diff --git a/audio/test/main.c b/audio/test/main.c index abecdba194..146480c16b 100644 --- a/audio/test/main.c +++ b/audio/test/main.c @@ -28,14 +28,18 @@ int main(int argc, char *argv[]) { - srand(time(NULL)); int16_t input_i[1024]; int16_t output_i[1024 * 8]; float input_f[1024]; float output_f[1024 * 8]; + double in_rate, out_rate, ratio; double ratio_max_deviation = 0.0; + const rarch_resampler_t *resampler = NULL; + void *re = NULL; + + srand(time(NULL)); if (argc < 3 || argc > 4) { @@ -48,18 +52,16 @@ int main(int argc, char *argv[]) fprintf(stderr, "Ratio deviation: %.4f.\n", ratio_max_deviation); } - double in_rate = strtod(argv[1], NULL); - double out_rate = strtod(argv[2], NULL); + in_rate = strtod(argv[1], NULL); + out_rate = strtod(argv[2], NULL); + ratio = out_rate / in_rate; - double ratio = out_rate / in_rate; if (ratio >= 7.99) { fprintf(stderr, "Ratio is too high.\n"); return 1; } - const rarch_resampler_t *resampler = NULL; - void *re = NULL; if (!rarch_resampler_realloc(&re, &resampler, RESAMPLER_IDENT, out_rate / in_rate)) { fprintf(stderr, "Failed to allocate resampler ...\n"); @@ -68,24 +70,26 @@ int main(int argc, char *argv[]) for (;;) { + size_t output_samples; + struct resampler_data data; + double uniform, rate_mod; + if (fread(input_i, sizeof(int16_t), 1024, stdin) != 1024) break; - double uniform = (2.0 * rand()) / RAND_MAX - 1.0; - double rate_mod = 1.0 + ratio_max_deviation * uniform; + uniform = (2.0 * rand()) / RAND_MAX - 1.0; + rate_mod = 1.0 + ratio_max_deviation * uniform; audio_convert_s16_to_float(input_f, input_i, 1024, 1.0f); - struct resampler_data data = { - .data_in = input_f, - .data_out = output_f, - .input_frames = sizeof(input_f) / (2 * sizeof(float)), - .ratio = ratio * rate_mod, - }; + data.data_in = input_f; + data.data_out = output_f; + data.input_frames = sizeof(input_f) / (2 * sizeof(float)); + data.ratio = ratio * rate_mod; rarch_resampler_process(resampler, re, &data); - size_t output_samples = data.output_frames * 2; + output_samples = data.output_frames * 2; audio_convert_float_to_s16(output_i, output_f, output_samples); diff --git a/audio/test/snr.c b/audio/test/snr.c index 8bc1c839f6..97639583ed 100644 --- a/audio/test/snr.c +++ b/audio/test/snr.c @@ -33,7 +33,9 @@ static void gen_signal(float *out, double omega, double bias_samples, size_t samples) { - for (size_t i = 0; i < samples; i += 2) + size_t i; + + for (i = 0; i < samples; i += 2) { out[i + 0] = cos(((i >> 1) + bias_samples) * omega); out[i + 1] = out[i + 0]; @@ -60,21 +62,26 @@ static unsigned bitrange(unsigned len) static unsigned bitswap(unsigned i, unsigned range) { + unsigned shifts; unsigned ret = 0; - for (unsigned shifts = 0; shifts < range; shifts++) + + for (shifts = 0; shifts < range; shifts++) ret |= i & (1 << (range - shifts - 1)) ? (1 << shifts) : 0; return ret; } -// When interleaving the butterfly buffer, addressing puts bits in reverse. -// [0, 1, 2, 3, 4, 5, 6, 7] => [0, 4, 2, 6, 1, 5, 3, 7] +/* When interleaving the butterfly buffer, addressing puts bits in reverse. + * [0, 1, 2, 3, 4, 5, 6, 7] => [0, 4, 2, 6, 1, 5, 3, 7] */ static void interleave(complex double *butterfly_buf, size_t samples) { + unsigned i; unsigned range = bitrange(samples); - for (unsigned i = 0; i < samples; i++) + + for (i = 0; i < samples; i++) { unsigned target = bitswap(i, range); + if (target > i) { complex double tmp = butterfly_buf[target]; @@ -91,58 +98,68 @@ static complex double gen_phase(double index) static void butterfly(complex double *a, complex double *b, complex double mod) { + complex double a_; + complex