Mesen/Core/BaseMapper.cpp

625 lines
16 KiB
C++

#include "stdafx.h"
#include "BaseMapper.h"
#include <assert.h>
#include "../Utilities/FolderUtilities.h"
#include "CheatManager.h"
uint16_t BaseMapper::InternalGetPrgPageSize()
{
//Make sure the page size is no bigger than the size of the ROM itself
//Otherwise we will end up reading from unallocated memory
return std::min((uint32_t)GetPRGPageSize(), _prgSize);
}
uint16_t BaseMapper::InternalGetChrPageSize()
{
//Make sure the page size is no bigger than the size of the ROM itself
//Otherwise we will end up reading from unallocated memory
return std::min((uint32_t)GetCHRPageSize(), _chrRomSize);
}
void BaseMapper::SetCpuMemoryMapping(uint16_t startAddr, uint16_t endAddr, int16_t pageNumber, PrgMemoryType type, int8_t accessType)
{
#ifdef _DEBUG
if((startAddr & 0xFF) || (endAddr & 0xFF) != 0xFF) {
throw new std::runtime_error("Start/End address must be multiples of 256/0x100");
}
#endif
uint8_t* source = nullptr;
uint32_t pageCount;
uint32_t pageSize;
uint8_t defaultAccessType = MemoryAccessType::Read;
switch(type) {
case PrgMemoryType::PrgRom:
source = _prgRom;
pageCount = GetPRGPageCount();
pageSize = InternalGetPrgPageSize();
break;
case PrgMemoryType::SaveRam:
source = _saveRam;
pageCount = _saveRamSize / GetSaveRamPageSize();
pageSize = GetSaveRamPageSize();
defaultAccessType |= MemoryAccessType::Write;
break;
case PrgMemoryType::WorkRam:
source = _workRam;
pageCount = GetWorkRamSize() / GetWorkRamPageSize();
pageSize = GetWorkRamPageSize();
defaultAccessType |= MemoryAccessType::Write;
break;
default:
throw new std::runtime_error("Invalid parameter");
}
if(pageNumber < 0) {
//Can't use modulo for negative number because pageCount is sometimes not a power of 2. (Fixes some Mapper 191 games)
pageNumber = pageCount + pageNumber;
} else {
pageNumber = pageNumber % pageCount;
}
source = &source[pageNumber * pageSize];
startAddr >>= 8;
endAddr >>= 8;
for(uint16_t i = startAddr; i <= endAddr; i++) {
_prgPages[i] = source;
_prgPageAccessType[i] = accessType != -1 ? accessType : defaultAccessType;
source += 0x100;
}
}
void BaseMapper::SetPpuMemoryMapping(uint16_t startAddr, uint16_t endAddr, uint16_t pageNumber, ChrMemoryType type, int8_t accessType)
{
uint32_t pageCount;
uint32_t pageSize;
uint8_t* sourceMemory = nullptr;
uint8_t defaultAccessType = MemoryAccessType::Read;
switch(type) {
case ChrMemoryType::Default:
pageCount = GetCHRPageCount();
pageSize = InternalGetChrPageSize();
sourceMemory = _onlyChrRam ? _chrRam : _chrRom;
if(_onlyChrRam) {
defaultAccessType |= MemoryAccessType::Write;
}
break;
case ChrMemoryType::ChrRom:
pageCount = GetCHRPageCount();
pageSize = InternalGetChrPageSize();
sourceMemory = _chrRom;
break;
case ChrMemoryType::ChrRam:
pageSize = GetChrRamPageSize();
pageCount = _chrRamSize / pageSize;
sourceMemory = _chrRam;
defaultAccessType |= MemoryAccessType::Write;
break;
}
SetPpuMemoryMapping(startAddr, endAddr, sourceMemory + (pageNumber % pageCount) * pageSize, accessType == -1 ? defaultAccessType : accessType);
}
void BaseMapper::SetPpuMemoryMapping(uint16_t startAddr, uint16_t endAddr, uint8_t* sourceMemory, int8_t accessType)
