/* RetroArch - A frontend for libretro.
* Copyright (C) 2010-2013 - Hans-Kristian Arntzen
* Copyright (C) 2011-2013 - Daniel De Matteis
*
* RetroArch is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with RetroArch.
* If not, see .
*/
#include
#include
#include
#include
#include "../driver.h"
#include "../miscellaneous.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "../compat/strl.h"
#include
#include
struct buffer
{
void *start;
size_t length;
};
typedef struct video4linux
{
char dev_name[256];
int fd;
bool ready;
struct buffer *buffers;
unsigned n_buffers;
size_t width;
size_t height;
} video4linux_t;
// FIXME: Shouldn't use LUTs for this.
// The LUT is simply too big, and the conversion can be done efficiently with fixed-point SIMD anyways.
/*
* YCbCr to RGB lookup table
* Y, Cb, Cr range is 0-255
*
* Stored value bits:
* 24-16 Red
* 15-8 Green
* 7-0 Blue
*/
#define YUV_SHIFT(y, cb, cr) ((y << 16) | (cb << 8) | (cr << 0))
#define RGB_SHIFT(r, g, b) ((r << 16) | (g << 8) | (b << 0))
static uint32_t *YCbCr_to_RGB;
static void generate_YCbCr_to_RGB_lookup(void)
{
int y;
int cb;
int cr;
YCbCr_to_RGB = (uint32_t*)realloc(YCbCr_to_RGB, 256 * 256 * 256 * sizeof(uint32_t));
if (!YCbCr_to_RGB)
return;
for (y = 0; y < 256; y++)
{
for (cb = 0; cb < 256; cb++)
{
for (cr = 0; cr < 256; cr++)
{
double Y = (double)y;
double Cb = (double)cb;
double Cr = (double)cr;
int R = (int)(Y + 1.40200 * (Cr - 0x80));
int G = (int)(Y - 0.34414 * (Cb - 0x80) - 0.71414 * (Cr - 0x80));
int B = (int)(Y + 1.77200 * (Cb - 0x80));
R = max(0, min(255, R));
G = max(0, min(255, G));
B = max(0, min(255, B));
YCbCr_to_RGB[YUV_SHIFT(y, cb, cr)] = RGB_SHIFT(R, G, B);
}
}
}
}
/**
* Converts YUV422 to RGB
* Before first use call generate_YCbCr_to_RGB_lookup();
*
* input is pointer to YUV422 encoded data in following order: Y0, Cb, Y1, Cr.
* output is pointer to 24 bit RGB buffer.
* Output data is written in following order: R1, G1, B1, R2, G2, B2.
*/
// FIXME: Software CPU color conersion from YUV to RGB - we'll make two codepaths
// eventually - GL binding to texture and color conversion through shaders,
// and this approach
static inline void YUV422_to_RGB(uint32_t *output, const uint8_t *input)
{
uint8_t y0 = input[0];
uint8_t cb = input[1];
uint8_t y1 = input[2];
uint8_t cr = input[3];
output[0] = YCbCr_to_RGB[YUV_SHIFT(y0, cb, cr)];
output[1] = YCbCr_to_RGB[YUV_SHIFT(y1, cb, cr)];
}
static void process_image(const void *p)
{
(void)p;
//FIXME - fill in here how we are going to render
//this - could have two codepaths - one for GL
//and one non-GL
#if 0
const uint8_t *buffer_yuv = p;
size_t x;
size_t y;
for (y = 0; y < height; y++)
for (x = 0; x < width; x += 2)
YUV422_to_RGB(buffer_sdl + (y * width + x) * 3,
buffer_yuv + (y * width + x) * 2);
render(data_sf);
