FF, 0x9290FF,
0xC676FF, 0xF36AFF, 0xFE6ECC, 0xFE8170, 0xEA9E22,
0xBCBE00, 0x88D800, 0x5CE430, 0x45E082, 0x48CDDE,
0x4F4F4F, 0x000000, 0x000000, 0xFFFEFF, 0xC0DFFF,
0xD3D2FF, 0xE8C8FF, 0xFBC2FF, 0xFEC4EA, 0xFECCC5,
0xF7D8A5, 0xE4E594, 0xCFEF96, 0xBDF4AB, 0xB3F3CC,
0xB5EBF2, 0xB8B8B8, 0x000000, 0x000000,
};
uint8_t *PPU::FrameBuffer = new uint8_t[256*240*4];
atomic<int> PPU::WaitCounter = 0;
PPU::PPU(MemoryManager *memoryManager)
{
_memoryManager = memoryManager;
_state = {};
_flags = {};
_statusFlags = {};
_outputBuffer = new uint8_t[256 * 240 * 4];
}
PPU::~PPU()
{
delete[] _outputBuffer;
}
bool PPU::CheckFlag(PPUControlFlags flag)
{
return false;
}
uint8_t PPU::ReadRAM(uint16_t addr)
{
uint8_t returnValue;
switch(GetRegisterID(addr)) {
case PPURegisters::Status:
_state.WriteToggle = false;
_flags.IntensifyBlue = false;
UpdateStatusFlag();
return _state.Status;
case PPURegisters::SpriteData:
return _spriteRAM[_state.SpriteRamAddr];
case PPURegisters::VideoMemoryData:
returnValue = _memoryReadBuffer;
_memoryReadBuffer = _memoryManager->ReadVRAM(_state.VideoRamAddr);
_state.VideoRamAddr += _flags.VerticalWrite ? 32 : 1;
if(_state.VideoRamAddr >= 0x3F00) {
//No buffer for palette
//TODO: Update read buffer when reading palette (See: http://wiki.nesdev.com/w/index.php/PPU_registers#The_PPUDATA_read_buffer_.28post-fetch.29)
return _memoryReadBuffer;
} else {
return returnValue;
}
default:
//other registers are meant to be read-only
break;
}
return 0;
}
void PPU::WriteRAM(uint16_t addr, uint8_t value)
{
static int counter = 0;
switch(GetRegisterID(addr)) {
case PPURegisters::Control:
_state.Control = value;
UpdateFlags();
break;
case PPURegisters::Control2:
_state.Control2 = value;
UpdateFlags();
break;
case PPURegisters::SpriteAddr:
_state.SpriteRamAddr = value;
break;
case PPURegisters::SpriteData:
_spriteRAM[_state.SpriteRamAddr] = value;
_state.SpriteRamAddr++;
break;
case PPURegisters::ScrollOffsets:
if(_state.WriteToggle) {
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x73E0) | ((value & 0xF8) << 2) | ((value & 0x07) << 12);
} else {
_state.XScroll = value & 0x07;
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x001F) | (value >> 3);
}
_state.WriteToggle = !_state.WriteToggle;
break;
case PPURegisters::VideoMemoryAddr:
if(counter < 50) {
std::cout << "=> " << std::hex << (short)value << std::endl;
}
if(_state.WriteToggle) {
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x00FF) | value;
_state.VideoRamAddr = _state.TmpVideoRamAddr;
if(counter < 50) {
std::cout << std::hex << _state.VideoRamAddr << std::endl;
}
counter++;
} else {
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0xFF00) | ((value & 0x3F) << 8);
}
_state.WriteToggle = !_state.WriteToggle;
break;
case PPURegisters::VideoMemoryData:
if(_state.VideoRamAddr == 0x2001 || _state.VideoRamAddr == 0x2401 || _state.VideoRamAddr == 0x2801 || _state.VideoRamAddr == 0x2C01) {
//std::cout << "test";
}
_memoryManager->WriteVRAM(_state.VideoRamAddr, value);
_state.VideoRamAddr += _flags.VerticalWrite ? 32 : 1;
break;
}
}
bool PPU::IsRenderingEnabled()
{
return _flags.BackgroundEnabled || _flags.SpritesEnabled;
}
void PPU::UpdateFlags()
{
uint8_t nameTable = (_state.Control & 0x03);
switch(nameTable) {