{
#ifdef _DEBUG
if((startAddr & 0xFF) || (endAddr & 0xFF) != 0xFF) {
throw new std::runtime_error("Start/End address must be multiples of 256/0x100");
}
#endif
startAddr >>= 8;
endAddr >>= 8;
for(uint16_t i = startAddr; i <= endAddr; i++) {
_chrPages[i] = sourceMemory;
_chrPageAccessType[i] = accessType != -1 ? accessType : MemoryAccessType::ReadWrite;
if(sourceMemory != nullptr) {
sourceMemory += 0x100;
}
}
}
void BaseMapper::RemovePpuMemoryMapping(uint16_t startAddr, uint16_t endAddr)
{
//Unmap this section of memory (causing open bus behavior)
SetPpuMemoryMapping(startAddr, endAddr, nullptr, MemoryAccessType::NoAccess);
}
uint8_t BaseMapper::InternalReadRam(uint16_t addr)
{
return _prgPages[addr >> 8] ? _prgPages[addr >> 8][addr & 0xFF] : 0;
}
void BaseMapper::SelectPrgPage4x(uint16_t slot, uint16_t page, PrgMemoryType memoryType)
{
SelectPrgPage2x(slot*2, page, memoryType);
SelectPrgPage2x(slot*2+1, page+2, memoryType);
}
void BaseMapper::SelectPrgPage2x(uint16_t slot, uint16_t page, PrgMemoryType memoryType)
{
SelectPRGPage(slot*2, page, memoryType);
SelectPRGPage(slot*2+1, page+1, memoryType);
}
void BaseMapper::SelectPRGPage(uint16_t slot, uint16_t page, PrgMemoryType memoryType)
{
_prgPageNumbers[slot] = page;
if(_prgSize < PrgAddressRangeSize) {
//Total PRG size is smaller than available memory range, map the entire PRG to all slots
//i.e same logic as NROM (mapper 0) when PRG is 16kb
//Needed by "Pyramid" (mapper 79)
#ifdef _DEBUG
MessageManager::DisplayMessage("Debug", "PRG size is smaller than 32kb");
#endif
for(slot = 0; slot < PrgAddressRangeSize / _prgSize; slot++) {
uint16_t startAddr = 0x8000 + slot * _prgSize;
uint16_t endAddr = startAddr + _prgSize - 1;
SetCpuMemoryMapping(startAddr, endAddr, 0, memoryType);
}
} else {
uint16_t startAddr = 0x8000 + slot * InternalGetPrgPageSize();
uint16_t endAddr = startAddr + InternalGetPrgPageSize() - 1;
SetCpuMemoryMapping(startAddr, endAddr, page, memoryType);
}
}
void BaseMapper::SelectChrPage8x(uint16_t slot, uint16_t page, ChrMemoryType memoryType)
{
SelectChrPage4x(slot, page, memoryType);
SelectChrPage4x(slot*2+1, page+4, memoryType);
}
void BaseMapper::SelectChrPage4x(uint16_t slot, uint16_t page, ChrMemoryType memoryType)
{
SelectChrPage2x(slot*2, page, memoryType);
SelectChrPage2x(slot*2+1, page+2, memoryType);
}
void BaseMapper::SelectChrPage2x(uint16_t slot, uint16_t page, ChrMemoryType memoryType)
{
SelectCHRPage(slot*2, page, memoryType);
SelectCHRPage(slot*2+1, page+1, memoryType);
}
void BaseMapper::SelectCHRPage(uint16_t slot, uint16_t page, ChrMemoryType memoryType)
{
_chrPageNumbers[slot] = page;
uint16_t startAddr = slot * InternalGetChrPageSize();
uint16_t endAddr = startAddr + InternalGetChrPageSize() - 1;
SetPpuMemoryMapping(startAddr, endAddr, page, memoryType);
}
bool BaseMapper::HasBattery()
{
return _hasBattery;
}
void BaseMapper::LoadBattery()
{
ifstream batteryFile(_batteryFilename, ios::in | ios::binary);
if(batteryFile) {
batteryFile.read((char*)_saveRam, _saveRamSize);
batteryFile.close();
}
//Set a default mapping for save ram (this is what most games/mappers use)
