/* RetroArch - A frontend for libretro. * Copyright (C) 2010-2013 - Hans-Kristian Arntzen * Copyright (C) 2011-2013 - Daniel De Matteis * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ #include #include #include #include #include "../driver.h" #include "../miscellaneous.h" #include #include #include #include #include #include #include #include #include #include "../compat/strl.h" #include #include struct buffer { void *start; size_t length; }; typedef struct video4linux { char dev_name[256]; int fd; bool ready; struct buffer *buffers; unsigned n_buffers; size_t width; size_t height; } video4linux_t; // FIXME: Shouldn't use LUTs for this. // The LUT is simply too big, and the conversion can be done efficiently with fixed-point SIMD anyways. /* * YCbCr to RGB lookup table * Y, Cb, Cr range is 0-255 * * Stored value bits: * 24-16 Red * 15-8 Green * 7-0 Blue */ #define YUV_SHIFT(y, cb, cr) ((y << 16) | (cb << 8) | (cr << 0)) #define RGB_SHIFT(r, g, b) ((r << 16) | (g << 8) | (b << 0)) static uint32_t *YCbCr_to_RGB; static void generate_YCbCr_to_RGB_lookup(void) { int y; int cb; int cr; YCbCr_to_RGB = (uint32_t*)realloc(YCbCr_to_RGB, 256 * 256 * 256 * sizeof(uint32_t)); if (!YCbCr_to_RGB) return; for (y = 0; y < 256; y++) { for (cb = 0; cb < 256; cb++) { for (cr = 0; cr < 256; cr++) { double Y = (double)y; double Cb = (double)cb; double Cr = (double)cr; int R = (int)(Y + 1.40200 * (Cr - 0x80)); int G = (int)(Y - 0.34414 * (Cb - 0x80) - 0.71414 * (Cr - 0x80)); int B = (int)(Y + 1.77200 * (Cb - 0x80)); R = max(0, min(255, R)); G = max(0, min(255, G)); B = max(0, min(255, B)); YCbCr_to_RGB[YUV_SHIFT(y, cb, cr)] = RGB_SHIFT(R, G, B); } } } } /** * Converts YUV422 to RGB * Before first use call generate_YCbCr_to_RGB_lookup(); * * input is pointer to YUV422 encoded data in following order: Y0, Cb, Y1, Cr. * output is pointer to 24 bit RGB buffer. * Output data is written in following order: R1, G1, B1, R2, G2, B2. */ // FIXME: Software CPU color conersion from YUV to RGB - we'll make two codepaths // eventually - GL binding to texture and color conversion through shaders, // and this approach static inline void YUV422_to_RGB(uint32_t *output, const uint8_t *input) { uint8_t y0 = input[0]; uint8_t cb = input[1]; uint8_t y1 = input[2]; uint8_t cr = input[3]; output[0] = YCbCr_to_RGB[YUV_SHIFT(y0, cb, cr)]; output[1] = YCbCr_to_RGB[YUV_SHIFT(y1, cb, cr)]; } static void process_image(const void *p) { (void)p; //FIXME - fill in here how we are going to render //this - could have two codepaths - one for GL //and one non-GL #if 0 const uint8_t *buffer_yuv = p; size_t x; size_t y; for (y = 0; y < height; y++) for (x = 0; x < width; x += 2) YUV422_to_RGB(buffer_sdl + (y * width + x) * 3, buffer_yuv + (y * width + x) * 2); render(data_sf); #endif } static int xioctl(int fd, int request, void *args) { int r; do { r = ioctl(fd, request, args); } while (r == -1 && errno == EINTR); return r; } static int init_mmap(void *data) { struct v4l2_requestbuffers req; video4linux_t *v4l = (video4linux_t*)data; memset(&req, 0, sizeof(req)); req.count = 4; req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; req.memory = V4L2_MEMORY_MMAP; if (xioctl(v4l->fd, VIDIOC_REQBUFS, &req) == -1) { if (errno == EINVAL) { RARCH_ERR("%s does not support memory mapping.