Play-/Source/iop/Iop_SpuBase.cpp

845 lines
22 KiB
C++
Raw Normal View History

#include <cassert>
#include <cmath>
#include "../Log.h"
#include "Iop_SpuBase.h"
using namespace Iop;
using namespace std;
#define INIT_SAMPLE_RATE (44100)
#define LOG_NAME ("iop_spubase")
CSpuBase::CSpuBase(uint8* ram, uint32 ramSize) :
m_ram(ram),
m_ramSize(ramSize),
m_reverbEnabled(true)
{
Reset();
//Init log table for ADSR
memset(m_adsrLogTable, 0, sizeof(m_adsrLogTable));
uint32 value = 3;
uint32 columnIncrement = 1;
uint32 column = 0;
for(unsigned int i = 32; i < 160; i++)
{
if(value < 0x3FFFFFFF)
{
value += columnIncrement;
column++;
if(column == 5)
{
column = 1;
columnIncrement *= 2;
}
}
else
{
value = 0x3FFFFFFF;
}
m_adsrLogTable[i] = value;
}
}
CSpuBase::~CSpuBase()
{
}
void CSpuBase::Reset()
{
m_ctrl = 0;
m_volumeAdjust = 1.0f;
m_channelOn.f = 0;
m_channelReverb.f = 0;
m_reverbTicks = 0;
m_bufferAddr = 0;
m_reverbCurrAddr = 0;
m_reverbWorkAddrStart = 0;
// m_reverbWorkAddrEnd = 0x7FFFF;
m_reverbWorkAddrEnd = 0x80000;
m_baseSamplingRate = 44100;
memset(m_channel, 0, sizeof(m_channel));
memset(m_reverb, 0, sizeof(m_reverb));
for(unsigned int i = 0; i < MAX_CHANNEL; i++)
{
m_reader[i].Reset();
}
}
bool CSpuBase::IsEnabled() const
{
return (m_ctrl & 0x8000) != 0;
}
void CSpuBase::SetVolumeAdjust(float volumeAdjust)
{
m_volumeAdjust = volumeAdjust;
}
void CSpuBase::SetReverbEnabled(bool enabled)
{
m_reverbEnabled = enabled;
}
uint16 CSpuBase::GetControl() const
{
return m_ctrl;
}
void CSpuBase::SetControl(uint16 value)
{
m_ctrl = value;
}
void CSpuBase::SetBaseSamplingRate(uint32 samplingRate)
{
m_baseSamplingRate = samplingRate;
}
uint32 CSpuBase::GetTransferAddress() const
{
return m_bufferAddr;
}
void CSpuBase::SetTransferAddress(uint32 value)
{
m_bufferAddr = value & (m_ramSize - 1);
}
UNION32_16 CSpuBase::GetChannelOn() const
{
return m_channelOn;
}
void CSpuBase::SetChannelOnLo(uint16 value)
{
m_channelOn.h0 = value;
}
void CSpuBase::SetChannelOnHi(uint16 value)
{
m_channelOn.h1 = value;
}
UNION32_16 CSpuBase::GetChannelReverb() const
{
return m_channelReverb;
}
void CSpuBase::SetChannelReverbLo(uint16 value)
{
m_channelReverb.h0 = value;
}
void CSpuBase::SetChannelReverbHi(uint16 value)
{
m_channelReverb.h1 = value;
}
uint32 CSpuBase::GetReverbParam(unsigned int param) const
{
assert(param < REVERB_PARAM_COUNT);
return m_reverb[param];
}
void CSpuBase::SetReverbParam(unsigned int param, uint32 value)
{
assert(param < REVERB_PARAM_COUNT);
m_reverb[param] = value;
}
UNION32_16 CSpuBase::GetEndFlags() const
{
UNION32_16 result(0);
for(unsigned int i = 0; i < MAX_CHANNEL; i++)
{
if(m_reader[i].GetEndFlag())
{
result.f |= (1 << i);
}
}
return result;
}
void CSpuBase::ClearEndFlags()
{
for(unsigned int i = 0; i < MAX_CHANNEL; i++)
{
m_reader[i].ClearEndFlag();
}
}
CSpuBase::CHANNEL& CSpuBase::GetChannel(unsigned int channelNumber)
{
assert(channelNumber < MAX_CHANNEL);
return m_channel[channelNumber];
