mirror of
https://github.com/libretro/RACE.git
synced 2024-11-27 11:00:21 +00:00
548 lines
15 KiB
C
548 lines
15 KiB
C
/* Flavor modified sound.c and sound.h from NEOPOP
|
|
* which was originally based on sn76496.c from MAME
|
|
* some ideas also taken from NeoPop-SDL code
|
|
|
|
*---------------------------------------------------------------------------
|
|
* Originally from
|
|
* NEOPOP : Emulator as in Dreamland
|
|
*
|
|
* Copyright (c) 2001-2002 by neopop_uk
|
|
*---------------------------------------------------------------------------
|
|
|
|
*---------------------------------------------------------------------------
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version. See also the license.txt file for
|
|
* additional informations.
|
|
*---------------------------------------------------------------------------
|
|
*/
|
|
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Portions, but not all of this source file are based on MAME v0.60 *
|
|
* File "sn76496.c". All copyright goes to the original author. *
|
|
* The remaining parts, including DAC processing, by neopop_uk *
|
|
* *
|
|
************************************************************************/
|
|
|
|
#include "types.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include "neopopsound.h"
|
|
|
|
/* ============================================================================= */
|
|
|
|
SoundChip toneChip;
|
|
SoundChip noiseChip;
|
|
|
|
/* ==== DAC */
|
|
#define DAC_BUFFERSIZE (256 * 1024) /* at (256 * 1024) the PC version will crash on MS2 intro */
|
|
|
|
int dacLBufferRead, dacLBufferWrite, dacLBufferCount;
|
|
_u16 dacBufferL[DAC_BUFFERSIZE];
|
|
int fixsoundmahjong;
|
|
|
|
/* ============================================================================= */
|
|
|
|
#define SOUNDCHIPCLOCK (3072000) /* Unverified / sounds correct */
|
|
|
|
#define MAX_OUTPUT 0x7fff
|
|
#define STEP 0x10000 /* Fixed point adjuster */
|
|
|
|
#define MAX_OUTPUT_STEP 0x7fff0000
|
|
#define STEP_SHIFT 16
|
|
|
|
static _u32 VolTable[16];
|
|
static _u32 UpdateStep = 0; /* Number of steps during one sample. */
|
|
|
|
/* Formulas for noise generator */
|
|
/* bit0 = output */
|
|
|
|
/* noise feedback for white noise mode (verified on real SN76489 by John Kortink) */
|
|
#define FB_WNOISE 0x14002 /* (16bits) bit16 = bit0(out) ^ bit2 ^ bit15 */
|
|
|
|
/* noise feedback for periodic noise mode */
|
|
#define FB_PNOISE 0x08000 /* 15bit rotate */
|
|
|
|
/* noise generator start preset (for periodic noise) */
|
|
#define NG_PRESET 0x0f35
|
|
|
|
#define max(a,b) (a>b?a:b)
|
|
#define min(a,b) (a<b?a:b)
|
|
|
|
/* ============================================================================= */
|
|
|
|
static _u16 sample_chip_tone(void)
|
|
{
|
|
int i;
|
|
|
|
int vol[3];
|
|
unsigned int out;
|
|
int left;
|
|
|
|
/* vol[] keeps track of how long each square wave stays */
|
|
/* in the 1 position during the sample period. */
|
|
