Play-/Source/ee/FpMulTruncate.cpp
2015-05-06 00:54:15 -04:00

164 lines
5.2 KiB
C++

//Source: The LLVM Compiler Infrastructure - lib/mulsf3.c
//Modified to truncate result of multiplication
#include <limits.h>
#include <boost/cstdint.hpp>
#include "FpMulTruncate.h"
typedef uint32 rep_t;
typedef int32 srep_t;
typedef float fp_t;
#define REP_C UINT32_C
#define significandBits 23
#define typeWidth (sizeof(rep_t)*CHAR_BIT)
#define exponentBits (typeWidth - significandBits - 1)
#define maxExponent ((1 << exponentBits) - 1)
#define exponentBias (maxExponent >> 1)
#define implicitBit (REP_C(1) << significandBits)
#define significandMask (implicitBit - 1U)
#define signBit (REP_C(1) << (significandBits + exponentBits))
#define absMask (signBit - 1U)
#define exponentMask (absMask ^ significandMask)
#define oneRep ((rep_t)exponentBias << significandBits)
#define infRep exponentMask
#define quietBit (implicitBit >> 1)
#define qnanRep (exponentMask | quietBit)
static rep_t toRep(fp_t x) {
union { fp_t f; rep_t i; } rep;
rep.f = x;
return rep.i;
}
static fp_t fromRep(rep_t x) {
union { fp_t f; rep_t i; } rep;
rep.i = x;
return rep.f;
}
// 32x32 --> 64 bit multiply
static void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
const uint64 product = (uint64)a*b;
*hi = product >> 32;
*lo = product;
}
static void wideLeftShift(rep_t *hi, rep_t *lo, int count) {
*hi = *hi << count | *lo >> (typeWidth - count);
*lo = *lo << count;
}
static void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, int count) {
if (count < typeWidth) {
const bool sticky = *lo << (typeWidth - count);
*lo = *hi << (typeWidth - count) | *lo >> count | sticky;
*hi = *hi >> count;
}
else if (count < 2*typeWidth) {
const bool sticky = *hi << (2*typeWidth - count) | *lo;
*lo = *hi >> (count - typeWidth) | sticky;
*hi = 0;
} else {
const bool sticky = *hi | *lo;
*lo = sticky;
*hi = 0;
}
}
uint32 FpMulTruncate(uint32 a, uint32 b)
{
const unsigned int aExponent = a >> significandBits & maxExponent;
const unsigned int bExponent = b >> significandBits & maxExponent;
const rep_t productSign = (a ^ b) & signBit;
rep_t aSignificand = a & significandMask;
rep_t bSignificand = b & significandMask;
int scale = 0;
// Detect if a or b is zero, denormal, infinity, or NaN.
if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
const rep_t aAbs = a & absMask;
const rep_t bAbs = b & absMask;
// NaN * anything = qNaN
if (aAbs > infRep) return (a | quietBit);
// anything * NaN = qNaN
if (bAbs > infRep) return (b | quietBit);
if (aAbs == infRep) {
// infinity * non-zero = +/- infinity
if (bAbs) return (aAbs | productSign);
// infinity * zero = NaN
else return qnanRep;
}
if (bAbs == infRep) {
// non-zero * infinity = +/- infinity
if (aAbs) return (bAbs | productSign);
// zero * infinity = NaN
else return qnanRep;
}
// zero * anything = +/- zero
if (!aAbs) return productSign;
// anything * zero = +/- zero
if (!bAbs) return productSign;
// one or both of a or b is denormal, the other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if (aAbs < implicitBit) aSignificand = 0;
if (bAbs < implicitBit) bSignificand = 0;
}
// Or in the implicit significand bit. (If we fell through from the
// denormal path it was already set by normalize( ), but setting it twice
// won't hurt anything.)
aSignificand |= implicitBit;
bSignificand |= implicitBit;
// Get the significand of a*b. Before multiplying the significands, shift
// one of them left to left-align it in the field. Thus, the product will
// have (exponentBits + 2) integral digits, all but two of which must be
// zero. Normalizing this result is just a conditional left-shift by one
// and bumping the exponent accordingly.
rep_t productHi, productLo;
wideMultiply(aSignificand, bSignificand << exponentBits,
&productHi, &productLo);
int productExponent = aExponent + bExponent - exponentBias + scale;
// Normalize the significand, adjust exponent if needed.
if (productHi & implicitBit)
{
productExponent++;
}
else
{
wideLeftShift(&productHi, &productLo, 1);
}
// If we have overflowed the type, return +/- infinity.
if (productExponent >= maxExponent) return infRep | productSign;
if (productExponent <= 0) {
// Result is denormal before rounding, the exponent is zero and we
// need to shift the significand.
wideRightShiftWithSticky(&productHi, &productLo, 1 - productExponent);
}
else
{
// Result is normal before rounding; insert the exponent.
productHi &= significandMask;
productHi |= (rep_t)productExponent << significandBits;
}
// Insert the sign of the result:
productHi |= productSign;
return productHi;
}