mirror of
https://github.com/libretro/Play-.git
synced 2025-02-08 10:06:43 +00:00
164 lines
5.2 KiB
C++
164 lines
5.2 KiB
C++
//Source: The LLVM Compiler Infrastructure - lib/mulsf3.c
|
|
//Modified to truncate result of multiplication
|
|
|
|
#include <limits.h>
|
|
#include <boost/cstdint.hpp>
|
|
#include "FpMulTruncate.h"
|
|
|
|
typedef uint32 rep_t;
|
|
typedef int32 srep_t;
|
|
typedef float fp_t;
|
|
#define REP_C UINT32_C
|
|
#define significandBits 23
|
|
|
|
#define typeWidth (sizeof(rep_t)*CHAR_BIT)
|
|
#define exponentBits (typeWidth - significandBits - 1)
|
|
#define maxExponent ((1 << exponentBits) - 1)
|
|
#define exponentBias (maxExponent >> 1)
|
|
|
|
#define implicitBit (REP_C(1) << significandBits)
|
|
#define significandMask (implicitBit - 1U)
|
|
#define signBit (REP_C(1) << (significandBits + exponentBits))
|
|
#define absMask (signBit - 1U)
|
|
#define exponentMask (absMask ^ significandMask)
|
|
#define oneRep ((rep_t)exponentBias << significandBits)
|
|
#define infRep exponentMask
|
|
#define quietBit (implicitBit >> 1)
|
|
#define qnanRep (exponentMask | quietBit)
|
|
|
|
static rep_t toRep(fp_t x) {
|
|
union { fp_t f; rep_t i; } rep;
|
|
rep.f = x;
|
|
return rep.i;
|
|
}
|
|
|
|
static fp_t fromRep(rep_t x) {
|
|
union { fp_t f; rep_t i; } rep;
|
|
rep.i = x;
|
|
return rep.f;
|
|
}
|
|
|
|
// 32x32 --> 64 bit multiply
|
|
static void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
|
|
const uint64 product = (uint64)a*b;
|
|
*hi = product >> 32;
|
|
*lo = product;
|
|
}
|
|
|
|
static void wideLeftShift(rep_t *hi, rep_t *lo, int count) {
|
|
*hi = *hi << count | *lo >> (typeWidth - count);
|
|
*lo = *lo << count;
|
|
}
|
|
|
|
static void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, int count) {
|
|
if (count < typeWidth) {
|
|
const bool sticky = *lo << (typeWidth - count);
|
|
*lo = *hi << (typeWidth - count) | *lo >> count | sticky;
|
|
*hi = *hi >> count;
|
|
}
|
|
else if (count < 2*typeWidth) {
|
|
const bool sticky = *hi << (2*typeWidth - count) | *lo;
|
|
*lo = *hi >> (count - typeWidth) | sticky;
|
|
*hi = 0;
|
|
} else {
|
|
const bool sticky = *hi | *lo;
|
|
*lo = sticky;
|
|
*hi = 0;
|
|
}
|
|
}
|
|
|
|
uint32 FpMulTruncate(uint32 a, uint32 b)
|
|
{
|
|
const unsigned int aExponent = a >> significandBits & maxExponent;
|
|
const unsigned int bExponent = b >> significandBits & maxExponent;
|
|
const rep_t productSign = (a ^ b) & signBit;
|
|
|
|
rep_t aSignificand = a & significandMask;
|
|
rep_t bSignificand = b & significandMask;
|
|
int scale = 0;
|
|
|
|
// Detect if a or b is zero, denormal, infinity, or NaN.
|
|
if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
|
|
|
|
const rep_t aAbs = a & absMask;
|
|
const rep_t bAbs = b & absMask;
|
|
|
|
// NaN * anything = qNaN
|
|
if (aAbs > infRep) return (a | quietBit);
|
|
// anything * NaN = qNaN
|
|
if (bAbs > infRep) return (b | quietBit);
|
|
|
|
if (aAbs == infRep) {
|
|
// infinity * non-zero = +/- infinity
|
|
if (bAbs) return (aAbs | productSign);
|
|
// infinity * zero = NaN
|
|
else return qnanRep;
|
|
}
|
|
|
|
if (bAbs == infRep) {
|
|
// non-zero * infinity = +/- infinity
|
|
if (aAbs) return (bAbs | productSign);
|
|
// zero * infinity = NaN
|
|
else return qnanRep;
|
|
}
|
|
|
|
// zero * anything = +/- zero
|
|
if (!aAbs) return productSign;
|
|
// anything * zero = +/- zero
|
|
if (!bAbs) return productSign;
|
|
|
|
// one or both of a or b is denormal, the other (if applicable) is a
|
|
// normal number. Renormalize one or both of a and b, and set scale to
|
|
// include the necessary exponent adjustment.
|
|
if (aAbs < implicitBit) aSignificand = 0;
|
|
if (bAbs < implicitBit) bSignificand = 0;
|
|
}
|
|
|
|
// Or in the implicit significand bit. (If we fell through from the
|
|
// denormal path it was already set by normalize( ), but setting it twice
|
|
// won't hurt anything.)
|
|
aSignificand |= implicitBit;
|
|
bSignificand |= implicitBit;
|
|
|
|
// Get the significand of a*b. Before multiplying the significands, shift
|
|
// one of them left to left-align it in the field. Thus, the product will
|
|
// have (exponentBits + 2) integral digits, all but two of which must be
|
|
// zero. Normalizing this result is just a conditional left-shift by one
|
|
// and bumping the exponent accordingly.
|
|
rep_t productHi, productLo;
|
|
wideMultiply(aSignificand, bSignificand << exponentBits,
|
|
&productHi, &productLo);
|
|
|
|
int productExponent = aExponent + bExponent - exponentBias + scale;
|
|
|
|
// Normalize the significand, adjust exponent if needed.
|
|
if (productHi & implicitBit)
|
|
{
|
|
productExponent++;
|
|
}
|
|
else
|
|
{
|
|
wideLeftShift(&productHi, &productLo, 1);
|
|
}
|
|
|
|
// If we have overflowed the type, return +/- infinity.
|
|
if (productExponent >= maxExponent) return infRep | productSign;
|
|
|
|
if (productExponent <= 0) {
|
|
// Result is denormal before rounding, the exponent is zero and we
|
|
// need to shift the significand.
|
|
wideRightShiftWithSticky(&productHi, &productLo, 1 - productExponent);
|
|
}
|
|
else
|
|
{
|
|
// Result is normal before rounding; insert the exponent.
|
|
productHi &= significandMask;
|
|
productHi |= (rep_t)productExponent << significandBits;
|
|
}
|
|
|
|
// Insert the sign of the result:
|
|
productHi |= productSign;
|
|
|
|
return productHi;
|
|
}
|