vol[0] = vol[1] = vol[2] = /*vol[3] = */ 0;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (toneChip.Output[i]) vol[i] += toneChip.Count[i];
|
|
toneChip.Count[i] -= STEP;
|
|
|
|
/* Period[i] is the half period of the square wave. Here, in each */
|
|
/* loop I add Period[i] twice, so that at the end of the loop the */
|
|
/* square wave is in the same status (0 or 1) it was at the start. */
|
|
/* vol[i] is also incremented by Period[i], since the wave has been 1 */
|
|
/* exactly half of the time, regardless of the initial position. */
|
|
/* If we exit the loop in the middle, Output[i] has to be inverted */
|
|
/* and vol[i] incremented only if the exit status of the square */
|
|
/* wave is 1. */
|
|
|
|
while (toneChip.Count[i] <= 0)
|
|
{
|
|
toneChip.Count[i] += toneChip.Period[i];
|
|
if (toneChip.Count[i] > 0)
|
|
{
|
|
toneChip.Output[i] ^= 1;
|
|
if (toneChip.Output[i]) vol[i] += toneChip.Period[i];
|
|
break;
|
|
}
|
|
toneChip.Count[i] += toneChip.Period[i];
|
|
vol[i] += toneChip.Period[i];
|
|
}
|
|
if (toneChip.Output[i]) vol[i] -= toneChip.Count[i];
|
|
}
|
|
/*
|
|
left = STEP;
|
|
do
|
|
{
|
|
int nextevent;
|
|
|
|
if (toneChip.Count[3] < left) nextevent = toneChip.Count[3];
|
|
else nextevent = left;
|
|
|
|
if (toneChip.Output[3]) vol[3] += toneChip.Count[3];
|
|
toneChip.Count[3] -= nextevent;
|
|
if (toneChip.Count[3] <= 0)
|
|
{
|
|
if (toneChip.RNG & 1) toneChip.RNG ^= toneChip.NoiseFB;
|
|
toneChip.RNG >>= 1;
|
|
toneChip.Output[3] = toneChip.RNG & 1;
|
|
toneChip.Count[3] += toneChip.Period[3];
|
|
if (toneChip.Output[3]) vol[3] += toneChip.Period[3];
|
|
}
|
|
if (toneChip.Output[3]) vol[3] -= toneChip.Count[3];
|
|
|
|
left -= nextevent;
|
|
} while (left > 0);
|
|
*/
|
|
|
|
out = vol[0] * toneChip.Volume[0] + vol[1] * toneChip.Volume[1] +
|
|
vol[2] * toneChip.Volume[2];
|
|
|
|
if (out > MAX_OUTPUT_STEP)
|
|
out = MAX_OUTPUT_STEP;
|
|
|
|
return out>>STEP_SHIFT;
|
|
}
|
|
|
|
/* ============================================================================= */
|
|
|
|
static _u16 sample_chip_noise(void)
|
|
{
|
|
int i;
|
|
|
|
int vol3 = 0;
|
|
unsigned int out;
|
|
int left;
|
|
|
|
/* vol[] keeps track of how long each square wave stays */
|
|
/* in the 1 position during the sample period. */
|
|
/*
|
|
vol[0] = vol[1] = vol[2] = vol[3] = 0;
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (noiseChip.Output[i]) vol[i] += noiseChip.Count[i];
|
|
noiseChip.Count[i] -= STEP;
|
|
|
|
// Period[i] is the half period of the square wave. Here, in each
|
|
// loop I add Period[i] twice, so that at the end of the loop the
|
|
// square wave is in the same status (0 or 1) it was at the start.
|
|
// vol[i] is also incremented by Period[i], since the wave has been 1
|
|
// exactly half of the time, regardless of the initial position.
|
|
// If we exit the loop in the middle, Output[i] has to be inverted
|
|
// and vol[i] incremented only if the exit status of the square
|
|
// wave is 1.