#endif
}
static int xioctl(int fd, int request, void *args)
{
int r;
do
{
r = ioctl(fd, request, args);
} while (r == -1 && errno == EINTR);
return r;
}
static int init_mmap(void *data)
{
struct v4l2_requestbuffers req;
video4linux_t *v4l = (video4linux_t*)data;
memset(&req, 0, sizeof(req));
req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_MMAP;
if (xioctl(v4l->fd, VIDIOC_REQBUFS, &req) == -1)
{
if (errno == EINVAL)
{
RARCH_ERR("%s does not support memory mapping.\n", v4l->dev_name);
return -1;
}
else
{
RARCH_ERR("xioctl of VIDIOC_REQBUFS failed.\n");
return -1;
}
}
if (req.count < 2)
{
RARCH_ERR("Insufficient buffer memory on %s.\n", v4l->dev_name);
return -1;
}
v4l->buffers = (struct buffer*)calloc(req.count, sizeof(*v4l->buffers));
if (!v4l->buffers)
{
RARCH_ERR("Out of memory allocating V4L2 buffers.\n");
return -1;
}
for (v4l->n_buffers = 0; v4l->n_buffers < req.count; v4l->n_buffers++)
{
struct v4l2_buffer buf;
memset(&buf, 0, sizeof(buf));
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = v4l->n_buffers;
if (xioctl(v4l->fd, VIDIOC_QUERYBUF, &buf) == -1)
{
RARCH_ERR("Error - xioctl VIDIOC_QUERYBUF.\n");
return -1;
}
v4l->buffers[v4l->n_buffers].length = buf.length;
v4l->buffers[v4l->n_buffers].start = mmap(NULL,
buf.length, PROT_READ | PROT_WRITE,
MAP_SHARED,
v4l->fd, buf.m.offset);
if (v4l->buffers[v4l->n_buffers].start == MAP_FAILED)
{
RARCH_ERR("Error - mmap.\n");
return -1;
}
}
return 0;
}
static int init_device(void *data)
{
struct v4l2_capability cap;
struct v4l2_cropcap cropcap;
struct v4l2_crop crop;
struct v4l2_format fmt;
unsigned min;
video4linux_t *v4l = (video4linux_t*)data;
if (xioctl(v4l->fd, VIDIOC_QUERYCAP, &cap) == -1)
{
if (errno == EINVAL)
{
RARCH_ERR("%s is no V4L2 device.\n", v4l->dev_name);
return -1;
}
else
{
RARCH_ERR("Error - VIDIOC_QUERYCAP.\n");
return -1;
}
}
if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE))
{
RARCH_ERR("%s is no video capture device.\n", v4l->dev_name);
return -1;
}
if (!(cap.capabilities & V4L2_CAP_STREAMING))
{
RARCH_ERR("%s does not support streaming I/O (V4L2_CAP_STREAMING).\n", v4l->dev_name);
return -1;
}
/* Select video input, video standard and tune here. */
memset(&cropcap, 0, sizeof(cropcap));
cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (xioctl(v4l->fd, VIDIOC_CROPCAP, &cropcap) == 0)
{
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
crop.c = cropcap.defrect; /* reset to default */
if (xioctl(v4l->fd, VIDIOC_S_CROP, &crop) == -1)
{
switch (errno)
{
case EINVAL:
/* Cropping not supported. */
break;
default:
/* Errors ignored. */
break;
}
}
}
memset (&fmt, 0, sizeof(fmt));
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.width = v4l->width;
fmt.fmt.pix.height = v4l->height;
// TODO: See if we can use a saner format here.