case 0: _flags.NameTableAddr = 0x2000; break;
case 1: _flags.NameTableAddr = 0x2400; break;
case 2: _flags.NameTableAddr = 0x2800; break;
case 3: _flags.NameTableAddr = 0x2C00; break;
}
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0xC0000) | (nameTable << 10);
_flags.VerticalWrite = (_state.Control & 0x04) == 0x04;
_flags.SpritePatternAddr = ((_state.Control & 0x08) == 0x08) ? 0x1000 : 0x0000;
_flags.BackgroundPatternAddr = ((_state.Control & 0x10) == 0x10) ? 0x1000 : 0x0000;
_flags.LargeSprites = (_state.Control & 0x20) == 0x20;
_flags.VBlank = (_state.Control & 0x80) == 0x80;
_flags.Grayscale = (_state.Control2 & 0x01) == 0x01;
_flags.BackgroundMask = (_state.Control2 & 0x02) == 0x02;
_flags.SpriteMask = (_state.Control2 & 0x04) == 0x04;
_flags.BackgroundEnabled = (_state.Control2 & 0x08) == 0x08;
_flags.SpritesEnabled = (_state.Control2 & 0x10) == 0x10;
_flags.IntensifyRed = (_state.Control2 & 0x20) == 0x20;
_flags.IntensifyGreen = (_state.Control2 & 0x40) == 0x40;
_flags.IntensifyBlue = (_state.Control2 & 0x80) == 0x80;
}
void PPU::UpdateStatusFlag()
{
_state.Status = ((uint8_t)_statusFlags.SpriteOverflow << 5) |
((uint8_t)_statusFlags.Sprite0Hit << 6) |
((uint8_t)_statusFlags.VerticalBlank << 7);
_statusFlags.VerticalBlank = false;
}
//Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Wrapping_around
void PPU::IncVerticalScrolling()
{
uint16_t addr = _state.VideoRamAddr;
if((addr & 0x7000) != 0x7000) {
// if fine Y < 7
addr += 0x1000; // increment fine Y
} else {
// fine Y = 0
addr &= ~0x7000;
int y = (addr & 0x03E0) >> 5; // let y = coarse Y
if(y == 29) {
y = 0; // coarse Y = 0
addr ^= 0x0800; // switch vertical nametable
} else if(y == 31){
y = 0; // coarse Y = 0, nametable not switched
} else {
y += 1; // increment coarse Y
}
addr = (addr & ~0x03E0) | (y << 5); // put coarse Y back into v
//std::cout << std::endl;
}
_state.VideoRamAddr = addr;
}
//Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Wrapping_around
void PPU::IncHorizontalScrolling()
{
//Increase coarse X scrolling value.
//When the value is 31, wrap around to 0 and switch nametable
uint16_t addr = _state.VideoRamAddr;
if((addr & 0x001F) == 31) {
addr &= ~0x001F;
addr ^= 0x0400; // switch horizontal nametable
} else {
addr += 1;
}
_state.VideoRamAddr = addr;
}
//Take from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Tile_and_attribute_fetching
uint16_t PPU::GetTileAddr()
{
return 0x2000 | (_state.VideoRamAddr & 0x0FFF);
}
//Take from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Tile_and_attribute_fetching
uint16_t PPU::GetAttributeAddr()
{
return 0x23C0 | (_state.VideoRamAddr & 0x0C00) | ((_state.VideoRamAddr >> 4) & 0x38) | ((_state.VideoRamAddr >> 2) & 0x07);
}
void PPU::UpdateScrolling()
{
//For pre-render scanline & all visible scanlines
if(_cycle == 256) {
IncVerticalScrolling();
} else if(_cycle == 257) {
//copy horizontal scrolling value from t
_state.VideoRamAddr = (_state.VideoRamAddr & ~0x041F) | (_state.TmpVideoRamAddr & 0x041F);
} else if((_cycle % 8 == 0 && _cycle > 0 && _cycle < 256) || _cycle == 328 || _cycle == 336) {
IncHorizontalScrolling();
} else if((_cycle - 1) % 8 == 0 && _cycle < 250) {
LoadTileInfo();
} else if(_cycle == 321 || _cycle == 329) {
LoadTileInfo();
}
}