|
|
|
|
while (noiseChip.Count[i] <= 0)
|
|
{
|
|
noiseChip.Count[i] += noiseChip.Period[i];
|
|
if (noiseChip.Count[i] > 0)
|
|
{
|
|
noiseChip.Output[i] ^= 1;
|
|
if (noiseChip.Output[i]) vol[i] += noiseChip.Period[i];
|
|
break;
|
|
}
|
|
noiseChip.Count[i] += noiseChip.Period[i];
|
|
vol[i] += noiseChip.Period[i];
|
|
}
|
|
if (noiseChip.Output[i]) vol[i] -= noiseChip.Count[i];
|
|
}
|
|
*/
|
|
if (noiseChip.Volume[3])
|
|
{
|
|
left = STEP;
|
|
do
|
|
{
|
|
int nextevent = min(noiseChip.Count[3],left);
|
|
|
|
#if 0
|
|
if (noiseChip.Count[3] < left)
|
|
nextevent = noiseChip.Count[3];
|
|
else
|
|
nextevent = left;
|
|
#endif
|
|
|
|
if (noiseChip.Output[3]) vol3 += noiseChip.Count[3];
|
|
noiseChip.Count[3] -= nextevent;
|
|
if (noiseChip.Count[3] <= 0)
|
|
{
|
|
if (noiseChip.RNG & 1) noiseChip.RNG ^= noiseChip.NoiseFB;
|
|
noiseChip.RNG >>= 1;
|
|
noiseChip.Output[3] = noiseChip.RNG & 1;
|
|
noiseChip.Count[3] += noiseChip.Period[3];
|
|
if (noiseChip.Output[3]) vol3 += noiseChip.Period[3];
|
|
}
|
|
if (noiseChip.Output[3]) vol3 -= noiseChip.Count[3];
|
|
|
|
left -= nextevent;
|
|
} while (left > 0);
|
|
}
|
|
out = vol3 * noiseChip.Volume[3];
|
|
|
|
if (out > MAX_OUTPUT_STEP)
|
|
out = MAX_OUTPUT_STEP;
|
|
|
|
return out>>STEP_SHIFT;
|
|
}
|
|
|
|
/* ============================================================================= */
|
|
|
|
void sound_update(_u16* chip_buffer, int length_bytes)
|
|
{
|
|
length_bytes >>= 1; /* turn it into words */
|
|
while (length_bytes)
|
|
{
|
|
/* Mix a mono track out of: (Tone + Noise) >> 1
|
|
* Write it to the sound buffer */
|
|
*(chip_buffer++) = (sample_chip_tone() + sample_chip_noise()) >> 1;
|
|
|
|
length_bytes--;
|
|
}
|
|
}
|
|
|
|
/* ============================================================================= */
|
|
|
|
void WriteSoundChip(SoundChip* chip, _u8 data)
|
|
{
|
|
/* Command */
|
|
if (data & 0x80)
|
|
{
|
|
int r = (data & 0x70) >> 4;
|
|
int c = r>>1;
|
|
|
|
chip->LastRegister = r;
|
|
chip->Register[r] = (chip->Register[r] & 0x3f0) | (data & 0x0f);
|
|
|
|
switch(r)
|
|
{
|
|
case 0: /* tone 0 : frequency */
|
|
case 2: /* tone 1 : frequency */
|
|
case 4: /* tone 2 : frequency */
|
|
chip->Period[c] = UpdateStep * chip->Register[r];
|
|
if (chip->Period[c] == 0) chip->Period[c] = UpdateStep;
|
|
if (r == 4)
|
|
{
|
|
/* update noise shift frequency */
|
|
if ((chip->Register[6] & 0x03) == 0x03)
|
|
chip->Period[3] = chip->Period[2]<<1;
|
|
}
|
|
break;
|
|
|
|
case 1: /* tone 0 : volume */
|
|
case 3: /* tone 1 : volume */
|
|
case 5: /* tone 2 : volume */
|
|
case 7: /* noise : volume */
|
|
#ifdef NEOPOP_DEBUG
|
|
if (filter_sound)
|
|
{
|
|
if (chip == &toneChip)
|
|
system_debug_message("sound (T): Set Tone %d Volume to %d (0 = min, 15 = max)", c, 15 - (data & 0xF));
|
|
else
|
|
system_debug_message("sound (N): Set Tone %d Volume to %d (0 = min, 15 = max)", c, 15 - (data & 0xF));
|
|
}
|
|
#endif
|
|
chip->Volume[c] = VolTable[data & 0xF];
|
|
break;
|
|
|
|
case 6: /* noise : frequency, mode */
|
|
{
|
|
int n = chip->Register[6];
|
|
#ifdef NEOPOP_DEBUG
|
|
if (filter_sound)
|
|
{
|
|
char *pm, *nm = "White";
|
|
if ((n & 4)) nm = "Periodic";
|
|
|
|
