/* SSNES - A Super Nintendo Entertainment System (SNES) Emulator frontend for libsnes. * Copyright (C) 2010-2011 - Hans-Kristian Arntzen * * Some code herein may be based on code found in BSNES. * * SSNES is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * SSNES is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with SSNES. * If not, see . */ #include "netplay.h" #include "general.h" #include "dynamic.h" #include #include #include #ifdef _WIN32 #define _WIN32_WINNT 0x0501 #define WIN32_LEAN_AND_MEAN #include #include #include // Woohoo, Winsock has headers from the STONE AGE! :D #define close(x) closesocket(x) #define CONST_CAST (const char*) #define NONCONST_CAST (char*) #else #include #include #include #include #include #include #include #include #define CONST_CAST #define NONCONST_CAST #endif #define PREV_PTR(x) ((x) == 0 ? handle->buffer_size - 1 : (x) - 1) #define NEXT_PTR(x) ((x + 1) % handle->buffer_size) struct delta_frame { uint8_t *state; uint16_t real_input_state; uint16_t simulated_input_state; bool is_simulated; uint16_t self_state; bool used_real; }; #define UDP_FRAME_PACKETS 16 struct netplay { struct snes_callbacks cbs; int fd; // TCP connection for state sending, etc. Could perhaps be used for messaging later on. :) int udp_fd; // UDP connection for game state updates. unsigned port; // Which port is governed by netplay? bool has_connection; struct delta_frame *buffer; size_t buffer_size; size_t self_ptr; // Ptr where we are now. size_t other_ptr; // Points to the last reliable state that self ever had. size_t read_ptr; // Ptr to where we are reading. Generally, other_ptr <= read_ptr <= self_ptr. size_t tmp_ptr; // A temporary pointer used on replay. size_t state_size; size_t is_replay; // Are we replaying old frames? bool can_poll; // We don't want to poll several times on a frame. struct timeval last_tv; uint32_t packet_buffer[UDP_FRAME_PACKETS * 2]; // To compat UDP packet loss we also send old data along with the packets. uint32_t frame_count; uint32_t read_frame_count; struct addrinfo *addr; struct sockaddr_storage their_addr; bool has_client_addr; }; void input_poll_net(void) { if (!netplay_should_skip(g_extern.netplay) && netplay_can_poll(g_extern.netplay)) { netplay_callbacks(g_extern.netplay)->poll_cb(); netplay_poll(g_extern.netplay); } } void video_frame_net(const uint16_t *data, unsigned width, unsigned height) { if (!netplay_should_skip(g_extern.netplay)) netplay_callbacks(g_extern.netplay)->frame_cb(data, width, height); } void audio_sample_net(uint16_t left, uint16_t right) { if (!netplay_should_skip(g_extern.netplay)) netplay_callbacks(g_extern.netplay)->sample_cb(left, right); } int16_t input_state_net(bool port, unsigned device, unsigned index, unsigned id) { if (netplay_is_alive(g_extern.netplay)) return netplay_input_state(g_extern.netplay, port, device, index, id); else return netplay_callbacks(g_extern.netplay)->state_cb(port, device, index, id); } static bool init_tcp_socket(netplay_t *handle, const char *server, uint16_t port) { struct addrinfo hints, *res = NULL; memset(&hints, 0, sizeof(hints)); #ifdef _WIN32 // Lolol, no AF_UNSPEC, wtf. hints.ai_family = AF_INET; #else hints.ai_family = AF_UNSPEC; #endif hints.ai_socktype = SOCK_STREAM; if (!server) hints.ai_flags = AI_PASSIVE; char port_buf[16]; snprintf(port_buf, sizeof(port_buf), "%hu", (unsigned short)port); if (getaddrinfo(server, port_buf, &hints, &res) < 0) return false; if (!res) return false; handle->fd = socket(res->ai_family, res->ai_socktype, res->ai_protocol); if (handle->fd < 0) { SSNES_ERR("Failed to init socket...\n"); if (res) freeaddrinfo(res); return false; } if (server) { if (connect(handle->fd, res->ai_addr, res->ai_addrlen) < 0) { SSNES_ERR("Failed to connect to server.