}
void CSpuBase::SendKeyOn(uint32 channels)
{
for(unsigned int i = 0; i < MAX_CHANNEL; i++)
{
CHANNEL& channel = m_channel[i];
if(channels & (1 << i))
{
channel.status = KEY_ON;
}
}
}
void CSpuBase::SendKeyOff(uint32 channels)
{
for(unsigned int i = 0; i < MAX_CHANNEL; i++)
{
CHANNEL& channel = m_channel[i];
if(channels & (1 << i))
{
if(channel.status == STOPPED) continue;
if(channel.status == KEY_ON)
{
channel.status = STOPPED;
}
else
{
channel.status = RELEASE;
}
}
}
}
uint32 CSpuBase::GetReverbWorkAddressStart() const
{
return m_reverbWorkAddrStart;
}
void CSpuBase::SetReverbWorkAddressStart(uint32 address)
{
assert(address <= m_ramSize);
m_reverbWorkAddrStart = address;
m_reverbCurrAddr = address;
}
uint32 CSpuBase::GetReverbWorkAddressEnd() const
{
return m_reverbWorkAddrEnd - 1;
}
void CSpuBase::SetReverbWorkAddressEnd(uint32 address)
{
assert((address & 0xFFFF) == 0xFFFF);
assert(address <= m_ramSize);
m_reverbWorkAddrEnd = address + 1;
}
void CSpuBase::SetReverbCurrentAddress(uint32 address)
{
m_reverbCurrAddr = address;
}
uint32 CSpuBase::ReceiveDma(uint8* buffer, uint32 blockSize, uint32 blockAmount)
{
#ifdef _DEBUG
CLog::GetInstance().Print(LOG_NAME, "Receiving DMA transfer to 0x%0.8X. Size = 0x%0.8X bytes.\r\n",
m_bufferAddr, blockSize * blockAmount);
#endif
unsigned int blocksTransfered = 0;
for(unsigned int i = 0; i < blockAmount; i++)
{
uint32 copySize = min<uint32>(m_ramSize - m_bufferAddr, blockSize);
memcpy(m_ram + m_bufferAddr, buffer, copySize);
m_bufferAddr += blockSize;
m_bufferAddr &= m_ramSize - 1;
buffer += blockSize;
blocksTransfered++;
}
return blocksTransfered;
}
void CSpuBase::WriteWord(uint16 value)
{
assert((m_bufferAddr + 1) < m_ramSize);
*reinterpret_cast<uint16*>(&m_ram[m_bufferAddr]) = value;
m_bufferAddr += 2;
}
int32 CSpuBase::ComputeChannelVolume(const CHANNEL_VOLUME& volume)
{
int32 volumeLevel = 0;
if(!volume.mode.mode)
{
if(volume.volume.phase)
{
volumeLevel = 0x3FFF - volume.volume.volume;
}
else
{
volumeLevel = volume.volume.volume;
}
}
else
{
assert(0);
}
volumeLevel = min<int32>(0x3FFF, static_cast<int32>(static_cast<float>(volumeLevel) * m_volumeAdjust));
return volumeLevel;
}
void CSpuBase::MixSamples(int32 inputSample, int32 volumeLevel, int16* output)
{
inputSample = (inputSample * volumeLevel) / 0x3FFF;
int32 resultSample = inputSample + static_cast<int32>(*output);
resultSample = max<int32>(resultSample, SHRT_MIN);
resultSample = min<int32>(resultSample, SHRT_MAX);
*output = static_cast<int16>(resultSample);
}
void CSpuBase::Render(int16* samples, unsigned int sampleCount, unsigned int sampleRate)
{
assert((sampleCount & 0x01) == 0);
//ticks are 44100Hz ticks
unsigned int ticks = sampleCount / 2;
memset(samples, 0, sizeof(int16) * sampleCount);
// int16* bufferTemp = reinterpret_cast<int16*>(_alloca(sizeof(int16) * ticks));
//Precompute volume values
for(unsigned int i = 0; i < 24; i++)
{
CHANNEL& channel(m_channel[i]);