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;
if (xioctl(v4l->fd, VIDIOC_S_FMT, &fmt) == -1)
{
RARCH_ERR("Error - VIDIOC_S_FMT\n");
return -1;
}
/* Note VIDIOC_S_FMT may change width and height. */
/* Buggy driver paranoia. */
min = fmt.fmt.pix.width * 2;
if (fmt.fmt.pix.bytesperline < min)
fmt.fmt.pix.bytesperline = min;
min = fmt.fmt.pix.bytesperline * fmt.fmt.pix.height;
if (fmt.fmt.pix.sizeimage < min)
fmt.fmt.pix.sizeimage = min;
if (fmt.fmt.pix.width != v4l->width)
v4l->width = fmt.fmt.pix.width;
if (fmt.fmt.pix.height != v4l->height)
v4l->height = fmt.fmt.pix.height;
return init_mmap(v4l);
}
static void v4l_stop(void *data)
{
enum v4l2_buf_type type;
video4linux_t *v4l = (video4linux_t*)data;
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (xioctl(v4l->fd, VIDIOC_STREAMOFF, &type) == -1)
RARCH_ERR("Error - VIDIOC_STREAMOFF.\n");
v4l->ready = false;
}
static bool v4l_start(void *data)
{
video4linux_t *v4l = (video4linux_t*)data;
unsigned i;
enum v4l2_buf_type type;
for (i = 0; i < v4l->n_buffers; i++)
{
struct v4l2_buffer buf;
memset(&buf, 0, sizeof(buf));
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = i;
if (xioctl(v4l->fd, VIDIOC_QBUF, &buf) == -1)
{
RARCH_ERR("Error - VIDIOC_QBUF.\n");
return false;
}
}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (xioctl(v4l->fd, VIDIOC_STREAMON, &type) == -1)
{
RARCH_ERR("Error - VIDIOC_STREAMON.\n");
return false;
}
generate_YCbCr_to_RGB_lookup();
v4l->ready = true;
return true;
}
static void *v4l_init(const char *device, uint64_t caps, unsigned width, unsigned height)
{
struct stat st;
if (!(caps & RETRO_CAMERA_BUFFER_RAW_FRAMEBUFFER))
{
RARCH_ERR("video4linux2 returns raw framebuffers.\n");
return NULL;
}
video4linux_t *v4l = (video4linux_t*)calloc(1, sizeof(video4linux_t));
if (!v4l)
return NULL;
if (device == NULL)
strlcpy(v4l->dev_name, "/dev/video0", sizeof(v4l->dev_name));
else
strlcpy(v4l->dev_name, device, sizeof(v4l->dev_name));
v4l->width = width;
v4l->height = height;
v4l->ready = false;
if (stat(v4l->dev_name, &st) == -1)
{
RARCH_ERR("Cannot identify '%s' : %d, %s\n", v4l->dev_name, errno, strerror(errno));
goto error;
}
if (!S_ISCHR(st.st_mode))
{
RARCH_ERR("%s is no device.\n", v4l->dev_name);
goto error;
}
v4l->fd = open(v4l->dev_name, O_RDWR | O_NONBLOCK, 0);
if (v4l->fd == -1)
{
RARCH_ERR("Cannot open '%s': %d, %s\n", v4l->dev_name, errno, strerror(errno));
goto error;
}
if (init_device(v4l) == -1)
goto error;
return v4l;
error:
RARCH_ERR("V4L2: Failed to initialize camera.\n");
free(v4l);
return NULL;
}
static void v4l_free(void *data)
{
video4linux_t *v4l = (video4linux_t*)data;
unsigned i;
for (i = 0; i < v4l->n_buffers; i++)
if (munmap(v4l->buffers[i].start, v4l->buffers[i].length) == -1)
RARCH_ERR("munmap failed.\n");
if (v4l->fd >= 0)
close(v4l->fd);
free(v4l);
// Assumes one instance. LUT will be gone at some point anyways.
free(YCbCr_to_RGB);
YCbCr_to_RGB = NULL;
}
static bool preprocess_image(void *data)
{
video4linux_t *v4l = (video4linux_t*)data;
struct v4l2_buffer buf;
unsigned i;
memset(&buf, 0, sizeof(buf));
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
if (xioctl(v4l->fd, VIDIOC_DQBUF, &buf) == -1)
{
switch (errno)
{
case EAGAIN:
return false;
case EIO:
/* Could ignore EIO, see spec. */
/* fall through */
default:
RARCH_ERR("VIDIOC_DQBUF.\n");
return false;
}
}
assert(buf.index < v4l->n_buffers);
process_image(v4l->buffers[buf.index].start);
if (xioctl(v4l->fd, VIDIOC_QBUF, &buf) == -1)
RARCH_ERR("VIDIOC_QBUF\n");
return true;
}
static bool v4l_poll(void *data, retro_camera_frame_raw_framebuffer_t frame_raw_cb,
retro_camera_frame_opengl_texture_t frame_gl_cb)
{
video4linux_t *v4l = (video4linux_t*)data;
if (!v4l->ready)
return false;
(void)frame_raw_cb;
(void)frame_gl_cb;
if (preprocess_image(data))
{
// TODO: Call frame_raw_cb() here with updated data if new data was processed.
return true;
}
else
return false;
}
const camera_driver_t camera_v4l2 = {
v4l_init,
v4l_free,
v4l_start,
v4l_stop,
v4l_poll,
"video4linux2",
};