Mesen/Core/MMC5.h
Souryo b3a6447a94 BaseMapper - Support for both CHR ROM & RAM at once
Mapper 74, 119, 191, 192, 194, 195 support
2016-01-19 20:16:00 -05:00

425 lines
14 KiB
C++

#pragma once
#include "stdafx.h"
#include "BaseMapper.h"
#include "PPU.h"
class MMC5 : public BaseMapper
{
private:
uint8_t _prgRamProtect1;
uint8_t _prgRamProtect2;
uint8_t _fillModeTile;
uint8_t _fillModeColor;
uint8_t *_fillModeNametable;
uint8_t *_emptyNametable;
bool _verticalSplitEnabled;
bool _verticalSplitRightSide;
uint8_t _verticalSplitDelimiterTile;
uint8_t _verticalSplitScroll;
uint8_t _verticalSplitBank;
uint8_t _multiplierValue1;
uint8_t _multiplierValue2;
uint8_t _nametableMapping;
uint8_t _extendedRamMode;
//Extended attribute mode fields (used when _extendedRamMode == 1)
uint16_t _exAttributeLastNametableFetch;
int8_t _exAttrLastFetchCounter;
uint8_t _exAttrSelectedChrBank;
uint8_t _prgMode;
uint8_t _prgBanks[5];
//CHR-related fields
uint8_t _chrMode;
uint8_t _chrUpperBits;
uint16_t _chrBanks[12];
uint16_t _lastChrReg;
bool _spriteFetch;
bool _largeSprites;
//IRQ counter related fields
uint8_t _irqCounterTarget;
bool _irqEnabled;
int16_t _previousScanline;
uint8_t _irqCounter;
bool _irqPending;
bool _ppuInFrame;
void SwitchPrgBank(uint16_t reg, uint8_t value)
{
_prgBanks[reg - 0x5113] = value;
UpdatePrgBanks();
}
void GetCpuBankInfo(uint16_t reg, uint8_t &bankNumber, PrgMemoryType &memoryType, uint8_t &accessType)
{
bankNumber = _prgBanks[reg-0x5113];
memoryType = PrgMemoryType::PrgRom;
if((((bankNumber & 0x80) == 0x00) && reg != 0x04) || reg == 0x00) {
bankNumber &= 0x07;
memoryType = PrgMemoryType::SaveRam;
accessType = MemoryAccessType::Read;
if(_prgRamProtect1 == 0x02 && _prgRamProtect2 == 0x01) {
accessType |= MemoryAccessType::Write;
}
} else {
accessType = MemoryAccessType::Read;
bankNumber &= 0x7F;
}
}
void UpdatePrgBanks()
{
uint8_t value;
PrgMemoryType memoryType;
uint8_t accessType;
GetCpuBankInfo(0x5113, value, memoryType, accessType);
SetCpuMemoryMapping(0x6000, 0x7FFF, value, memoryType, accessType);
//PRG Bank 0
//Mode 0,1,2 - Ignored
//Mode 3 - Select an 8KB PRG bank at $8000-$9FFF
if(_prgMode == 3) {
GetCpuBankInfo(0x5114, value, memoryType, accessType);
SetCpuMemoryMapping(0x8000, 0x9FFF, value, memoryType, accessType);
}
//PRG Bank 1
//Mode 0 - Ignored
//Mode 1,2 - Select a 16KB PRG bank at $8000-$BFFF (ignore bottom bit)
//Mode 3 - Select an 8KB PRG bank at $A000-$BFFF
GetCpuBankInfo(0x5115, value, memoryType, accessType);
if(_prgMode == 1 || _prgMode == 2) {
SetCpuMemoryMapping(0x8000, 0xBFFF, value & 0xFE, memoryType, accessType);
} else if(_prgMode == 3) {
SetCpuMemoryMapping(0xA000, 0xBFFF, value, memoryType, accessType);
}
//Mode 0,1 - Ignored
//Mode 2,3 - Select an 8KB PRG bank at $C000-$DFFF
if(_prgMode == 2 || _prgMode == 3) {
GetCpuBankInfo(0x5116, value, memoryType, accessType);
SetCpuMemoryMapping(0xC000, 0xDFFF, value, memoryType, accessType);
}
//Mode 0 - Select a 32KB PRG ROM bank at $8000-$FFFF (ignore bottom 2 bits)
//Mode 1 - Select a 16KB PRG ROM bank at $C000-$FFFF (ignore bottom bit)