channel.volumeLeftAbs = ComputeChannelVolume(channel.volumeLeft);
channel.volumeRightAbs = ComputeChannelVolume(channel.volumeRight);
}
for(unsigned int j = 0; j < ticks; j++)
{
int16 reverbSample[2] = { 0, 0 };
//Update channels
for(unsigned int i = 0; i < 24; i++)
{
CHANNEL& channel(m_channel[i]);
if(channel.status == STOPPED) continue;
CSampleReader& reader(m_reader[i]);
if(channel.status == KEY_ON)
{
reader.SetParams(m_ram + channel.address, m_ram + channel.repeat);
reader.ClearEndFlag();
channel.status = ATTACK;
channel.adsrVolume = 0;
}
else
{
if(reader.IsDone())
{
channel.status = STOPPED;
channel.adsrVolume = 0;
continue;
}
uint8* repeat = reader.GetRepeat();
channel.repeat = static_cast<uint32>(repeat - m_ram);
}
int16 readSample = 0;
reader.SetPitch(m_baseSamplingRate, channel.pitch);
reader.GetSamples(&readSample, 1, sampleRate);
channel.current = static_cast<uint32>(reader.GetCurrent() - m_ram);
//Mix samples
UpdateAdsr(channel);
int32 inputSample = static_cast<int32>(readSample);
//Mix adsrVolume
{
inputSample = (inputSample * static_cast<int32>(channel.adsrVolume >> 16)) / static_cast<int32>(MAX_ADSR_VOLUME >> 16);
}
MixSamples(inputSample, channel.volumeLeftAbs, samples + 0);
MixSamples(inputSample, channel.volumeRightAbs, samples + 1);
//Mix in reverb if enabled for this channel
if(m_channelReverb.f & (1 << i))
{
MixSamples(inputSample, channel.volumeLeftAbs, reverbSample + 0);
MixSamples(inputSample, channel.volumeRightAbs, reverbSample + 1);
}
}
//Update reverb
if(m_reverbEnabled)
{
//Feed samples to FIR filter
if(m_reverbTicks & 1)
{
if(m_ctrl & CONTROL_REVERB)
{
//IIR_INPUT_A0 = buffer[IIR_SRC_A0] * IIR_COEF + INPUT_SAMPLE_L * IN_COEF_L;
//IIR_INPUT_A1 = buffer[IIR_SRC_A1] * IIR_COEF + INPUT_SAMPLE_R * IN_COEF_R;
//IIR_INPUT_B0 = buffer[IIR_SRC_B0] * IIR_COEF + INPUT_SAMPLE_L * IN_COEF_L;
//IIR_INPUT_B1 = buffer[IIR_SRC_B1] * IIR_COEF + INPUT_SAMPLE_R * IN_COEF_R;
float input_sample_l = static_cast<float>(reverbSample[0]) * 0.5f;
float input_sample_r = static_cast<float>(reverbSample[1]) * 0.5f;
float irr_coef = GetReverbCoef(IIR_COEF);
float in_coef_l = GetReverbCoef(IN_COEF_L);
float in_coef_r = GetReverbCoef(IN_COEF_R);
float iir_input_a0 = GetReverbSample(GetReverbOffset(ACC_SRC_A0)) * irr_coef + input_sample_l * in_coef_l;
float iir_input_a1 = GetReverbSample(GetReverbOffset(ACC_SRC_A1)) * irr_coef + input_sample_r * in_coef_r;
float iir_input_b0 = GetReverbSample(GetReverbOffset(ACC_SRC_B0)) * irr_coef + input_sample_l * in_coef_l;
float iir_input_b1 = GetReverbSample(GetReverbOffset(ACC_SRC_B1)) * irr_coef + input_sample_r * in_coef_r;
//IIR_A0 = IIR_INPUT_A0 * IIR_ALPHA + buffer[IIR_DEST_A0] * (1.0 - IIR_ALPHA);
//IIR_A1 = IIR_INPUT_A1 * IIR_ALPHA + buffer[IIR_DEST_A1] * (1.0 - IIR_ALPHA);
//IIR_B0 = IIR_INPUT_B0 * IIR_ALPHA + buffer[IIR_DEST_B0] * (1.0 - IIR_ALPHA);
//IIR_B1 = IIR_INPUT_B1 * IIR_ALPHA + buffer[IIR_DEST_B1] * (1.0 - IIR_ALPHA);