SetCpuMemoryMapping(0x6000, 0x7FFF, 0, PrgMemoryType::SaveRam);
}
void BaseMapper::SaveBattery()
{
ofstream batteryFile(_batteryFilename, ios::out | ios::binary);
if(batteryFile) {
batteryFile.write((char*)_saveRam, _saveRamSize);
batteryFile.close();
}
}
uint32_t BaseMapper::GetPRGPageCount()
{
return _prgSize / InternalGetPrgPageSize();
}
uint32_t BaseMapper::GetCHRPageCount()
{
return _chrRomSize / InternalGetChrPageSize();
}
string BaseMapper::GetBatteryFilename()
{
return FolderUtilities::GetSaveFolder() + FolderUtilities::GetFilename(_romFilename, false) + ".sav";
}
void BaseMapper::RestoreOriginalPrgRam()
{
memcpy(_prgRom, _originalPrgRom.data(), _originalPrgRom.size());
}
void BaseMapper::InitializeChrRam()
{
_chrRamSize = GetChrRamSize();
if(_chrRamSize > 0) {
_chrRam = new uint8_t[_chrRamSize];
memset(_chrRam, 0, _chrRamSize);
}
}
void BaseMapper::AddRegisterRange(uint16_t startAddr, uint16_t endAddr)
{
for(int i = startAddr; i <= endAddr; i++) {
_isRegisterAddr[i] = true;
}
}
void BaseMapper::RemoveRegisterRange(uint16_t startAddr, uint16_t endAddr)
{
for(int i = startAddr; i <= endAddr; i++) {
_isRegisterAddr[i] = false;
}
}
void BaseMapper::StreamState(bool saving)
{
StreamArray<uint8_t>(_chrRam, _chrRamSize);
Stream<MirroringType>(_mirroringType);
StreamArray<uint8_t>(_workRam, GetWorkRamSize());
StreamArray<uint8_t>(_saveRam, _saveRamSize);
StreamArray<uint32_t>(_prgPageNumbers, 64);
StreamArray<uint32_t>(_chrPageNumbers, 64);
StreamArray<uint8_t>(_nametableIndexes, 4);
if(!saving) {
for(uint16_t i = 0; i < 64; i++) {
if(_prgPageNumbers[i] != 0xEEEEEEEE) {
SelectPRGPage(i, (uint16_t)_prgPageNumbers[i]);
}
}
for(uint16_t i = 0; i < 64; i++) {
if(_chrPageNumbers[i] != 0xEEEEEEEE) {
SelectCHRPage(i, (uint16_t)_chrPageNumbers[i]);
}
}
for(int i = 0; i < 4; i++) {
SetNametable(i, _nametableIndexes[i]);
}
}
}
void BaseMapper::Initialize(RomData &romData)
{
_romFilename = romData.Filename;
_batteryFilename = GetBatteryFilename();
_saveRamSize = GetSaveRamSize(); //Needed because we need to call SaveBattery() in the destructor (and calling virtual functions in the destructor doesn't work correctly)
_allowRegisterRead = AllowRegisterRead();
memset(_isRegisterAddr, 0, sizeof(_isRegisterAddr));
AddRegisterRange(RegisterStartAddress(), RegisterEndAddress());
_mirroringType = romData.MirroringType;
_prgSize = (uint32_t)romData.PrgRom.size();
_chrRomSize = (uint32_t)romData.ChrRom.size();
_originalPrgRom = romData.PrgRom;
_prgRom = new uint8_t[_prgSize];
_chrRom = new uint8_t[_chrRomSize];
memcpy(_prgRom, romData.PrgRom.data(), _prgSize);
if(_chrRomSize > 0) {
memcpy(_chrRom, romData.ChrRom.data(), _chrRomSize);
}
_hasBattery = romData.HasBattery || ForceBattery();
_isPalRom = romData.IsPalRom;
_crc32 = romData.Crc32;
_hasBusConflicts = HasBusConflicts();
_saveRam = new uint8_t[_saveRamSize];
_workRam = new uint8_t[GetWorkRamSize()];
memset(_saveRam, 0, _saveRamSize);
memset(_workRam, 0, GetWorkRamSize());
memset(_prgPageNumbers, 0xEE, sizeof(_prgPageNumbers));
memset(_chrPageNumbers, 0xEE, sizeof(_chrPageNumbers));
memset(_cartNametableRam, 0, sizeof(_cartNametableRam));
memset(_nametableIndexes, 0, sizeof(_nametableIndexes));