\n"); close(handle->fd); freeaddrinfo(res); return false; } } else { int yes = 1; setsockopt(handle->fd, SOL_SOCKET, SO_REUSEADDR, CONST_CAST &yes, sizeof(int)); if (bind(handle->fd, res->ai_addr, res->ai_addrlen) < 0 || listen(handle->fd, 1) < 0) { SSNES_ERR("Failed to bind socket.\n"); close(handle->fd); freeaddrinfo(res); return false; } int new_fd = accept(handle->fd, NULL, NULL); if (new_fd < 0) { SSNES_ERR("Failed to accept socket.\n"); close(handle->fd); freeaddrinfo(res); return false; } close(handle->fd); handle->fd = new_fd; } freeaddrinfo(res); return true; } static bool init_udp_socket(netplay_t *handle, const char *server, uint16_t port) { struct addrinfo hints; memset(&hints, 0, sizeof(hints)); #ifdef _WIN32 // Lolol, no AF_UNSPEC, wtf. hints.ai_family = AF_INET; #else hints.ai_family = AF_UNSPEC; #endif hints.ai_socktype = SOCK_DGRAM; if (!server) hints.ai_flags = AI_PASSIVE; char port_buf[16]; snprintf(port_buf, sizeof(port_buf), "%hu", (unsigned short)port); if (getaddrinfo(server, port_buf, &hints, &handle->addr) < 0) return false; if (!handle->addr) return false; handle->udp_fd = socket(handle->addr->ai_family, handle->addr->ai_socktype, handle->addr->ai_protocol); if (handle->udp_fd < 0) { SSNES_ERR("Failed to init socket...\n"); return false; } if (!server) { // Note sure if we have to do this for UDP, but hey :) int yes = 1; setsockopt(handle->udp_fd, SOL_SOCKET, SO_REUSEADDR, CONST_CAST &yes, sizeof(int)); if (bind(handle->udp_fd, handle->addr->ai_addr, handle->addr->ai_addrlen) < 0) { SSNES_ERR("Failed to bind socket.\n"); close(handle->udp_fd); } freeaddrinfo(handle->addr); handle->addr = NULL; } // Just get some initial value. gettimeofday(&handle->last_tv, NULL); return true; } static bool init_socket(netplay_t *handle, const char *server, uint16_t port) { #ifdef _WIN32 WSADATA wsaData; if (WSAStartup(MAKEWORD(2,2), &wsaData) != 0) { WSACleanup(); return false; } #else signal(SIGPIPE, SIG_IGN); // Do not like SIGPIPE killing our app :( #endif if (!init_tcp_socket(handle, server, port)) return false; if (!init_udp_socket(handle, server, port)) return false; return true; } bool netplay_can_poll(netplay_t *handle) { return handle->can_poll; } static bool send_info(netplay_t *handle) { uint32_t header[3] = { htonl(g_extern.cart_crc), htonl(psnes_serialize_size()), htonl(psnes_get_memory_size(SNES_MEMORY_CARTRIDGE_RAM)) }; if (send(handle->fd, CONST_CAST header, sizeof(header), 0) != sizeof(header)) return false; // Get SRAM data from Player 1 :) uint8_t *sram = psnes_get_memory_data(SNES_MEMORY_CARTRIDGE_RAM); unsigned sram_size = psnes_get_memory_size(SNES_MEMORY_CARTRIDGE_RAM); while (sram_size > 0) { ssize_t ret = recv(handle->fd, NONCONST_CAST sram, sram_size, 0); if (ret <= 0) { SSNES_ERR("Failed to receive SRAM data from host.\n"); return false; } sram += ret; sram_size -= ret; } return true; } static bool get_info(netplay_t *handle) { uint32_t header[3]; if (recv(handle->fd, NONCONST_CAST header, sizeof(header), 0) != sizeof(header)) { SSNES_ERR("Failed to receive header from client.\n"); return false; } if (g_extern.cart_crc != ntohl(header[0])) { SSNES_ERR("Cart CRC32s differ! Cannot use different games!\n"); return false; } if (psnes_serialize_size() != ntohl(header[1])) { SSNES_ERR("Serialization sizes differ, make sure you're using exact same libsnes implementations!\n"); return false; } if (psnes_get_memory_size(SNES_MEMORY_CARTRIDGE_RAM) != ntohl(header[2])) { SSNES_ERR("Cartridge SRAM sizes do not correspond!\n"); return false; } // Send SRAM data to our Player 2 :) const uint8_t *sram = psnes_get_memory_data(SNES_MEMORY_CARTRIDGE_RAM); unsigned sram_size = psnes_get_memory_size(SNES_MEMORY_CARTRIDGE_RAM); while (sram_size > 0) { ssize_t ret = send(handle->fd, CONST_CAST sram, sram_size, 0); if (ret <= 0) { SSNES_ERR("Failed to send SRAM data to client.