\n", v4l->dev_name); return -1; } else { RARCH_ERR("xioctl of VIDIOC_REQBUFS failed.\n"); return -1; } } if (req.count < 2) { RARCH_ERR("Insufficient buffer memory on %s.\n", v4l->dev_name); return -1; } v4l->buffers = (struct buffer*)calloc(req.count, sizeof(*v4l->buffers)); if (!v4l->buffers) { RARCH_ERR("Out of memory allocating V4L2 buffers.\n"); return -1; } for (v4l->n_buffers = 0; v4l->n_buffers < req.count; v4l->n_buffers++) { struct v4l2_buffer buf; memset(&buf, 0, sizeof(buf)); buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buf.memory = V4L2_MEMORY_MMAP; buf.index = v4l->n_buffers; if (xioctl(v4l->fd, VIDIOC_QUERYBUF, &buf) == -1) { RARCH_ERR("Error - xioctl VIDIOC_QUERYBUF.\n"); return -1; } v4l->buffers[v4l->n_buffers].length = buf.length; v4l->buffers[v4l->n_buffers].start = mmap(NULL, buf.length, PROT_READ | PROT_WRITE, MAP_SHARED, v4l->fd, buf.m.offset); if (v4l->buffers[v4l->n_buffers].start == MAP_FAILED) { RARCH_ERR("Error - mmap.\n"); return -1; } } return 0; } static int init_device(void *data) { struct v4l2_capability cap; struct v4l2_cropcap cropcap; struct v4l2_crop crop; struct v4l2_format fmt; unsigned min; video4linux_t *v4l = (video4linux_t*)data; if (xioctl(v4l->fd, VIDIOC_QUERYCAP, &cap) == -1) { if (errno == EINVAL) { RARCH_ERR("%s is no V4L2 device.\n", v4l->dev_name); return -1; } else { RARCH_ERR("Error - VIDIOC_QUERYCAP.\n"); return -1; } } if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE)) { RARCH_ERR("%s is no video capture device.\n", v4l->dev_name); return -1; } if (!(cap.capabilities & V4L2_CAP_STREAMING)) { RARCH_ERR("%s does not support streaming I/O (V4L2_CAP_STREAMING).\n", v4l->dev_name); return -1; } /* Select video input, video standard and tune here. */ memset(&cropcap, 0, sizeof(cropcap)); cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; if (xioctl(v4l->fd, VIDIOC_CROPCAP, &cropcap) == 0) { crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; crop.c = cropcap.defrect; /* reset to default */ if (xioctl(v4l->fd, VIDIOC_S_CROP, &crop) == -1) { switch (errno) { case EINVAL: /* Cropping not supported. */ break; default: /* Errors ignored. */ break; } } } memset (&fmt, 0, sizeof(fmt)); fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; fmt.fmt.pix.width = v4l->width; fmt.fmt.pix.height = v4l->height; // TODO: See if we can use a saner format here. fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV; fmt.fmt.pix.field = V4L2_FIELD_INTERLACED; if (xioctl(v4l->fd, VIDIOC_S_FMT, &fmt) == -1) { RARCH_ERR("Error - VIDIOC_S_FMT\n"); return -1; } /* Note VIDIOC_S_FMT may change width and height. */ /* Buggy driver paranoia. */ min = fmt.fmt.pix.width * 2; if (fmt.fmt.pix.bytesperline < min) fmt.fmt.pix.bytesperline = min; min = fmt.fmt.pix.bytesperline * fmt.fmt.pix.height; if (fmt.fmt.pix.sizeimage < min) fmt.fmt.pix.sizeimage = min; if (fmt.fmt.pix.width != v4l->width) v4l->width = fmt.fmt.pix.width; if (fmt.fmt.pix.height != v4l->height) v4l->height = fmt.fmt.pix.height; return init_mmap(v4l); } static void v4l_stop(void *data) { enum v4l2_buf_type type; video4linux_t *v4l = (video4linux_t*)data; type = V4L2_BUF_TYPE_VIDEO_CAPTURE; if (xioctl(v4l->fd, VIDIOC_STREAMOFF, &type) == -1) RARCH_ERR("Error - VIDIOC_STREAMOFF.