switch(n & 3)
|
|
{
|
|
case 0: pm = "N/512"; break;
|
|
case 1: pm = "N/1024"; break;
|
|
case 2: pm = "N/2048"; break;
|
|
case 3: pm = "Tone#2"; break;
|
|
}
|
|
|
|
if (chip == &toneChip)
|
|
system_debug_message("sound (T): Set Noise Mode to %s, Period = %s", nm, pm);
|
|
else
|
|
system_debug_message("sound (N): Set Noise Mode to %s, Period = %s", nm, pm);
|
|
}
|
|
#endif
|
|
chip->NoiseFB = (n & 4) ? FB_WNOISE : FB_PNOISE;
|
|
n &= 3;
|
|
/* N/512,N/1024,N/2048,Tone #2 output */
|
|
chip->Period[3] = (n == 3) ? 2 * chip->Period[2] : (UpdateStep << (5+n));
|
|
|
|
/* reset noise shifter */
|
|
chip->RNG = NG_PRESET;
|
|
chip->Output[3] = chip->RNG & 1;
|
|
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int r = chip->LastRegister;
|
|
int c = r/2;
|
|
|
|
switch (r)
|
|
{
|
|
case 0: /* tone 0 : frequency */
|
|
case 2: /* tone 1 : frequency */
|
|
case 4: /* tone 2 : frequency */
|
|
chip->Register[r] = (chip->Register[r] & 0x0f) | ((data & 0x3f) << 4);
|
|
chip->Period[c] = UpdateStep * chip->Register[r];
|
|
if (chip->Period[c] == 0) chip->Period[c] = UpdateStep;
|
|
if (r == 4)
|
|
{
|
|
/* update noise shift frequency */
|
|
if ((chip->Register[6] & 0x03) == 0x03)
|
|
chip->Period[3] = chip->Period[2]<<1;
|
|
}
|
|
#ifdef NEOPOP_DEBUG
|
|
if (filter_sound)
|
|
{
|
|
if (chip == &toneChip)
|
|
system_debug_message("sound (T): Set Tone %d Frequency to %d", c, chip->Register[r]);
|
|
else
|
|
system_debug_message("sound (N): Set Tone %d Frequency to %d", c, chip->Register[r]);
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ============================================================================= */
|
|
|
|
void dac_writeL(unsigned char data)
|
|
{
|
|
unsigned i;
|
|
static int conv=5;
|
|
|
|
/* pretend that conv=5.5 (44100/8000) conversion factor */
|
|
|
|
if(conv==5)
|
|
conv=6;
|
|
else
|
|
{
|
|
conv=5;
|
|
|
|
/* Arregla el sonido del Super Real Mahjong */
|
|
if (fixsoundmahjong>500)
|
|
conv=3;
|
|
}
|
|
|
|
|
|
for(i=0;i<conv;i++)
|
|
{
|
|
/* Write to buffer */
|
|
dacBufferL[dacLBufferWrite++] = (data-0x80)<<8;
|
|
|
|
#if 0
|
|
dacLBufferWrite++;
|
|
#endif
|
|
if (dacLBufferWrite == DAC_BUFFERSIZE)
|
|
dacLBufferWrite = 0;
|
|
|
|
/* Overflow? */
|
|
dacLBufferCount++;
|
|
if (dacLBufferCount == DAC_BUFFERSIZE)
|
|
{
|
|
#if 0
|
|
dbg_printf("dac_write: DAC buffer overflow\nPlease report this to the author.");
|
|
#endif
|
|
dacLBufferCount = 0;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
#if 0
|
|
void dac_writeR(unsigned char data)
|
|
{
|
|
/* Write to buffer */
|
|
dacBufferR[dacRBufferWrite] = data;
|
|
dacRBufferWrite++;
|
|
if (dacRBufferWrite == DAC_BUFFERSIZE)
|
|
dacRBufferWrite = 0;
|
|
|
|
/* Overflow? */
|
|
dacRBufferCount++;
|
|
if (dacRBufferCount == DAC_BUFFERSIZE)
|
|
{
|
|
dbg_printf("dac_write: DAC buffer overflow\nPlease report this to the author.");
|
|
dacRBufferCount = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void dac_mixer(_u16* stream, int length_bytes)
|
|
{
|
|
}
|
|
|
|
|
|
void dac_update(_u16* dac_buffer, int length_bytes)
|
|
{
|
|
while (length_bytes > 1)
|
|
{
|
|
/* Copy then clear DAC data */
|
|
*(dac_buffer++) |= dacBufferL[dacLBufferRead];
|
|