//Mode 2,3 - Select an 8KB PRG ROM bank at $E000-$FFFF
GetCpuBankInfo(0x5117, value, memoryType, accessType);
if(_prgMode == 0) {
SetCpuMemoryMapping(0x8000, 0xFFFF, value & 0x7C, memoryType, accessType);
} else if(_prgMode == 1) {
SetCpuMemoryMapping(0xC000, 0xFFFF, value & 0x7E, memoryType, accessType);
} else if(_prgMode == 2 || _prgMode == 3) {
SetCpuMemoryMapping(0xE000, 0xFFFF, value & 0x7F, memoryType, accessType);
}
}
void SwitchChrBank(uint16_t reg, uint8_t value)
{
_chrBanks[reg - 0x5120] = value | (_chrUpperBits << 8);
_lastChrReg = reg;
UpdateChrBanks(!PPU::GetControlFlags().BackgroundEnabled && !PPU::GetControlFlags().SpritesEnabled);
}
void UpdateChrBanks(bool forceA = false)
{
_spriteFetch = IsSpriteFetch();
_largeSprites = PPU::GetControlFlags().LargeSprites;
bool chrA = forceA || (_largeSprites && _spriteFetch) || (!_largeSprites && _lastChrReg <= 0x5127);
if(_chrMode == 0) {
SetPpuMemoryMapping(0x0000, 0x1FFF, _chrBanks[chrA ? 0x07 : 0x0B] << 3);
} else if(_chrMode == 1) {
SetPpuMemoryMapping(0x0000, 0x0FFF, _chrBanks[chrA ? 0x03 : 0x0B] << 2);
SetPpuMemoryMapping(0x1000, 0x1FFF, _chrBanks[chrA ? 0x07 : 0x0B] << 2);
} else if(_chrMode == 2) {
SetPpuMemoryMapping(0x0000, 0x07FF, _chrBanks[chrA ? 0x01 : 0x09] << 1);
SetPpuMemoryMapping(0x0800, 0x0FFF, _chrBanks[chrA ? 0x03 : 0x0B] << 1);
SetPpuMemoryMapping(0x1000, 0x17FF, _chrBanks[chrA ? 0x05 : 0x09] << 1);
SetPpuMemoryMapping(0x1800, 0x1FFF, _chrBanks[chrA ? 0x07 : 0x0B] << 1);
} else if(_chrMode == 3) {
SetPpuMemoryMapping(0x0000, 0x03FF, _chrBanks[chrA ? 0x00 : 0x08]);
SetPpuMemoryMapping(0x0400, 0x07FF, _chrBanks[chrA ? 0x01 : 0x09]);
SetPpuMemoryMapping(0x0800, 0x0BFF, _chrBanks[chrA ? 0x02 : 0x0A]);
SetPpuMemoryMapping(0x0C00, 0x0FFF, _chrBanks[chrA ? 0x03 : 0x0B]);
SetPpuMemoryMapping(0x1000, 0x13FF, _chrBanks[chrA ? 0x04 : 0x08]);
SetPpuMemoryMapping(0x1400, 0x17FF, _chrBanks[chrA ? 0x05 : 0x09]);
SetPpuMemoryMapping(0x1800, 0x1BFF, _chrBanks[chrA ? 0x06 : 0x0A]);
SetPpuMemoryMapping(0x1C00, 0x1FFF, _chrBanks[chrA ? 0x07 : 0x0B]);
}
}
virtual void NotifyVRAMAddressChange(uint16_t addr)
{
if(_spriteFetch != IsSpriteFetch() || _largeSprites != PPU::GetControlFlags().LargeSprites) {
if(PPU::GetControlFlags().BackgroundEnabled || PPU::GetControlFlags().SpritesEnabled) {
UpdateChrBanks();
}
}
int16_t currentScanline = PPU::GetCurrentScanline();
if(currentScanline != _previousScanline) {
if(currentScanline < _previousScanline) {
_ppuInFrame = false;
}
if(currentScanline >= 239 || currentScanline < 0) {
_ppuInFrame = false;
} else {
if(!_ppuInFrame) {
_ppuInFrame = true;
_irqCounter = 0;
_irqPending = false;
CPU::ClearIRQSource(IRQSource::External);
} else {
_irqCounter++;
if(_irqCounter == _irqCounterTarget) {
_irqPending = true;
if(_irqEnabled) {
CPU::SetIRQSource(IRQSource::External);
}
}
}
}
_previousScanline = currentScanline;
}
}
void SetNametableMapping(uint8_t value)
{
_nametableMapping = value;
uint8_t* nametables[4] = {
_nesNametableRam[0], //"0 - On-board VRAM page 0"