void PPU::ProcessPrerenderScanline()
{
if(IsRenderingEnabled()) {
UpdateScrolling();
}
if(_cycle == 1) {
_statusFlags.SpriteOverflow = false;
_statusFlags.Sprite0Hit = false;
_statusFlags.VerticalBlank = false;
} else if(_cycle >= 280 && _cycle <= 304) {
if(IsRenderingEnabled()) {
//copy vertical scrolling value from t
_state.VideoRamAddr = (_state.VideoRamAddr & ~0x7BF0) | (_state.TmpVideoRamAddr & 0x7BF0);
}
} else if(_cycle == 340 && _flags.BackgroundEnabled && (_frameCount % 2 == 1)) {
//Skip a cycle for odd frames, if background drawing is enabled
_cycle = 0;
_scanline = 0;
} else if(_cycle == 321 || _cycle == 329) {
LoadTileInfo();
}
}
void PPU::LoadTileInfo()
{
_currentTile = _nextTile;
uint16_t tileIndex = _memoryManager->ReadVRAM(GetTileAddr());
uint16_t tileAddr = (tileIndex << 4) | (_state.VideoRamAddr >> 12) | _flags.BackgroundPatternAddr;
//std::cout << std::hex << GetAttributeAddr() << " ";
uint16_t shift = _state.VideoRamAddr&0x3FF;
_nextTile.Attributes = ((_memoryManager->ReadVRAM(GetAttributeAddr()) >> shift) & 0x03) << 2;
_nextTile.LowByte = _memoryManager->ReadVRAM(tileAddr);
_nextTile.HighByte = _memoryManager->ReadVRAM(tileAddr + 8);
_state.LowBitShift = (_state.LowBitShift << 8) | _nextTile.LowByte;
_state.HighBitShift = (_state.HighBitShift << 8) | _nextTile.HighByte;
}
void PPU::DrawPixel()
{
uint8_t palette = 0;
uint8_t tileXPixel = _cycle % 8;
uint32_t bufferPosition = _scanline * 256 + _cycle;
uint8_t fineXScroll = _state.XScroll;
uint8_t offset = (15 - tileXPixel - fineXScroll);
uint8_t pixelColor = ((_state.LowBitShift >> offset) & 0x01) | (((_state.HighBitShift >> offset) & 0x01) << 1);
// If we're grabbing the pixel from the high
// part of the shift register, use the buffered
// palette, not the current one
if(pixelColor != 0 && _frameCount > 1000) {
//std::cout << std::hex << (short)pixelColor << std::endl;
}
if(offset < 8) {
palette = GetBGPaletteEntry(_nextTile.Attributes, pixelColor);
} else {
palette = GetBGPaletteEntry(_currentTile.Attributes, pixelColor);
}
/*
if(p->palettebuffer[fbRow].value != 0) {
// Pixel is already rendered and priority
// 1 means show behind background
continue;
}*/
//p->palettebuffer[fbRow].color = PPU_PALETTE_RGB[palette % 64];
((uint32_t*)_outputBuffer)[bufferPosition] = PPU_PALETTE_RGB[palette % 64] | (0xFF << 24);
//p->palettebuffer[fbRow].value = pixel;
//p->palettebuffer[fbRow].pindex = -1;
}
void PPU::ProcessVisibleScanline()
{
if(IsRenderingEnabled()) {
UpdateScrolling();
}
if(_cycle <= 254) {
DrawPixel();
}
if(_cycle == 254) {
//DrawScanline();
if(_scanline == 239) {
CopyFrame();
//std::cout << std::endl << std::endl << std::endl;
}
if(_flags.BackgroundEnabled) {
//Ppu_renderTileRow(p);
}
if(_flags.SpritesEnabled) {
//Ppu_evaluateScanlineSprites(p, p->scanline);
}
}
}
void PPU::DrawScanline()
{
// Generates each tile, one scanline at a time and applies the palette
// Move first tile into shift registers
//PpuTileAttributes tileAttrs;
//FetchTileAttributes(&tileAttrs);
/* _state.LowBitShift = tileAttrs.low;
_state.HighBitShift = tileAttrs.high;
uint8_t attr = tileAttrs.attr;
FetchTileAttributes(&tileAttrs);
// Get second tile, move the pixels into the right side of
// shift registers
_state.LowBitShift = (_state.LowBitShift << 8) | tileAttrs.low;