double b_; + mod *= *b; - complex double a_ = *a + mod; - complex double b_ = *a - mod; - *a = a_; - *b = b_; + a_ = *a + mod; + b_ = *a - mod; + *a = a_; + *b = b_; } static void butterflies(complex double *butterfly_buf, double phase_dir, size_t step_size, size_t samples) { - for (unsigned i = 0; i < samples; i += 2 * step_size) - for (unsigned j = i; j < i + step_size; j++) + unsigned i, j; + + for (i = 0; i < samples; i += 2 * step_size) + for (j = i; j < i + step_size; j++) butterfly(&butterfly_buf[j], &butterfly_buf[j + step_size], gen_phase((phase_dir * (j - i)) / step_size)); } static void calculate_fft(const float *data, complex double *butterfly_buf, size_t samples) { - // Enforce POT. + unsigned i; + + /* Enforce POT. */ assert((samples & (samples - 1)) == 0); - for (unsigned i = 0; i < samples; i++) + for (i = 0; i < samples; i++) butterfly_buf[i] = data[2 * i]; - // Interleave buffer to work with FFT. + /* Interleave buffer to work with FFT. */ interleave(butterfly_buf, samples); - // Fly, lovely butterflies! :D + /* Fly, lovely butterflies! :D */ for (unsigned step_size = 1; step_size < samples; step_size *= 2) butterflies(butterfly_buf, -1.0, step_size, samples); } static void calculate_fft_adjust(complex double *butterfly_buf, double gain, bool merge_high, size_t samples) { + unsigned i; if (merge_high) { - for (unsigned i = 1; i < samples / 2; i++) + for (i = 1; i < samples / 2; i++) butterfly_buf[i] *= 2.0; } - // Normalize amplitudes. - for (unsigned i = 0; i < samples; i++) + /* Normalize amplitudes. */ + for (i = 0; i < samples; i++) butterfly_buf[i] *= gain; } static void calculate_ifft(complex double *butterfly_buf, size_t samples, bool normalize) { - // Enforce POT. + unsigned step_size; + + /* Enforce POT. */ assert((samples & (samples - 1)) == 0); interleave(butterfly_buf, samples); - // Fly, lovely butterflies! In opposite direction! :D - for (unsigned step_size = 1; step_size < samples; step_size *= 2) + /* Fly, lovely butterflies! In opposite direction! :D */ + for (step_size = 1; step_size < samples; step_size *= 2) butterflies(butterfly_buf, 1.0, step_size, samples); if (normalize) @@ -151,25 +168,25 @@ static void calculate_ifft(complex double *butterfly_buf, size_t samples, bool n static void test_fft(void) { - fprintf(stderr, "Sanity checking FFT ...\n"); + unsigned i, j; float signal[32]; complex double butterfly_buf[16]; complex double buf_tmp[16]; - const float cos_freqs[] = { 1.0, 4.0, 6.0, }; - const float sin_freqs[] = { -2.0, 5.0, 7.0, }; - for (unsigned i = 0; i < 16; i++) + fprintf(stderr, "Sanity checking FFT ...\n"); + + for (i = 0; i < 16; i++) { signal[2 * i] = 0.0; - for (unsigned j = 0; j < sizeof(cos_freqs) / sizeof(cos_freqs[0]); j++) + for (j = 0; j < sizeof(cos_freqs) / sizeof(cos_freqs[0]); j++) signal[2 * i] += cos(2.0 * M_PI * i * cos_freqs[j] / 16.0); - for (unsigned j = 0; j < sizeof(sin_freqs) / sizeof(sin_freqs[0]); j++) + for ( j = 0; j < sizeof(sin_freqs) / sizeof(sin_freqs[0]); j++) signal[2 * i] += sin(2.0 * M_PI * i * sin_freqs[j] / 16.0); } @@ -178,26 +195,27 @@ static void test_fft(void) calculate_fft_adjust(buf_tmp, 1.0 / 16, true, 16); fprintf(stderr, "FFT: { "); - for (unsigned i = 0; i < 7; i++) + for (i = 0; i < 7; i++) fprintf(stderr, "(%4.2lf, %4.2lf), ", creal(buf_tmp[i]), cimag(buf_tmp[i])); fprintf(stderr, "(%4.2lf, %4.2lf) }\n", creal(buf_tmp[7]), cimag(buf_tmp[7])); calculate_ifft(butterfly_buf, 16, true); fprintf(stderr, "Original: { "); - for (unsigned i = 0; i < 15; i++) + for (i = 0; i < 15; i++) fprintf(stderr, "%5.2f, ", signal[2 * i]); fprintf(stderr, "%5.2f }\n", signal[2 * 15]); fprintf(stderr, "FFT => IFFT: { "); - for (unsigned i = 0; i < 15; i++) + for ( i = 0; i < 15; i++) fprintf(stderr, "%5.2lf, ", creal(butterfly_buf[i])); fprintf(stderr, "%5.2lf }\n", creal(butterfly_buf[15])); } static void set_alias_power(struct snr_result *res, unsigned freq, double power) { - for (unsigned i = 0; i < 3; i++) + unsigned i; + for (i = 0; i < 3; i++) { if (power >= res->alias_power[i]) { @@ -212,21 +230,24 @@ static void set_alias_power(struct snr_result *res, unsigned freq, double power) static void calculate_snr(struct snr_result *res, unsigned in_rate, unsigned max_rate, - const float *resamp, complex double *butterfly_buf, size_t samples) + const float *resamp, complex double *butterfly_buf, + size_t samples) { + unsigned i; + double signal; + double noise = 0.0; + samples >>= 1; calculate_fft(resamp, butterfly_buf, samples); calculate_fft_adjust(butterfly_buf, 1.0 / samples, true, samples); memset(res, 0, sizeof(*res)); - double signal = cabs(butterfly_buf[in_rate] * butterfly_buf[in_rate]); + signal = cabs(butterfly_buf[in_rate] * butterfly_buf[in_rate]); butterfly_buf[in_rate] = 0.0; - double noise = 0.0; - - // Aliased frequencies above half the original sampling rate are not considered. - for (unsigned i = 0; i <= max_rate; i++) + /* Aliased frequencies above half the original sampling rate are not considered. */ + for (i = 0; i <= max_rate; i++) { double power = cabs(butterfly_buf[i] * butterfly_buf[i]); set_alias_power(res, i, power); @@ -236,25 +257,12 @@ static void calculate_snr(struct snr_result *res, res->snr = 10.0 * log10(signal / noise); res->gain = 10.0 * log10(signal); - for (unsigned i = 0; i < 3; i++) + for (i = 0; i < 3; i++) res->alias_power[i] = 10.0 * log10(res->alias_power[i]); } int main(int argc, char *argv[]) { - if (argc != 2) - { - fprintf(stderr, "Usage: %s (out-rate is fixed for FFT).\n", argv[0]); - return 1; - } - - double ratio = strtod(argv[1], NULL); - - const unsigned fft_samples = 1024 * 128; - unsigned out_rate = fft_samples / 2; - unsigned in_rate = round(out_rate / ratio); - ratio = (double)out_rate / in_rate; - static const float freq_list[] = { 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.015, 0.020, 0.025, 0.030, 0.035, 0.040, 0.045, 0.050, @@ -265,38 +273,63 @@ int main(int argc, char *argv[]) 0.495, 0.496, 0.497, 0.498, 0.499, }; - unsigned samples = in_rate * 4; - float *input = calloc(sizeof(float), samples); - float *output = calloc(sizeof(float), (fft_samples + 16) * 2); - complex double *butterfly_buf = calloc(sizeof(complex double), fft_samples / 2); + unsigned out_rate, in_rate, samples, i; + double ratio; + float *input, *output; + complex double *butterfly_buf; + const rarch_resampler_t *resampler = NULL; + const unsigned fft_samples = 1024 * 128; + void *re = NULL; + + if (argc != 2) + { + fprintf(stderr, "Usage: %s (out-rate is fixed for FFT).\n", argv[0]); + return 1; + } + + ratio = strtod(argv[1], NULL); + out_rate = fft_samples / 2; + in_rate = round(out_rate / ratio); + ratio = (double)out_rate / in_rate; + + samples = in_rate * 4; + input = calloc(sizeof(float), samples); + output = calloc(sizeof(float), (fft_samples + 16) * 2); + butterfly_buf = calloc(sizeof(complex double), fft_samples / 2); + assert(input); assert(output); - void *re = NULL; - const rarch_resampler_t *resampler = NULL; if (!rarch_resampler_realloc(&re, &resampler, RESAMPLER_IDENT, ratio)) + { + free(input); + free(output); + free(butterfly_buf); return 1; + } test_fft(); - for (unsigned i = 0; i < sizeof(freq_list) / sizeof(freq_list[0]); i++) + for (i = 0; i < sizeof(freq_list) / sizeof(freq_list[0]); i++) { + struct resampler_data data; + unsigned max_freq; + struct snr_result res = {0}; unsigned freq = freq_list[i] * in_rate; - double omega = 2.0 * M_PI * freq / in_rate; + double omega = 2.0 * M_PI * freq / in_rate; + gen_signal(input, omega, 0, samples); - struct resampler_data data = { - .data_in = input, - .data_out = output, - .input_frames = in_rate * 2, - .ratio = ratio, - }; + data.data_in = input; + data.data_out = output; + data.input_frames = in_rate * 2; + data.ratio = ratio; rarch_resampler_process(resampler, re, &data); - // We generate 2 seconds worth of audio, however, only the last second is considered so phase has stabilized. - struct snr_result res = {0}; - unsigned max_freq = min(in_rate, out_rate) / 2; + /* We generate 2 seconds worth of audio, however, + * only the last second is considered so phase has stabilized. */ + max_freq = min(in_rate, out_rate) / 2; if (freq > max_freq) continue; @@ -312,6 +345,7 @@ int main(int argc, char *argv[]) } rarch_resampler_freep(&resampler, &re); + free(input); free(output); free(butterfly_buf); diff --git a/database_info.c b/database_info.c index 4759c348d6..c88f4a04ea 100644 --- a/database_info.c +++ b/database_info.c @@ -473,18 +473,19 @@ database_info_list_t *database_info_list_new( if (ret == 0) { - database_info_t *db_ptr = NULL; - database_info = (database_info_t*) + database_info_t *db_ptr = NULL; + database_info_t *new_ptr = (database_info_t*) realloc(database_info, (k+1) * sizeof(database_info_t)); - if (!database_info) + if (!new_ptr) { database_info_list_free(database_info_list); database_info_list = NULL; goto end; } - db_ptr = &database_info[k]; + database_info = new_ptr; + db_ptr = &database_info[k]; if (!db_ptr) continue; diff --git a/deps/zlib/gzread.c b/deps/zlib/gzread.c index b304b4eb15..461deb104e 100644 --- a/deps/zlib/gzread.c +++ b/deps/zlib/gzread.c @@ -249,7 +249,7 @@ local int gz_fetch(gz_statep state) /* Skip len uncompressed bytes of output. Return -1 on error, 0 on success. */ local int gz_skip(gz_statep state, z_off64_t len) { - unsigned n; + unsigned n = 0; /* skip over len bytes or reach end-of-file, whichever comes first */ while (len) diff --git a/deps/zlib/gzwrite.c b/deps/zlib/gzwrite.c index 6c1c91bf0f..9bf36d4b87 100644 --- a/deps/zlib/gzwrite.c +++ b/deps/zlib/gzwrite.c @@ -132,7 +132,7 @@ local int gz_comp(gz_statep state, int flush) local int gz_zero(gz_statep state, z_off64_t len) { int first; - unsigned n; + unsigned n = 0; z_streamp strm = &(state->strm); /* consume whatever's left in the input buffer */ diff --git a/gfx/d3d/d3d.cpp b/gfx/d3d/d3d.cpp index ed6867614d..faeb0825f8 100644 --- a/gfx/d3d/d3d.cpp +++ b/gfx/d3d/d3d.cpp @@ -653,7 +653,8 @@ static bool d3d_construct(d3d_video_t *d3d, } video_monitor_get_fps(buffer, sizeof(buffer), NULL, 0); - sprintf(buffer, "%s || Direct3D", buffer); + + strlcat(buffer, " || Direct3D", sizeof(buffer)); d3d->hWnd = CreateWindowEx(0, "RetroArch", buffer, info->fullscreen ? diff --git a/gfx/video_driver.c b/gfx/video_driver.c index 59d9fbc063..72111383e2 100644 --- a/gfx/video_driver.c +++ b/gfx/video_driver.c @@ -465,6 +465,13 @@ void init_video(void) if (av_info) geom = (const struct retro_game_geometry*)&av_info->geometry; + + if (!geom) + { + RARCH_ERR("AV geometry not initialized, cannot initialize video driver.