_nesNametableRam[1], //"1 - On-board VRAM page 1"
_extendedRamMode <= 1 ? _workRam : _emptyNametable, //"2 - Internal Expansion RAM, only if the Extended RAM mode allows it ($5104 is 00/01); otherwise, the nametable will read as all zeros,"
_fillModeNametable //"3 - Fill-mode data"
};
SetMirroringType(nametables[value & 0x03], nametables[(value >> 2) & 0x03], nametables[(value >> 4) & 0x03], nametables[(value >> 6) & 0x03]);
}
void SetExtendedRamMode(uint8_t mode)
{
_extendedRamMode = mode;
if(_extendedRamMode <= 1) {
//"Mode 0/1 - Not readable (returns open bus), can only be written while the PPU is rendering (otherwise, 0 is written)"
//See overridden WriteRam function for implementation
SetCpuMemoryMapping(0x5C00, 0x5FFF, 0, PrgMemoryType::WorkRam, MemoryAccessType::Write);
} else if(_extendedRamMode == 2) {
//"Mode 2 - Readable and writable"
SetCpuMemoryMapping(0x5C00, 0x5FFF, 0, PrgMemoryType::WorkRam, MemoryAccessType::ReadWrite);
} else {
//"Mode 3 - Read-only"
SetCpuMemoryMapping(0x5C00, 0x5FFF, 0, PrgMemoryType::WorkRam, MemoryAccessType::Read);
}
SetNametableMapping(_nametableMapping);
}
void SetFillModeTile(uint8_t tile)
{
_fillModeTile = tile;
memset(_fillModeNametable, tile, 32 * 30); //32 tiles per row, 30 rows
}
void SetFillModeColor(uint8_t color)
{
_fillModeColor = color;
memset(_fillModeNametable + 32 * 30, color, 64); //Attribute table is 64 bytes
}
bool IsSpriteFetch()
{
return PPU::GetCurrentCycle() >= 257 && PPU::GetCurrentCycle() < 321;
}
protected:
virtual uint16_t GetPRGPageSize() { return 0x2000; }
virtual uint16_t GetCHRPageSize() { return 0x400; }
virtual uint16_t RegisterStartAddress() { return 0x5000; }
virtual uint16_t RegisterEndAddress() { return 0x5206; }
virtual uint32_t GetSaveRamSize() { return 0x10000; } //Emulate as if a single 64k block of saved ram existed
virtual uint32_t GetSaveRamPageSize() { return 0x2000; }
virtual uint32_t GetWorkRamSize() { return 0x400; }
virtual uint32_t GetWorkRamPageSize() { return 0x400; }
virtual bool AllowRegisterRead() { return true; }
virtual void InitMapper()
{
_hasBattery = true;
_chrMode = 0;
_prgRamProtect1 = 0;
_prgRamProtect2 = 0;
_extendedRamMode = 0;
_fillModeColor = 0;
_fillModeTile = 0;
_verticalSplitScroll = 0;
_verticalSplitBank = 0;
_multiplierValue1 = 0;
_multiplierValue2 = 0;
_chrUpperBits = 0;
memset(_chrBanks, 0, sizeof(_chrBanks));
_lastChrReg = 0;
_spriteFetch = false;
_largeSprites = false;
_exAttrLastFetchCounter = 0;
_exAttributeLastNametableFetch = 0;
_exAttrSelectedChrBank = 0;
_irqCounterTarget = 0;
_irqCounter = 0;
_irqEnabled = false;
_previousScanline = -1;
_ppuInFrame = false;
_fillModeNametable = new uint8_t[0x400];
_emptyNametable = new uint8_t[0x400];
memset(_emptyNametable, 0, 0x400);
//"Expansion RAM ($5C00-$5FFF, read/write)"
SetCpuMemoryMapping(0x5C00, 0x5FFF, 0, PrgMemoryType::WorkRam);
//"Additionally, Romance of the 3 Kingdoms 2 seems to expect it to be in 8k PRG mode ($5100 = $03)."
WriteRegister(0x5100, 0x03);
//"Games seem to expect $5117 to be $FF on powerup (last PRG page swapped in)."