float iir_alpha = GetReverbCoef(IIR_ALPHA);
float iir_a0 = iir_input_a0 * iir_alpha + GetReverbSample(GetReverbOffset(IIR_DEST_A0)) * (1.0f - iir_alpha);
float iir_a1 = iir_input_a1 * iir_alpha + GetReverbSample(GetReverbOffset(IIR_DEST_A1)) * (1.0f - iir_alpha);
float iir_b0 = iir_input_b0 * iir_alpha + GetReverbSample(GetReverbOffset(IIR_DEST_B0)) * (1.0f - iir_alpha);
float iir_b1 = iir_input_b1 * iir_alpha + GetReverbSample(GetReverbOffset(IIR_DEST_B1)) * (1.0f - iir_alpha);
//buffer[IIR_DEST_A0 + 1sample] = IIR_A0;
//buffer[IIR_DEST_A1 + 1sample] = IIR_A1;
//buffer[IIR_DEST_B0 + 1sample] = IIR_B0;
//buffer[IIR_DEST_B1 + 1sample] = IIR_B1;
SetReverbSample(GetReverbOffset(IIR_DEST_A0) + 2, iir_a0);
SetReverbSample(GetReverbOffset(IIR_DEST_A1) + 2, iir_a1);
SetReverbSample(GetReverbOffset(IIR_DEST_B0) + 2, iir_b0);
SetReverbSample(GetReverbOffset(IIR_DEST_B1) + 2, iir_b1);
//ACC0 = buffer[ACC_SRC_A0] * ACC_COEF_A +
// buffer[ACC_SRC_B0] * ACC_COEF_B +
// buffer[ACC_SRC_C0] * ACC_COEF_C +
// buffer[ACC_SRC_D0] * ACC_COEF_D;
//ACC1 = buffer[ACC_SRC_A1] * ACC_COEF_A +
// buffer[ACC_SRC_B1] * ACC_COEF_B +
// buffer[ACC_SRC_C1] * ACC_COEF_C +
// buffer[ACC_SRC_D1] * ACC_COEF_D;
float acc_coef_a = GetReverbCoef(ACC_COEF_A);
float acc_coef_b = GetReverbCoef(ACC_COEF_B);
float acc_coef_c = GetReverbCoef(ACC_COEF_C);
float acc_coef_d = GetReverbCoef(ACC_COEF_D);
float acc0 =
GetReverbSample(GetReverbOffset(ACC_SRC_A0)) * acc_coef_a +
GetReverbSample(GetReverbOffset(ACC_SRC_B0)) * acc_coef_b +
GetReverbSample(GetReverbOffset(ACC_SRC_C0)) * acc_coef_c +
GetReverbSample(GetReverbOffset(ACC_SRC_D0)) * acc_coef_d;
float acc1 =
GetReverbSample(GetReverbOffset(ACC_SRC_A1)) * acc_coef_a +
GetReverbSample(GetReverbOffset(ACC_SRC_B1)) * acc_coef_b +
GetReverbSample(GetReverbOffset(ACC_SRC_C1)) * acc_coef_c +
GetReverbSample(GetReverbOffset(ACC_SRC_D1)) * acc_coef_d;
//FB_A0 = buffer[MIX_DEST_A0 - FB_SRC_A];
//FB_A1 = buffer[MIX_DEST_A1 - FB_SRC_A];
//FB_B0 = buffer[MIX_DEST_B0 - FB_SRC_B];
//FB_B1 = buffer[MIX_DEST_B1 - FB_SRC_B];
float fb_a0 = GetReverbSample(GetReverbOffset(MIX_DEST_A0) - GetReverbOffset(FB_SRC_A));
float fb_a1 = GetReverbSample(GetReverbOffset(MIX_DEST_A1) - GetReverbOffset(FB_SRC_A));
float fb_b0 = GetReverbSample(GetReverbOffset(MIX_DEST_B0) - GetReverbOffset(FB_SRC_B));
float fb_b1 = GetReverbSample(GetReverbOffset(MIX_DEST_B1) - GetReverbOffset(FB_SRC_B));
//buffer[MIX_DEST_A0] = ACC0 - FB_A0 * FB_ALPHA;
//buffer[MIX_DEST_A1] = ACC1 - FB_A1 * FB_ALPHA;
//buffer[MIX_DEST_B0] = (FB_ALPHA * ACC0) - FB_A0 * (FB_ALPHA^0x8000) - FB_B0 * FB_X;
//buffer[MIX_DEST_B1] = (FB_ALPHA * ACC1) - FB_A1 * (FB_ALPHA^0x8000) - FB_B1 * FB_X;
float fb_alpha = GetReverbCoef(FB_ALPHA);
float fb_x = GetReverbCoef(FB_X);
SetReverbSample(GetReverbOffset(MIX_DEST_A0), acc0 - fb_a0 * fb_alpha);
SetReverbSample(GetReverbOffset(MIX_DEST_A1), acc1 - fb_a1 * fb_alpha);