\n"); + rarch_fail(1, "init_video()"); + } + max_dim = max(geom->max_width, geom->max_height); scale = next_pow2(max_dim) / RARCH_SCALE_BASE; scale = max(scale, 1); @@ -621,7 +628,7 @@ void video_driver_set_nonblock_state(bool toggle) driver_t *driver = driver_get_ptr(); const video_driver_t *video = video_driver_ctx_get_ptr(driver); - if (video->set_nonblock_state) + if (video && video->set_nonblock_state) video->set_nonblock_state(driver->video_data, toggle); } @@ -631,7 +638,7 @@ bool video_driver_set_viewport(unsigned width, unsigned height, driver_t *driver = driver_get_ptr(); const video_driver_t *video = video_driver_ctx_get_ptr(driver); - if (video->set_viewport) + if (video && video->set_viewport) { video->set_viewport(driver->video_data, width, height, force_fullscreen, allow_rotate); @@ -645,7 +652,7 @@ bool video_driver_set_rotation(unsigned rotation) driver_t *driver = driver_get_ptr(); const video_driver_t *video = video_driver_ctx_get_ptr(driver); - if (video->set_rotation) + if (video && video->set_rotation) { video->set_rotation(driver->video_data, rotation); return true; @@ -736,7 +743,7 @@ bool video_driver_viewport_info(struct video_viewport *vp) driver_t *driver = driver_get_ptr(); const video_driver_t *video = video_driver_ctx_get_ptr(driver); - if (video->viewport_info) + if (video && video->viewport_info) { video->viewport_info(driver->video_data, vp); return true; @@ -749,7 +756,7 @@ bool video_driver_read_viewport(uint8_t *buffer) driver_t *driver = driver_get_ptr(); const video_driver_t *video = video_driver_ctx_get_ptr(driver); - if (video->read_viewport) + if (video && video->read_viewport) return video->read_viewport(driver->video_data, buffer); return false; @@ -778,13 +785,13 @@ bool video_driver_overlay_interface(const video_overlay_interface_t **iface) } #endif -void * video_driver_read_frame_raw(unsigned *width, +void *video_driver_read_frame_raw(unsigned *width, unsigned *height, size_t *pitch) { driver_t *driver = driver_get_ptr(); const video_driver_t *video = video_driver_ctx_get_ptr(driver); - if (video->read_frame_raw) + if (video && video->read_frame_raw) return video->read_frame_raw(driver->video_data, width, height, pitch); return NULL; @@ -930,7 +937,7 @@ void video_monitor_adjust_system_rates(void) if (av_info) info = (const struct retro_system_timing*)&av_info->timing; - if (info->fps <= 0.0) + if (!info || info->fps <= 0.0) return; timing_skew = fabs(1.0f - info->fps / settings->video.refresh_rate); diff --git a/input/drivers_keyboard/keyboard_event_xkb.c b/input/drivers_keyboard/keyboard_event_xkb.c index abc52ca5c9..a1000a9792 100644 --- a/input/drivers_keyboard/keyboard_event_xkb.c +++ b/input/drivers_keyboard/keyboard_event_xkb.c @@ -53,6 +53,9 @@ void handle_xkb( if (value) num_syms = xkb_state_key_get_syms(xkb_state, xk_code, &syms); + if (!syms) + return; + xkb_state_update_key(xkb_state, xk_code, value ? XKB_KEY_DOWN : XKB_KEY_UP); /* Build mod state. */ diff --git a/libretro-db/lua_converter.c b/libretro-db/lua_converter.c index 90d7c34c02..b775f6344c 100644 --- a/libretro-db/lua_converter.c +++ b/libretro-db/lua_converter.c @@ -41,7 +41,7 @@ static int call_init(lua_State * L, int argc, const char ** argv) static int value_provider(void * ctx, struct rmsgpack_dom_value *out) { - int rv; + int rv = 0; lua_State * L = ctx; lua_getglobal(L, "get_value"); diff --git a/libretro-db/testlib.c b/libretro-db/testlib.c index cab1656fa0..321885269b 100644 --- a/libretro-db/testlib.c +++ b/libretro-db/testlib.c @@ -59,7 +59,7 @@ static void push_rmsgpack_value(lua_State *L, struct rmsgpack_dom_value *value) static int value_provider(void *ctx, struct rmsgpack_dom_value *out) { - int rv; + int rv = 0; lua_State *L = ctx; lua_getfield(L, LUA_REGISTRYINDEX, "testlib_get_value");