for(int i = 0; i <= 0xFF; i++) {
//Allow us to map a different page every 256 bytes
_prgPages.push_back(nullptr);
_prgPageAccessType.push_back(MemoryAccessType::NoAccess);
_chrPages.push_back(nullptr);
_chrPageAccessType.push_back(MemoryAccessType::NoAccess);
}
//Load battery data if present
if(HasBattery()) {
LoadBattery();
}
if(_chrRomSize == 0) {
//Assume there is CHR RAM if no CHR ROM exists
_onlyChrRam = true;
InitializeChrRam();
_chrRomSize = _chrRamSize;
}
//Setup a default work/save ram in 0x6000-0x7FFF space
SetCpuMemoryMapping(0x6000, 0x7FFF, 0, HasBattery() ? PrgMemoryType::SaveRam : PrgMemoryType::WorkRam);
InitMapper();
InitMapper(romData);
MessageManager::RegisterNotificationListener(this);
ApplyCheats();
}
BaseMapper::~BaseMapper()
{
if(HasBattery()) {
SaveBattery();
}
delete[] _chrRam;
delete[] _chrRom;
delete[] _prgRom;
delete[] _saveRam;
delete[] _workRam;
if(_cartNametableRam[0]) {
delete[] _cartNametableRam[0];
}
if(_cartNametableRam[1]) {
delete[] _cartNametableRam[1];
}
MessageManager::UnregisterNotificationListener(this);
}
void BaseMapper::ProcessNotification(ConsoleNotificationType type, void* parameter)
{
switch(type) {
case ConsoleNotificationType::CheatAdded:
case ConsoleNotificationType::CheatRemoved:
ApplyCheats();
break;
default:
break;
}
}
void BaseMapper::ApplyCheats()
{
RestoreOriginalPrgRam();
CheatManager::ApplyPrgCodes(_prgRom, GetPrgSize());
}
void BaseMapper::GetMemoryRanges(MemoryRanges &ranges)
{
ranges.AddHandler(MemoryOperation::Read, 0x4018, 0xFFFF);
ranges.AddHandler(MemoryOperation::Write, 0x4018, 0xFFFF);
}
void BaseMapper::SetDefaultNametables(uint8_t* nametableA, uint8_t* nametableB)
{
_nesNametableRam[0] = nametableA;
_nesNametableRam[1] = nametableB;
SetMirroringType(_mirroringType);
}
void BaseMapper::AddNametable(uint8_t index, uint8_t *nametable)
{
assert(index >= 4);
_cartNametableRam[index - 2] = nametable;
}
uint8_t* BaseMapper::GetNametable(uint8_t index)
{
if(index <= 1) {
return _nesNametableRam[index];
} else {
return _cartNametableRam[index - 2];
}
}
void BaseMapper::SetNametable(uint8_t index, uint8_t nametableIndex)
{
if(nametableIndex == 2 && _cartNametableRam[0] == nullptr) {
_cartNametableRam[0] = new uint8_t[0x400];
}
if(nametableIndex == 3 && _cartNametableRam[1] == nullptr) {
_cartNametableRam[1] = new uint8_t[0x400];
}
_nametableIndexes[index] = nametableIndex;
SetPpuMemoryMapping(0x2000 + index * 0x400, 0x2000 + (index + 1) * 0x400 - 1, GetNametable(nametableIndex));
}
void BaseMapper::SetNametables(uint8_t nametable1Index, uint8_t nametable2Index, uint8_t nametable3Index, uint8_t nametable4Index)
{
SetNametable(0, nametable1Index);
SetNametable(1, nametable2Index);
SetNametable(2, nametable3Index);
SetNametable(3, nametable4Index);
}
void BaseMapper::SetMirroringType(MirroringType type)
{
_mirroringType = type;
switch(type) {
case MirroringType::Vertical: SetNametables(0, 1, 0, 1); break;
case MirroringType::Horizontal: SetNametables(0, 0, 1, 1); break;
case MirroringType::FourScreens: SetNametables(0, 1, 2, 3); break;
case MirroringType::ScreenAOnly: SetNametables(0, 0, 0, 0); break;