SetReverbSample(GetReverbOffset(MIX_DEST_B0), (fb_alpha * acc0) - fb_a0 * -fb_alpha - fb_b0 * fb_x);
SetReverbSample(GetReverbOffset(MIX_DEST_B1), (fb_alpha * acc1) - fb_a1 * -fb_alpha - fb_b1 * fb_x);
}
m_reverbCurrAddr += 2;
if(m_reverbCurrAddr >= m_reverbWorkAddrEnd)
{
m_reverbCurrAddr = m_reverbWorkAddrStart;
}
}
if(m_reverbWorkAddrStart != 0)
{
float sampleL = 0.333f * (GetReverbSample(GetReverbOffset(MIX_DEST_A0)) + GetReverbSample(GetReverbOffset(MIX_DEST_B0)));
float sampleR = 0.333f * (GetReverbSample(GetReverbOffset(MIX_DEST_A1)) + GetReverbSample(GetReverbOffset(MIX_DEST_B1)));
{
int16* output = samples + 0;
int32 resultSample = static_cast<int32>(sampleL) + static_cast<int32>(*output);
resultSample = max<int32>(resultSample, SHRT_MIN);
resultSample = min<int32>(resultSample, SHRT_MAX);
*output = static_cast<int16>(resultSample);
}
{
int16* output = samples + 1;
int32 resultSample = static_cast<int32>(sampleR) + static_cast<int32>(*output);
resultSample = max<int32>(resultSample, SHRT_MIN);
resultSample = min<int32>(resultSample, SHRT_MAX);
*output = static_cast<int16>(resultSample);
}
}
m_reverbTicks++;
}
samples += 2;
}
}
uint32 CSpuBase::GetAdsrDelta(unsigned int index) const
{
return m_adsrLogTable[index + 32];
}
float CSpuBase::GetReverbSample(uint32 address) const
{
uint32 absoluteAddress = m_reverbCurrAddr + address;
while(absoluteAddress >= m_reverbWorkAddrEnd)
{
absoluteAddress -= m_reverbWorkAddrEnd;
absoluteAddress += m_reverbWorkAddrStart;
}
return static_cast<float>(*reinterpret_cast<int16*>(m_ram + absoluteAddress));
}
void CSpuBase::SetReverbSample(uint32 address, float value)
{
uint32 absoluteAddress = m_reverbCurrAddr + address;
while(absoluteAddress >= m_reverbWorkAddrEnd)
{
absoluteAddress -= m_reverbWorkAddrEnd;
absoluteAddress += m_reverbWorkAddrStart;
}
value = max<float>(value, SHRT_MIN);
value = min<float>(value, SHRT_MAX);
int16 intValue = static_cast<int16>(value);
*reinterpret_cast<int16*>(m_ram + absoluteAddress) = intValue;
}
uint32 CSpuBase::GetReverbOffset(unsigned int registerId) const
{
return m_reverb[registerId];
}
float CSpuBase::GetReverbCoef(unsigned int registerId) const
{
int16 value = static_cast<int16>(m_reverb[registerId]);
return static_cast<float>(value) / static_cast<float>(0x8000);
}
void CSpuBase::UpdateAdsr(CHANNEL& channel)
{
static unsigned int logIndex[8] = { 0, 4, 6, 8, 9, 10, 11, 12 };
int64 currentAdsrLevel = channel.adsrVolume;
if(channel.status == ATTACK)
{
if(channel.adsrLevel.attackMode == 0)
{
//Linear mode
currentAdsrLevel += GetAdsrDelta((channel.adsrLevel.attackRate ^ 0x7F) - 0x10);
}
else
{
if(currentAdsrLevel < 0x60000000)
{
currentAdsrLevel += GetAdsrDelta((channel.adsrLevel.attackRate ^ 0x7F) - 0x10);
}
else
{
currentAdsrLevel += GetAdsrDelta((channel.adsrLevel.attackRate ^ 0x7F) - 0x18);
}
}
//Terminasion condition
if(currentAdsrLevel >= MAX_ADSR_VOLUME)
{
channel.status = DECAY;
}
}
else if(channel.status == DECAY)