dacBufferL[dacLBufferRead] = 0; /* silence? */
|
|
|
|
length_bytes -= 2; /* 1 byte = 8 bits */
|
|
|
|
if (dacLBufferCount > 0)
|
|
{
|
|
dacLBufferCount--;
|
|
|
|
/* Advance the DAC read */
|
|
#if 0
|
|
dacLBufferRead++;
|
|
#endif
|
|
if (++dacLBufferRead == DAC_BUFFERSIZE)
|
|
dacLBufferRead = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*============================================================================= */
|
|
|
|
/*Resets the sound chips, also used whenever sound options are changed */
|
|
void sound_init(int SampleRate)
|
|
{
|
|
int i;
|
|
double out;
|
|
|
|
/* the base clock for the tone generators is the chip clock divided by 16; */
|
|
/* for the noise generator, it is clock / 256. */
|
|
/* Here we calculate the number of steps which happen during one sample */
|
|
/* at the given sample rate. No. of events = sample rate / (clock/16). */
|
|
/* STEP is a multiplier used to turn the fraction into a fixed point */
|
|
/* number. */
|
|
UpdateStep = (_u32)(((double)STEP * SampleRate * 16) / SOUNDCHIPCLOCK);
|
|
|
|
/* Initialise Left Chip */
|
|
memset(&toneChip, 0, sizeof(SoundChip));
|
|
|
|
/* Initialise Right Chip */
|
|
memset(&noiseChip, 0, sizeof(SoundChip));
|
|
|
|
/* Default register settings */
|
|
for (i = 0;i < 8;i+=2)
|
|
{
|
|
toneChip.Register[i] = 0;
|
|
toneChip.Register[i + 1] = 0x0f; /* volume = 0 */
|
|
noiseChip.Register[i] = 0;
|
|
noiseChip.Register[i + 1] = 0x0f; /* volume = 0 */
|
|
}
|
|
|
|
for (i = 0;i < 4;i++)
|
|
{
|
|
toneChip.Output[i] = 0;
|
|
toneChip.Period[i] = toneChip.Count[i] = UpdateStep;
|
|
noiseChip.Output[i] = 0;
|
|
noiseChip.Period[i] = noiseChip.Count[i] = UpdateStep;
|
|
}
|
|
|
|
/* Build the volume table */
|
|
out = MAX_OUTPUT / 3;
|
|
|
|
/* build volume table (2dB per step) */
|
|
for (i = 0;i < 15;i++)
|
|
{
|
|
VolTable[i] = (_u32)out;
|
|
out /= 1.258925412; /* = 10 ^ (2/20) = 2dB */
|
|
}
|
|
VolTable[15] = 0;
|
|
|
|
/* Clear the DAC buffer */
|
|
for (i = 0; i < DAC_BUFFERSIZE; i++)
|
|
dacBufferL[i] = 0;
|
|
|
|
dacLBufferCount = 0;
|
|
dacLBufferRead = 0;
|
|
dacLBufferWrite = 0;
|
|
}
|
|
|
|
/* ============================================================================= */
|
|
|
|
#define NGPC_CHIP_FREQUENCY 44100
|
|
int chip_freq=NGPC_CHIP_FREQUENCY; /* what we'd prefer */
|
|
|
|
#define CHIPBUFFERLENGTH 35280
|
|
|
|
#define UNDEFINED 0xFFFFFF
|
|
|
|
/* ====== Chip sound ========= */
|
|
static int lastChipWrite = 0, chipWrite = UNDEFINED; /* Write Cursor */
|
|
|
|
/* ====== DAC sound ========= */
|
|
static int lastDacWrite = 0, dacWrite = UNDEFINED; /* Write Cursor */
|
|
|
|
_u8 blockSound[CHIPBUFFERLENGTH], blockDAC[CHIPBUFFERLENGTH]; /* Gets filled with sound data. */
|
|
unsigned int blockSoundWritePtr = 0;
|
|
unsigned int blockSoundReadPtr = 0;
|
|
|
|
void system_sound_chipreset(void)
|
|
{
|
|
/* Initialises sound chips, matching frequencies */
|
|
sound_init(chip_freq);
|
|
}
|
|
|
|
int sound_system_init(void)
|
|
{
|
|
system_sound_chipreset(); /* Resets chips */
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* call this every so often to update the sound output */
|
|
void system_sound_update(int nframes)
|
|
{
|
|
}
|