case MirroringType::ScreenBOnly: SetNametables(1, 1, 1, 1); break;
}
}
bool BaseMapper::IsPalRom()
{
return _isPalRom;
}
uint32_t BaseMapper::GetCrc32()
{
return _crc32;
}
MirroringType BaseMapper::GetMirroringType()
{
return _mirroringType;
}
uint8_t BaseMapper::ReadRAM(uint16_t addr)
{
if(_allowRegisterRead && _isRegisterAddr[addr]) {
return ReadRegister(addr);
} else if(_prgPageAccessType[addr >> 8] & MemoryAccessType::Read) {
return _prgPages[addr >> 8][addr & 0xFF];
} else {
//assert(false);
}
return (addr & 0xFF00) >> 8;
}
void BaseMapper::WriteRAM(uint16_t addr, uint8_t value)
{
if(_isRegisterAddr[addr]) {
if(_hasBusConflicts) {
value &= _prgPages[addr >> 8][addr & 0xFF];
}
WriteRegister(addr, value);
} else {
WritePrgRam(addr, value);
}
}
void BaseMapper::WritePrgRam(uint16_t addr, uint8_t value)
{
if(_prgPageAccessType[addr >> 8] & MemoryAccessType::Write) {
_prgPages[addr >> 8][addr & 0xFF] = value;
}
}
uint8_t BaseMapper::ReadVRAM(uint16_t addr)
{
if(_chrPageAccessType[addr >> 8] & MemoryAccessType::Read) {
return _chrPages[addr >> 8][addr & 0xFF];
} else {
//assert(false);
}
return 0;
}
void BaseMapper::WriteVRAM(uint16_t addr, uint8_t value)
{
if(_chrPageAccessType[addr >> 8] & MemoryAccessType::Write) {
_chrPages[addr >> 8][addr & 0xFF] = value;
} else {
//assert(false);
}
}
void BaseMapper::NotifyVRAMAddressChange(uint16_t addr)
{
//This is called when the VRAM addr on the PPU memory bus changes
//Used by MMC3/MMC5/etc
}
//Debugger Helper Functions
void BaseMapper::GetPrgCopy(uint8_t **buffer)
{
*buffer = new uint8_t[_prgSize];
memcpy(*buffer, _prgRom, _prgSize);
}
uint32_t BaseMapper::GetPrgSize()
{
return _prgSize;
}
void BaseMapper::GetChrRomCopy(uint8_t **buffer)
{
*buffer = new uint8_t[_chrRomSize];
memcpy(*buffer, _chrRom, _chrRomSize);
}
uint32_t BaseMapper::GetChrSize(bool getRamSize)
{
return getRamSize ? _chrRamSize : _chrRomSize;
}
void BaseMapper::GetChrRamCopy(uint8_t **buffer)
{
*buffer = new uint8_t[_chrRamSize];
memcpy(*buffer, _chrRam, _chrRamSize);
}
int32_t BaseMapper::ToAbsoluteAddress(uint16_t addr)
{
uint8_t *prgAddr = _prgPages[addr >> 8] + (addr & 0xFF);
if(prgAddr >= _prgRom && prgAddr < _prgRom + _prgSize) {
return (uint32_t)(prgAddr - _prgRom);
}
return -1;
}
int32_t BaseMapper::ToAbsoluteChrAddress(uint16_t addr)
{
uint8_t *chrAddr = _chrPages[addr >> 8] + (addr & 0xFF);
if(chrAddr >= _chrRom && chrAddr < _chrRom + _chrRomSize) {
return (uint32_t)(chrAddr - _chrRom);
}
return -1;
}
int32_t BaseMapper::FromAbsoluteAddress(uint32_t addr)
{
uint8_t* ptrAddress = _prgRom + addr;
for(int i = 0; i < 256; i++) {
uint8_t* pageAddress = _prgPages[i];
if(pageAddress != nullptr && ptrAddress >= pageAddress && ptrAddress <= pageAddress + 0xFF) {
return (i << 8) + (uint32_t)(ptrAddress - pageAddress);
}
}
//Address is currently not mapped
return -1;
}
vector<int32_t> BaseMapper::GetPRGRanges()
{
vector<int32_t> memoryRanges;
for(uint32_t i = 0x8000; i <= 0xFFFF; i += 0x100) {
int32_t pageStart = ToAbsoluteAddress((uint16_t)i);
int32_t pageEnd = ToAbsoluteAddress((uint16_t)i + 0xFF);
memoryRanges.push_back(pageStart);
memoryRanges.push_back(pageEnd);
}
return memoryRanges;
}