{
unsigned int decayType = (static_cast<uint32>(currentAdsrLevel) >> 28) & 0x7;
currentAdsrLevel -= GetAdsrDelta((4 * (channel.adsrLevel.decayRate ^ 0x1F)) - 0x18 + logIndex[decayType]);
//Terminasion condition
if(((currentAdsrLevel >> 27) & 0xF) <= channel.adsrLevel.sustainLevel)
{
channel.status = SUSTAIN;
}
}
else if(channel.status == SUSTAIN)
{
if(channel.adsrRate.sustainDirection == 0)
{
//Increment
if(channel.adsrRate.sustainMode == 0)
{
currentAdsrLevel += GetAdsrDelta((channel.adsrRate.sustainRate ^ 0x7F) - 0x10);
}
else
{
if(currentAdsrLevel < 0x60000000)
{
currentAdsrLevel += GetAdsrDelta((channel.adsrRate.sustainRate ^ 0x7F) - 0x10);
}
else
{
currentAdsrLevel += GetAdsrDelta((channel.adsrRate.sustainRate ^ 0x7F) - 0x18);
}
}
}
else
{
//Decrement
if(channel.adsrRate.sustainMode == 0)
{
//Linear
currentAdsrLevel -= GetAdsrDelta((channel.adsrRate.sustainRate ^ 0x7F) - 0x0F);
}
else
{
unsigned int sustainType = (static_cast<uint32>(currentAdsrLevel) >> 28) & 0x7;
currentAdsrLevel -= GetAdsrDelta((channel.adsrRate.sustainRate ^ 0x7F) - 0x1B + logIndex[sustainType]);
}
}
}
else if(channel.status == RELEASE)
{
if(channel.adsrRate.releaseMode == 0)
{
//Linear
currentAdsrLevel -= GetAdsrDelta((4 * (channel.adsrRate.releaseRate ^ 0x1F)) - 0x0C);
}
else
{
unsigned int releaseType = (static_cast<uint32>(currentAdsrLevel) >> 28) & 0x7;
currentAdsrLevel -= GetAdsrDelta((4 * (channel.adsrRate.releaseRate ^ 0x1F)) - 0x18 + logIndex[releaseType]);
}
if(currentAdsrLevel <= 0)
{
channel.status = STOPPED;
}
}
currentAdsrLevel = min<int64>(currentAdsrLevel, MAX_ADSR_VOLUME);
currentAdsrLevel = max<int64>(currentAdsrLevel, 0);
channel.adsrVolume = static_cast<uint32>(currentAdsrLevel);
}
///////////////////////////////////////////////////////
// CSampleReader
///////////////////////////////////////////////////////
CSpuBase::CSampleReader::CSampleReader() :
m_nextSample(NULL)
{
Reset();
}
CSpuBase::CSampleReader::~CSampleReader()
{
}
void CSpuBase::CSampleReader::Reset()
{
m_sourceSamplingRate = 0;
m_nextSample = NULL;
m_repeat = NULL;
memset(m_buffer, 0, sizeof(m_buffer));
m_pitch = 0;
m_currentTime = 0;
m_dstTime = 0;
m_s1 = 0;
m_s2 = 0;
m_done = false;
m_nextValid = false;
m_endFlag = false;
}
void CSpuBase::CSampleReader::SetParams(uint8* address, uint8* repeat)
{
m_currentTime = 0;
m_dstTime = 0;
m_nextSample = address;
m_repeat = repeat;
m_s1 = 0;
m_s2 = 0;
m_nextValid = false;
m_done = false;
AdvanceBuffer();
}
void CSpuBase::CSampleReader::SetPitch(uint32 baseSamplingRate, uint16 pitch)
{
m_sourceSamplingRate = baseSamplingRate * pitch / 4096;
}
void CSpuBase::CSampleReader::GetSamples(int16* samples, unsigned int sampleCount, unsigned int destSamplingRate)
{
assert(m_nextSample != NULL);
float dstTimeDelta = 1.0f / static_cast<float>(destSamplingRate);
for(unsigned int i = 0; i < sampleCount; i++)
{
samples[i] = GetSample(m_dstTime);
m_dstTime += dstTimeDelta;
}
}