\n"); return false; } sram += ret; sram_size -= ret; } return true; } static void init_buffers(netplay_t *handle) { handle->buffer = calloc(handle->buffer_size, sizeof(*handle->buffer)); handle->state_size = psnes_serialize_size(); for (unsigned i = 0; i < handle->buffer_size; i++) { handle->buffer[i].state = malloc(handle->state_size); handle->buffer[i].is_simulated = true; } } netplay_t *netplay_new(const char *server, uint16_t port, unsigned frames, const struct snes_callbacks *cb) { netplay_t *handle = calloc(1, sizeof(*handle)); if (!handle) return NULL; handle->cbs = *cb; handle->port = server ? 0 : 1; if (!init_socket(handle, server, port)) { free(handle); return NULL; } if (server) { if (!send_info(handle)) { close(handle->fd); free(handle); return NULL; } } else { if (!get_info(handle)) { close(handle->fd); free(handle); return NULL; } } handle->buffer_size = frames + 1; init_buffers(handle); handle->has_connection = true; memset(handle->packet_buffer, 0xFF, sizeof(handle->packet_buffer)); return handle; } bool netplay_is_alive(netplay_t *handle) { return handle->has_connection; } static int poll_input(netplay_t *handle, bool block) { fd_set fds; FD_ZERO(&fds); FD_SET(handle->udp_fd, &fds); struct timeval tv = { .tv_sec = block ? 5 : 0, .tv_usec = 0 }; if (select(handle->udp_fd + 1, &fds, NULL, NULL, &tv) < 0) return -1; if (block && !FD_ISSET(handle->udp_fd, &fds)) return -1; if (FD_ISSET(handle->udp_fd, &fds)) return 1; return 0; } // Grab our own input state and send this over the network. static bool get_self_input_state(netplay_t *handle) { struct delta_frame *ptr = &handle->buffer[handle->self_ptr]; uint32_t state = 0; snes_input_state_t cb = handle->cbs.state_cb; for (int i = 0; i <= 11; i++) { int16_t tmp = cb(!handle->port, SNES_DEVICE_JOYPAD, 0, i); state |= tmp ? 1 << i : 0; } memmove(handle->packet_buffer, handle->packet_buffer + 2, sizeof (handle->packet_buffer) - 2 * sizeof(uint32_t)); handle->packet_buffer[(UDP_FRAME_PACKETS - 1) * 2] = htonl(handle->frame_count); handle->packet_buffer[(UDP_FRAME_PACKETS - 1) * 2 + 1] = htonl(state); const struct sockaddr *addr = NULL; if (handle->addr) addr = handle->addr->ai_addr; else if (handle->has_client_addr) addr = (const struct sockaddr*)&handle->their_addr; if (addr) { fprintf(stderr, "Sending a packet! :D\n"); if (sendto(handle->udp_fd, CONST_CAST handle->packet_buffer, sizeof(handle->packet_buffer), 0, addr, sizeof(struct sockaddr)) != sizeof(handle->packet_buffer)) { SSNES_WARN("Netplay connection hung up. Will continue without netplay.\n"); handle->has_connection = false; return false; } } ptr->self_state = state; handle->self_ptr = NEXT_PTR(handle->self_ptr); return true; } // TODO: Somewhat better prediction. :P static void simulate_input(netplay_t *handle) { size_t ptr = PREV_PTR(handle->self_ptr); size_t prev = PREV_PTR(handle->read_ptr); handle->buffer[ptr].simulated_input_state = handle->buffer[prev].real_input_state; handle->buffer[ptr].is_simulated = true; } static void parse_packet(netplay_t *handle, uint32_t *buffer, unsigned size) { for (unsigned i = 0; i < size * 2; i++) buffer[i] = ntohl(buffer[i]); const uint32_t *tmp = buffer + (size - 1) * 2; for (; tmp != buffer; tmp -= 2) { uint32_t frame = tmp[0]; uint32_t state = tmp[1]; if (frame < handle->frame_count && frame >= handle->read_frame_count) { size_t ptr = (handle->read_ptr + frame - handle->read_frame_count) % handle->buffer_size; handle->buffer[ptr].is_simulated = false; handle->buffer[ptr].real_input_state = state; } } while (!handle->buffer[handle->read_ptr].is_simulated && handle->read_ptr != handle->self_ptr) { handle->read_ptr = NEXT_PTR(handle->read_ptr); handle->read_frame_count++; } } static bool receive_data(netplay_t *handle, uint32_t *buffer, size_t size) { socklen_t addrlen = sizeof(handle->their_addr); if (recvfrom(handle->udp_fd, NONCONST_CAST buffer, sizeof(buffer), 0, (struct sockaddr*)&handle->their_addr, &addrlen) != sizeof(buffer)) return false; handle->has_client_addr = true; fprintf(stderr, "Received some data!