\n"); v4l->ready = false; } static bool v4l_start(void *data) { video4linux_t *v4l = (video4linux_t*)data; unsigned i; enum v4l2_buf_type type; for (i = 0; i < v4l->n_buffers; i++) { struct v4l2_buffer buf; memset(&buf, 0, sizeof(buf)); buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buf.memory = V4L2_MEMORY_MMAP; buf.index = i; if (xioctl(v4l->fd, VIDIOC_QBUF, &buf) == -1) { RARCH_ERR("Error - VIDIOC_QBUF.\n"); return false; } } type = V4L2_BUF_TYPE_VIDEO_CAPTURE; if (xioctl(v4l->fd, VIDIOC_STREAMON, &type) == -1) { RARCH_ERR("Error - VIDIOC_STREAMON.\n"); return false; } generate_YCbCr_to_RGB_lookup(); v4l->ready = true; return true; } static void *v4l_init(const char *device, uint64_t caps, unsigned width, unsigned height) { struct stat st; if (!(caps & RETRO_CAMERA_BUFFER_RAW_FRAMEBUFFER)) { RARCH_ERR("video4linux2 returns raw framebuffers.\n"); return NULL; } video4linux_t *v4l = (video4linux_t*)calloc(1, sizeof(video4linux_t)); if (!v4l) return NULL; if (device == NULL) strlcpy(v4l->dev_name, "/dev/video0", sizeof(v4l->dev_name)); else strlcpy(v4l->dev_name, device, sizeof(v4l->dev_name)); v4l->width = width; v4l->height = height; v4l->ready = false; if (stat(v4l->dev_name, &st) == -1) { RARCH_ERR("Cannot identify '%s' : %d, %s\n", v4l->dev_name, errno, strerror(errno)); goto error; } if (!S_ISCHR(st.st_mode)) { RARCH_ERR("%s is no device.\n", v4l->dev_name); goto error; } v4l->fd = open(v4l->dev_name, O_RDWR | O_NONBLOCK, 0); if (v4l->fd == -1) { RARCH_ERR("Cannot open '%s': %d, %s\n", v4l->dev_name, errno, strerror(errno)); goto error; } if (init_device(v4l) == -1) goto error; return v4l; error: RARCH_ERR("V4L2: Failed to initialize camera.\n"); free(v4l); return NULL; } static void v4l_free(void *data) { video4linux_t *v4l = (video4linux_t*)data; unsigned i; for (i = 0; i < v4l->n_buffers; i++) if (munmap(v4l->buffers[i].start, v4l->buffers[i].length) == -1) RARCH_ERR("munmap failed.\n"); if (v4l->fd >= 0) close(v4l->fd); free(v4l); // Assumes one instance. LUT will be gone at some point anyways. free(YCbCr_to_RGB); YCbCr_to_RGB = NULL; } static bool preprocess_image(void *data) { video4linux_t *v4l = (video4linux_t*)data; struct v4l2_buffer buf; unsigned i; memset(&buf, 0, sizeof(buf)); buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buf.memory = V4L2_MEMORY_MMAP; if (xioctl(v4l->fd, VIDIOC_DQBUF, &buf) == -1) { switch (errno) { case EAGAIN: return false; case EIO: /* Could ignore EIO, see spec. */ /* fall through */ default: RARCH_ERR("VIDIOC_DQBUF.\n"); return false; } } assert(buf.index < v4l->n_buffers); process_image(v4l->buffers[buf.index].start); if (xioctl(v4l->fd, VIDIOC_QBUF, &buf) == -1) RARCH_ERR("VIDIOC_QBUF\n"); return true; } static bool v4l_poll(void *data, retro_camera_frame_raw_framebuffer_t frame_raw_cb, retro_camera_frame_opengl_texture_t frame_gl_cb) { video4linux_t *v4l = (video4linux_t*)data; if (!v4l->ready) return false; (void)frame_raw_cb; (void)frame_gl_cb; if (preprocess_image(data)) { // TODO: Call frame_raw_cb() here with updated data if new data was processed. return true; } else return false; } const camera_driver_t camera_v4l2 = { v4l_init, v4l_free, v4l_start, v4l_stop, v4l_poll, "video4linux2", };