/* RetroArch - A frontend for libretro. * Copyright (C) 2010-2014 - Hans-Kristian Arntzen * Copyright (C) 2014 - Ali Bouhlel ( aliaspider@gmail.com ) * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ // Convoluted Cosine Resampler #include "resampler.h" #include #include #include #include #if !defined(RESAMPLER_TEST) && defined(RARCH_INTERNAL) #include "../general.h" #else #define RARCH_LOG(...) fprintf(stderr, __VA_ARGS__) #endif typedef struct audio_frame_float { float l; float r; } audio_frame_float_t; typedef struct audio_frame_int16 { int16_t l; int16_t r; } audio_frame_int16_t; #ifdef _MIPS_ARCH_ALLEGREX1 static void resampler_CC_process(void *re_, struct resampler_data *data) { (void)re_; float ratio, fraction; audio_frame_float_t *inp = (audio_frame_float_t*)data->data_in; audio_frame_float_t *inp_max = (audio_frame_float_t*)(inp + data->input_frames); audio_frame_float_t *outp = (audio_frame_float_t*)data->data_out; __asm__ ( ".set push\n" ".set noreorder\n" "mtv %2, s700 \n" // 700 = data->ratio = b // "vsat0.s s700, s700 \n" "vrcp.s s701, s700 \n" // 701 = 1.0 / b "vadd.s s702, s700, s700 \n" // 702 = 2 * b "vmul.s s703, s700, s710 \n" // 703 = b * pi "mfv %0, s701 \n" "mfv %1, s730 \n" ".set pop\n" : "=r"(ratio), "=r"(fraction) : "r"((float)data->ratio) ); for (;;) { while (fraction < ratio) { __asm__ ( ".set push \n" ".set noreorder \n" "lv.s s620, 0(%1) \n" "lv.s s621, 4(%1) \n" "vsub.s s731, s701, s730 \n" "vadd.q c600, c730[-X,Y,-X,Y], c730[1/2,1/2,-1/2,-1/2]\n" "vmul.q c610, c600, c700[Z,Z,Z,Z] \n" //*2*b "vmul.q c600, c600, c700[W,W,W,W] \n" //*b*pi "vsin.q c610, c610 \n" "vadd.q c600, c600, c610 \n" "vmul.q c600[-1:1,-1:1,-1:1,-1:1], c600, c710[Y,Y,Y,Y] \n" "vsub.p c600, c600, c602 \n" "vmul.q c620, c620[X,Y,X,Y], c600[X,X,Y,Y] \n" "vadd.q c720, c720, c620 \n" "vadd.s s730, s730, s730[1] \n" "mfv %0, s730 \n" ".set pop \n" : "=r"(fraction) : "r"(inp)); inp++; if (inp == inp_max) goto done; } __asm__ ( ".set push \n" ".set noreorder \n" "vmul.p c720, c720, c720[1/2,1/2] \n" "sv.s s720, 0(%1) \n" "sv.s s721, 4(%1) \n" "vmov.q c720, c720[Z,W,0,0] \n" "vsub.s s730, s730, s701 \n" "mfv %0, s730 \n" ".set pop \n" : "=r"(fraction) : "r"(outp)); outp++; } // The VFPU state is assumed to remain intact in-between calls to resampler_CC_process. done: data->output_frames = outp - (audio_frame_float_t*)data->data_out; } static void resampler_CC_free(void *re_) { (void)re_; } static void *resampler_CC_init(double bandwidth_mod) { __asm__ ( ".set push\n" ".set noreorder\n" "vcst.s s710, VFPU_PI \n" // 710 = pi "vcst.s s711, VFPU_1_PI \n" // 711 = 1.0 / (pi) "vzero.q c720 \n" "vzero.q c730 \n" ".set pop\n"); RARCH_LOG("\nConvoluted Cosine resampler (VFPU): \n"); return (void*)-1; } #else // C reference version. Not optimized. typedef struct rarch_CC_resampler { audio_frame_float_t buffer[4]; float distance; void (*process)(void *re, struct resampler_data *data); } rarch_CC_resampler_t; static inline float cc_int(float x, float b) { float val = x * b * M_PI + sinf(x * b * M_PI); return (val > M_PI) ? M_PI : (val < -M_PI) ? -M_PI : val; } static inline float cc_kernel(float x, float b) { return (cc_int(x + 0.5, b) - cc_int(x - 0.5, b)) / (2.0 * M_PI); } static inline void add_to(const audio_frame_float_t *source, audio_frame_float_t *target, float ratio) { target->l += source->l * ratio; target->r += source->r * ratio; } static void resampler_CC_downsample(void *re_, struct resampler_data *data) { float ratio, b; rarch_CC_resampler_t *re = (rarch_CC_resampler_t*)re_; audio_frame_float_t *inp = (audio_frame_float_t*)data->data_in; audio_frame_float_t *inp_max = (audio_frame_float_t*)(inp + data->input_frames); audio_frame_float_t *outp = (audio_frame_float_t*)data->data_out; ratio = 1.0 / data->ratio; b = data->ratio; // cutoff frequency while (inp != inp_max) { add_to(inp, re->buffer + 0, cc_kernel(re->distance, b)); add_to(inp, re->buffer + 1, cc_kernel(re->distance - ratio, b)); add_to(inp, re->buffer + 2, cc_kernel(re->distance - ratio - ratio, b)); re->distance++; inp++; if (re->distance > (ratio + 0.5)) { *outp = re->buffer[0]; re->buffer[0] = re->buffer[1]; re->buffer[1] = re->buffer[2]; re->buffer[2].l = 0.0; re->buffer[2].r = 0.0; re->distance -= ratio; outp++; } } data->output_frames = outp - (audio_frame_float_t*)data->data_out; } #ifndef min #define min(a, b) ((a) < (b) ? (a) : (b)) #endif static void resampler_CC_upsample(void *re_, struct resampler_data *data) { float b, ratio; rarch_CC_resampler_t *re = (rarch_CC_resampler_t*)re_; audio_frame_float_t *inp = (audio_frame_float_t*)data->data_in; audio_frame_float_t *inp_max = (audio_frame_float_t*)(inp + data->input_frames); audio_frame_float_t *outp = (audio_frame_float_t*)data->data_out; b = min(data->ratio, 1.00); // cutoff frequency ratio = 1.0 / data->ratio; while (inp != inp_max) { re->buffer[0] = re->buffer[1]; re->buffer[1] = re->buffer[2]; re->buffer[2] = re->buffer[3]; re->buffer[3] = *inp; while (re->distance < 1.0) { int i; float temp; outp->l = 0.0; outp->r = 0.0; for (i = 0; i < 4; i++) { temp = cc_kernel(re->distance + 1.0 - i, b); outp->l += re->buffer[i].l * temp; outp->r += re->buffer[i].r * temp; } re->distance += ratio; outp++; } re->distance -= 1.0; inp++; } data->output_frames = outp - (audio_frame_float_t*)data->data_out; } static void resampler_CC_process(void *re_, struct resampler_data *data) { rarch_CC_resampler_t *re = (rarch_CC_resampler_t*)re_; re->process(re_, data); } static void resampler_CC_free(void *re_) { rarch_CC_resampler_t *re = (rarch_CC_resampler_t*)re_; if (re) free(re); } static void *resampler_CC_init(double bandwidth_mod) { int i; rarch_CC_resampler_t *re = (rarch_CC_resampler_t*)calloc(1, sizeof(rarch_CC_resampler_t)); if (!re) return NULL; for (i = 0; i < 4; i++) { re->buffer[i].l = 0.0; re->buffer[i].r = 0.0; } RARCH_LOG("Convoluted Cosine resampler (C) : "); if (bandwidth_mod < 0.75) // variations of data->ratio around 0.75 are safer than around 1.0 for both up/downsampler. { RARCH_LOG("CC_downsample @%f \n", bandwidth_mod); re->process = resampler_CC_downsample; re->distance = 0.0; } else { RARCH_LOG("CC_upsample @%f \n", bandwidth_mod); re->process = resampler_CC_upsample; re->distance = 2.0; } return re; } #endif const rarch_resampler_t CC_resampler = { resampler_CC_init, resampler_CC_process, resampler_CC_free, "CC", };