\n"); return true; } // Poll network to see if we have anything new. If our network buffer is full, we simply have to block for new input data. bool netplay_poll(netplay_t *handle) { if (!handle->has_connection) return false; handle->can_poll = false; if (!get_self_input_state(handle)) return false; // We skip reading the first frame so the host has a change to grab our host info so we don't block forever :') if (handle->frame_count == 0) { simulate_input(handle); handle->buffer[PREV_PTR(handle->self_ptr)].used_real = false; return true; } // We might have reached the end of the buffer, where we simply have to block. int res = poll_input(handle, handle->other_ptr == NEXT_PTR(handle->self_ptr)); if (res == -1) { handle->has_connection = false; SSNES_WARN("Netplay connection timed out. Will continue without netplay.\n"); return false; } if (res == 1) { do { uint32_t buffer[UDP_FRAME_PACKETS * 2]; if (!receive_data(handle, buffer, sizeof(buffer))) { SSNES_WARN("Netplay connection hung up. Will continue without netplay.\n"); handle->has_connection = false; return false; } parse_packet(handle, buffer, UDP_FRAME_PACKETS); } while ((handle->read_ptr != handle->self_ptr) && poll_input(handle, false) == 1); } else { // Cannot allow this. Should not happen though. if (handle->self_ptr == handle->read_ptr) { SSNES_WARN("Netplay connection hung up. Will continue without netplay.\n"); return false; } } if (handle->read_ptr != handle->self_ptr) { simulate_input(handle); handle->buffer[PREV_PTR(handle->self_ptr)].used_real = false; } else { handle->buffer[PREV_PTR(handle->self_ptr)].is_simulated = false; handle->buffer[PREV_PTR(handle->self_ptr)].used_real = true; } return true; } int16_t netplay_input_state(netplay_t *handle, bool port, unsigned device, unsigned index, unsigned id) { uint16_t input_state = 0; size_t ptr = 0; if (handle->is_replay) ptr = handle->tmp_ptr; else ptr = PREV_PTR(handle->self_ptr); if ((port ? 1 : 0) == handle->port) { if (handle->buffer[ptr].is_simulated) input_state = handle->buffer[ptr].simulated_input_state; else input_state = handle->buffer[ptr].real_input_state; } else input_state = handle->buffer[ptr].self_state; return ((1 << id) & input_state) ? 1 : 0; } void netplay_free(netplay_t *handle) { close(handle->fd); close(handle->udp_fd); for (unsigned i = 0; i < handle->buffer_size; i++) free(handle->buffer[i].state); free(handle->buffer); if (handle->addr) freeaddrinfo(handle->addr); free(handle); } const struct snes_callbacks* netplay_callbacks(netplay_t *handle) { return &handle->cbs; } bool netplay_should_skip(netplay_t *handle) { return handle->is_replay && handle->has_connection; } void netplay_pre_frame(netplay_t *handle) { psnes_serialize(handle->buffer[handle->self_ptr].state, handle->state_size); handle->can_poll = true; } // Here we check if we have new input and replay from recorded input. void netplay_post_frame(netplay_t *handle) { handle->frame_count++; // Nothing to do... if (handle->other_ptr == handle->read_ptr) return; // Skip ahead if we predicted correctly. Skip until our simulation failed. while (handle->other_ptr != handle->read_ptr) { struct delta_frame *ptr = &handle->buffer[handle->other_ptr]; if ((ptr->simulated_input_state != ptr->real_input_state) && !ptr->used_real) break; handle->other_ptr = NEXT_PTR(handle->other_ptr); } if (handle->other_ptr != handle->read_ptr) { // Replay frames handle->is_replay = true; handle->tmp_ptr = handle->other_ptr; psnes_unserialize(handle->buffer[handle->other_ptr].state, handle->state_size); while (handle->tmp_ptr != handle->self_ptr) { psnes_serialize(handle->buffer[handle->tmp_ptr].state, handle->state_size); psnes_run(); handle->tmp_ptr = NEXT_PTR(handle->tmp_ptr); } handle->other_ptr = handle->read_ptr; handle->is_replay = false; } }