int16 CSpuBase::CSampleReader::GetSample(float time)
{
time -= m_currentTime;
float sample = time * static_cast<float>(GetSamplingRate());
float sampleInt = 0;
float alpha = modf(sample, &sampleInt);
unsigned int sampleIndex = static_cast<int>(sampleInt);
int16 currentSample = m_buffer[sampleIndex];
int16 nextSample = m_buffer[sampleIndex + 1];
float resultSample =
(static_cast<float>(currentSample) * (1 - alpha)) + (static_cast<float>(nextSample) * alpha);
if(sampleIndex >= BUFFER_SAMPLES)
{
AdvanceBuffer();
}
return static_cast<int16>(resultSample);
}
void CSpuBase::CSampleReader::AdvanceBuffer()
{
if(m_nextValid)
{
memmove(m_buffer, m_buffer + BUFFER_SAMPLES, sizeof(int16) * BUFFER_SAMPLES);
UnpackSamples(m_buffer + BUFFER_SAMPLES);
m_currentTime += GetBufferStep();
}
else
{
assert(m_currentTime == 0);
UnpackSamples(m_buffer);
UnpackSamples(m_buffer + BUFFER_SAMPLES);
m_nextValid = true;
}
}
void CSpuBase::CSampleReader::UnpackSamples(int16* dst)
{
float workBuffer[28];
//Read header
uint8 shiftFactor = m_nextSample[0] & 0xF;
uint8 predictNumber = m_nextSample[0] >> 4;
uint8 flags = m_nextSample[1];
assert(predictNumber < 5);
if(m_done)
{
memset(m_buffer, 0, sizeof(int16) * BUFFER_SAMPLES);
return;
}
//Get intermediate values
{
unsigned int workBufferPtr = 0;
for(unsigned int i = 2; i < 16; i++)
{
uint8 sampleByte = m_nextSample[i];
int16 firstSample = ((sampleByte & 0x0F) << 12);
int16 secondSample = ((sampleByte & 0xF0) << 8);
firstSample >>= shiftFactor;
secondSample >>= shiftFactor;
workBuffer[workBufferPtr++] = firstSample;
workBuffer[workBufferPtr++] = secondSample;
}
}
//Generate PCM samples
{
static float predictorTable[5][2] =
{
{ 0.0f, 0.0f },
{ 60.0f / 64.0f, 0.0f },
{ 115.0f / 64.0f, -52.0f / 64.0f },
{ 98.0f / 64.0f, -55.0f / 64.0f },
{ 122.0f / 64.0f, -60.0f / 64.0f },
};
for(unsigned int i = 0; i < 28; i++)
{
workBuffer[i] = workBuffer[i] +
m_s1 * predictorTable[predictNumber][0] +
m_s2 * predictorTable[predictNumber][1];
m_s2 = m_s1;
m_s1 = workBuffer[i];
dst[i] = static_cast<int16>(workBuffer[i] + 0.5);
}
}
if(flags & 0x04)
{
m_repeat = m_nextSample;
}
m_nextSample += 0x10;
if(flags & 0x01)
{
m_endFlag = true;
if(flags == 0x03)
{
m_nextSample = m_repeat;
}
else
{
m_done = true;
}
}
}
uint8* CSpuBase::CSampleReader::GetRepeat() const
{
return m_repeat;
}
uint8* CSpuBase::CSampleReader::GetCurrent() const
{
return m_nextSample;
}
bool CSpuBase::CSampleReader::IsDone() const
{
return m_done;
}
bool CSpuBase::CSampleReader::GetEndFlag() const
{
return m_endFlag;
}
void CSpuBase::CSampleReader::ClearEndFlag()
{
m_endFlag = false;
}
float CSpuBase::CSampleReader::GetSamplingRate() const
{
return static_cast<float>(m_sourceSamplingRate);
}
float CSpuBase::CSampleReader::GetBufferStep() const
{
return static_cast<float>(BUFFER_SAMPLES) / static_cast<float>(GetSamplingRate());
}
float CSpuBase::CSampleReader::GetNextTime() const
{
return m_currentTime + GetBufferStep();
}