WriteRegister(0x5117, 0xFF);
}
virtual ~MMC5()
{
delete[] _fillModeNametable;
delete[] _emptyNametable;
}
void StreamState(bool saving)
{
//TODO
BaseMapper::StreamState(saving);
}
virtual void WriteRAM(uint16_t addr, uint8_t value)
{
if(addr >= 0x5C00 && addr <= 0x5FFF && _extendedRamMode <= 1) {
PPUControlFlags flags = PPU::GetControlFlags();
if(!flags.BackgroundEnabled && !flags.SpritesEnabled) {
//Expansion RAM ($5C00-$5FFF, read/write)
//Mode 0/1 - Not readable (returns open bus), can only be written while the PPU is rendering (otherwise, 0 is written)
value = 0;
}
}
BaseMapper::WriteRAM(addr, value);
}
virtual uint8_t ReadVRAM(uint16_t addr)
{
if(_extendedRamMode == 1) {
//"In Mode 1, nametable fetches are processed normally, and can come from CIRAM nametables, fill mode, or even Expansion RAM, but attribute fetches are replaced by data from Expansion RAM."
//"Each byte of Expansion RAM is used to enhance the tile at the corresponding address in every nametable"
//When fetching NT data, we set a flag and then alter the VRAM values read by the PPU on the following 3 cycles (palette, tile low/high byte)
if(addr >= 0x2000 && (addr & 0x3FF) < 0x3C0) {
//Nametable fetches
_exAttributeLastNametableFetch = addr & 0x03FF;
_exAttrLastFetchCounter = 3;
} else if(_exAttrLastFetchCounter > 0) {
//Attribute fetches
_exAttrLastFetchCounter--;
switch(_exAttrLastFetchCounter) {
case 2:
{
//PPU palette fetch
//Check work ram (expansion ram) to see which tile/palette to use
//Use InternalReadRam to bypass the fact that the ram is supposed to be write-only in mode 0/1
uint8_t value = InternalReadRam(0x5C00 + _exAttributeLastNametableFetch);
//"The pattern fetches ignore the standard CHR banking bits, and instead use the top two bits of $5130 and the bottom 6 bits from Expansion RAM to choose a 4KB bank to select the tile from."
_exAttrSelectedChrBank = ((value & 0x3F) | (_chrUpperBits << 6)) % (_chrRomSize / 0x1000);
//Return a byte containing the same palette 4 times - this allows the PPU to select the right palette no matter the shift value
uint8_t palette = (value & 0xC0) >> 6;
return palette | palette << 2 | palette << 4 | palette << 6;
}
case 1:
case 0:
//PPU tile data fetch (high byte & low byte)
return _chrRam[_exAttrSelectedChrBank * 0x1000 + (addr & 0xFFF)];
}
}
}
return BaseMapper::ReadVRAM(addr);
}
void WriteRegister(uint16_t addr, uint8_t value)
{
if(addr >= 0x5113 && addr <= 0x5117) {
SwitchPrgBank(addr, value);
} else if(addr >= 0x5120 && addr <= 0x512B) {
SwitchChrBank(addr, value);
} else {
switch(addr) {
case 0x5100: _prgMode = value & 0x03; UpdatePrgBanks(); break;
case 0x5101: _chrMode = value & 0x03; UpdateChrBanks(); break;
case 0x5102: _prgRamProtect1 = value & 0x03; UpdatePrgBanks(); break;
case 0x5103: _prgRamProtect2 = value & 0x03; UpdatePrgBanks(); break;
case 0x5104: SetExtendedRamMode(value & 0x03); break;
case 0x5105: SetNametableMapping(value); break;
case 0x5106: SetFillModeTile(value); break;
case 0x5107: SetFillModeColor(value & 0x03); break;
case 0x5130: _chrUpperBits = value & 0x03; break;
case 0x5200:
_verticalSplitEnabled = (value & 0x80) == 0x80;
_verticalSplitRightSide = (value & 0x40) == 0x40;
_verticalSplitDelimiterTile = (value & 0x1F);
break;
case 0x5201: _verticalSplitScroll = value; break;
case 0x5202: _verticalSplitBank = value; break;
case 0x5203: _irqCounterTarget = value; break;
case 0x5204:
_irqEnabled = (value & 0x80) == 0x80;
if(!_irqEnabled) {
CPU::ClearIRQSource(IRQSource::External);
} else if(_irqEnabled && _irqPending) {
CPU::SetIRQSource(IRQSource::External);
}
break;
case 0x5205: _multiplierValue1 = value; break;
case 0x5206: _multiplierValue2 = value; break;
default:
break;
}
}
}
uint8_t ReadRegister(uint16_t addr)
{
switch(addr) {
case 0x5204:
{
uint8_t value = (_ppuInFrame ? 0x40 : 0x00) | (_irqPending ? 0x80 : 0x00);
_irqPending = false;
CPU::ClearIRQSource(IRQSource::External);
return value;
}
case 0x5205: return (_multiplierValue1*_multiplierValue2) & 0xFF;
case 0x5206: return (_multiplierValue1*_multiplierValue2) >> 8;
}
return 0;
}
};