Mesen/Core/DisassemblyInfo.cpp
2017-08-05 17:18:09 -04:00

270 lines
7.5 KiB
C++

#include "stdafx.h"
#include "../Utilities/HexUtilities.h"
#include "DisassemblyInfo.h"
#include "CPU.h"
#include "LabelManager.h"
#include "MemoryManager.h"
string DisassemblyInfo::OPName[256];
AddrMode DisassemblyInfo::OPMode[256];
bool DisassemblyInfo::IsUnofficialCode[256];
uint8_t DisassemblyInfo::OPSize[256];
static const char* hexTable[256] = {
"00", "01", "02", "03", "04", "05", "06", "07", "08", "09", "0A", "0B", "0C", "0D", "0E", "0F",
"10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "1A", "1B", "1C", "1D", "1E", "1F",
"20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "2A", "2B", "2C", "2D", "2E", "2F",
"30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "3A", "3B", "3C", "3D", "3E", "3F",
"40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "4A", "4B", "4C", "4D", "4E", "4F",
"50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "5A", "5B", "5C", "5D", "5E", "5F",
"60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "6A", "6B", "6C", "6D", "6E", "6F",
"70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "7A", "7B", "7C", "7D", "7E", "7F",
"80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "8A", "8B", "8C", "8D", "8E", "8F",
"90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "9A", "9B", "9C", "9D", "9E", "9F",
"A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7", "A8", "A9", "AA", "AB", "AC", "AD", "AE", "AF",
"B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B9", "BA", "BB", "BC", "BD", "BE", "BF",
"C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8", "C9", "CA", "CB", "CC", "CD", "CE", "CF",
"D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7", "D8", "D9", "DA", "DB", "DC", "DD", "DE", "DF",
"E0", "E1", "E2", "E3", "E4", "E5", "E6", "E7", "E8", "E9", "EA", "EB", "EC", "ED", "EE", "EF",
"F0", "F1", "F2", "F3", "F4", "F5", "F6", "F7", "F8", "F9", "FA", "FB", "FC", "FD", "FE", "FF"
};
DisassemblyInfo::DisassemblyInfo()
{
}
void DisassemblyInfo::ToString(string &out, uint32_t memoryAddr, MemoryManager* memoryManager, LabelManager* labelManager)
{
char buffer[500];
uint8_t opCode = _byteCode[0];
uint16_t length = (uint16_t)DisassemblyInfo::OPName[opCode].size();
memcpy(buffer, DisassemblyInfo::OPName[opCode].c_str(), length);
uint16_t* ptrPos = &length;
char* ptrBuf = buffer;
uint16_t opAddr = GetOpAddr(memoryAddr);
uint8_t operandLength = 0;
char operandBuffer[7];
char* opBuffer = operandBuffer;
operandBuffer[0] = '$';
if(_opSize == 2 && _opMode != AddrMode::Rel) {
memcpy(operandBuffer + 1, hexTable[opAddr], 2);
operandLength = 3;
} else {
memcpy(operandBuffer + 1, hexTable[opAddr >> 8], 2);
memcpy(operandBuffer + 3, hexTable[opAddr & 0xFF], 2);
operandLength = 5;
}
auto writeChar = [=](char c) -> void {
ptrBuf[(*ptrPos)++] = c;
};
auto copyOperand = [=]() -> void {
if(labelManager && _opMode != AddrMode::Imm) {
string label = labelManager->GetLabel(opAddr, true);
if(!label.empty()) {
memcpy(ptrBuf + (*ptrPos), label.c_str(), label.size());
(*ptrPos) += (uint16_t)label.size();
return;
}
}
memcpy(ptrBuf + (*ptrPos), opBuffer, operandLength);
(*ptrPos) += operandLength;
};
switch(_opMode) {
case AddrMode::Acc: writeChar('A'); break;
case AddrMode::Imm: writeChar('#'); copyOperand(); break;
case AddrMode::Ind: writeChar('('); copyOperand(); writeChar(')'); break;
case AddrMode::IndX: writeChar('('); copyOperand(); memcpy(ptrBuf + length, ",X)", 3); length += 3; break;
case AddrMode::IndY:
case AddrMode::IndYW:
writeChar('(');
copyOperand();
memcpy(ptrBuf + length, "),Y", 3);
length += 3;
break;
case AddrMode::Abs:
case AddrMode::Rel:
case AddrMode::Zero:
copyOperand();
break;
case AddrMode::AbsX:
case AddrMode::AbsXW:
case AddrMode::ZeroX:
copyOperand();
memcpy(ptrBuf + length, ",X", 2);
length += 2;
break;
case AddrMode::AbsY:
case AddrMode::AbsYW:
case AddrMode::ZeroY:
copyOperand();
memcpy(ptrBuf + length, ",Y", 2);
length += 2;
break;
default: break;
}
ptrBuf[length] = 0;
out.append(ptrBuf, length);
}
uint16_t DisassemblyInfo::GetOpAddr(uint16_t memoryAddr)
{
uint16_t opAddr = 0;
if(_opSize == 2) {
opAddr = _byteCode[1];
} else if(_opSize == 3) {
opAddr = _byteCode[1] | (_byteCode[2] << 8);
}
if(_opMode == AddrMode::Rel) {
opAddr = (int8_t)opAddr + memoryAddr + 2;
}
return opAddr;
}
DisassemblyInfo::DisassemblyInfo(uint8_t* opPointer, bool isSubEntryPoint)
{
_isSubEntryPoint = isSubEntryPoint;
uint8_t opCode = *opPointer;
_opSize = DisassemblyInfo::OPSize[opCode];
_opMode = DisassemblyInfo::OPMode[opCode];
for(uint32_t i = 0; i < _opSize; i++) {
_byteCode[i] = *(opPointer + i);
}
_isSubExitPoint = opCode == 0x40 || opCode == 0x60;
}
void DisassemblyInfo::SetSubEntryPoint()
{
_isSubEntryPoint = true;
}
void DisassemblyInfo::GetEffectiveAddressString(string &out, State& cpuState, MemoryManager* memoryManager, LabelManager* labelManager)
{
if(_opMode <= AddrMode::Abs) {
return;
} else {
int32_t effectiveAddress = GetEffectiveAddress(cpuState, memoryManager);
char buffer[500];
int length = 0;
buffer[0] = ' ';
buffer[1] = '@';
buffer[2] = ' ';
if(labelManager) {
string label = labelManager->GetLabel(effectiveAddress, true);
if(!label.empty()) {
memcpy(buffer + 3, label.c_str(), label.size());
length = (uint16_t)label.size() + 3;
buffer[length] = 0;
out.append(buffer, length);
return;
}
}
buffer[3] = '$';
if(_opMode == AddrMode::ZeroX || _opMode == AddrMode::ZeroY) {
memcpy(buffer + 4, hexTable[effectiveAddress], 2);
buffer[6] = 0;
length = 6;
} else {
memcpy(buffer + 4, hexTable[effectiveAddress >> 8], 2);
memcpy(buffer + 6, hexTable[effectiveAddress & 0xFF], 2);
buffer[8] = 0;
length = 8;
}
out.append(buffer, length);
}
}
int32_t DisassemblyInfo::GetEffectiveAddress(State& cpuState, MemoryManager* memoryManager)
{
switch(_opMode) {
case AddrMode::ZeroX: return (uint8_t)(_byteCode[1] + cpuState.X); break;
case AddrMode::ZeroY: return (uint8_t)(_byteCode[1] + cpuState.Y); break;
case AddrMode::IndX: {
uint8_t zeroAddr = _byteCode[1] + cpuState.X;
return memoryManager->DebugRead(zeroAddr) | memoryManager->DebugRead((uint8_t)(zeroAddr + 1)) << 8;
}
case AddrMode::IndY:
case AddrMode::IndYW: {
uint8_t zeroAddr = _byteCode[1];
uint16_t addr = memoryManager->DebugRead(zeroAddr) | memoryManager->DebugRead((uint8_t)(zeroAddr + 1)) << 8;
return (uint16_t)(addr + cpuState.Y);
}
case AddrMode::Ind: {
uint8_t zeroAddr = _byteCode[1];
return memoryManager->DebugRead(zeroAddr) | memoryManager->DebugRead((uint8_t)(zeroAddr + 1)) << 8;
}
case AddrMode::AbsX:
case AddrMode::AbsXW: {
return (uint16_t)((_byteCode[1] | (_byteCode[2] << 8)) + cpuState.X) & 0xFFFF;
}
case AddrMode::AbsY:
case AddrMode::AbsYW: {
return (uint16_t)((_byteCode[1] | (_byteCode[2] << 8)) + cpuState.Y) & 0xFFFF;
}
}
return -1;
}
void DisassemblyInfo::GetByteCode(string &out)
{
//Raw byte code
char byteCode[12];
int pos = 1;
byteCode[0] = '$';
for(uint32_t i = 0; i < _opSize; i++) {
if(i != 0) {
byteCode[pos++] = ' ';
byteCode[pos++] = '$';
}
byteCode[pos++] = hexTable[_byteCode[i]][0];
byteCode[pos++] = hexTable[_byteCode[i]][1];
}
byteCode[pos] = 0;
out.append(byteCode, pos);
}
uint32_t DisassemblyInfo::GetSize()
{
return _opSize;
}
bool DisassemblyInfo::IsSubEntryPoint()
{
return _isSubEntryPoint;
}
bool DisassemblyInfo::IsSubExitPoint()
{
return _isSubExitPoint;
}