_state.HighBitShift = (_state.HighBitShift << 8) | tileAttrs.high;
// Current tile to render is attrBuf
uint8_t attrBuf = tileAttrs.attr;
for(int x = 0; x < 32; x++) {
int palette = 0;
for(unsigned int b = 0; b < 8; b++) {
int intB = b;
int fbRow = _scanline * 256 + ((x * 8) + intB);
unsigned int uintFineX = _state.XScroll;
uint16_t pixel = (_state.LowBitShift >> (15 - b - uintFineX)) & 0x01;
pixel += ((_state.HighBitShift >> (15 - b - uintFineX) & 0x01) << 1);
// If we're grabbing the pixel from the high
// part of the shift register, use the buffered
// palette, not the current one
if((15 - b - uintFineX) < 8) {
palette = GetBGPaletteEntry(attrBuf, pixel);
} else {
palette = GetBGPaletteEntry(attr, pixel);
}
if(p->palettebuffer[fbRow].value != 0) {
// Pixel is already rendered and priority
// 1 means show behind background
continue;
}
//p->palettebuffer[fbRow].color = PPU_PALETTE_RGB[palette % 64];
_outputBuffer[fbRow] = PPU_PALETTE_RGB[palette % 64];
//p->palettebuffer[fbRow].value = pixel;
//p->palettebuffer[fbRow].pindex = -1;
}
// xcoord = p->registers.vramAddress & 0x1F
attr = attrBuf;
// Shift the first tile out, bring the new tile in
FetchTileAttributes(&tileAttrs);
_state.LowBitShift = (_state.LowBitShift << 8) | tileAttrs.low;
_state.HighBitShift = (_state.HighBitShift << 8) | tileAttrs.high;
attrBuf = tileAttrs.attr;
}*/
}
uint8_t PPU::GetBGPaletteEntry(uint8_t a, uint16_t pix)
{
uint16_t baseAddr = 0x3F00;
if(pix == 0x0) {
return _memoryManager->ReadVRAM(baseAddr);
}
switch(a) {
case 0x0:
return _memoryManager->ReadVRAM(baseAddr + pix);
case 0x4:
return _memoryManager->ReadVRAM(baseAddr + 0x04 + pix);
case 0x8:
return _memoryManager->ReadVRAM(baseAddr + 0x08 + pix);
case 0xC:
return _memoryManager->ReadVRAM(baseAddr + 0x0C + pix);
}
return 0;
}
void PPU::CopyFrame()
{
int counter = PPU::WaitCounter.fetch_add(1);
if(counter != 0) {
//We weren't the first thread to increment the value, wait until other locks are released
while(PPU::WaitCounter > 1) {}
}
memcpy(PPU::FrameBuffer, _outputBuffer, 256 * 240 * 4);
PPU::WaitCounter--;
}
uint8_t* PPU::GetFrame()
{
uint8_t *copyBuffer = new uint8_t[256 * 240 * 4];
int counter = PPU::WaitCounter.fetch_add(1);
if(counter != 0) {
//We weren't the first thread to increment the value, wait until other locks are released
while(PPU::WaitCounter > 1) {}
}
memcpy(copyBuffer, PPU::FrameBuffer, 256 * 240 * 4);
PPU::WaitCounter--;
return copyBuffer;
}
void PPU::BeginVBlank()
{
if(_cycle == 1) {
_statusFlags.VerticalBlank = true;
/*if(!_suppressVBlank) {
// We're in VBlank
Ppu_setStatus(p, STATUS_VBLANK_STARTED);
p->cycleCount = 0;
}*/
if(_flags.VBlank) {
CPU::SetNMIFlag();
}
//Ppu_raster(p);
}
}
void PPU::EndVBlank()
{
if(_cycle == 340) {
_frameCount++;
//std::cout << _frameCount << std::endl;
}
}
void PPU::Exec()
{
uint64_t equivalentCycleCount = CPU::GetCycleCount() * 3;
while(_cycleCount < equivalentCycleCount) {
if(_scanline == -1) {
ProcessPrerenderScanline();
} else if(_scanline < 240) {
ProcessVisibleScanline();
} else if(_scanline == 241) {
BeginVBlank();
} else if(_scanline == 260) {
EndVBlank();
}
if(_cycle == 340) {
_cycle = 0;
_scanline++;
if(_scanline == 261) {
_scanline = -1;
}
} else {
_cycle++;
}
_cycleCount++;
}
}