/* RetroArch - A frontend for libretro.
* Copyright (C) 2011-2017 - Daniel De Matteis
* Copyright (C) 2016-2019 - Brad Parker
*
* RetroArch is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with RetroArch.
* If not, see .
*/
#include
#include
#include
#include
#include
#ifdef _WIN32
#include
#else
#include
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef HAVE_CONFIG_H
#include "../core.h"
#endif
#ifdef HAVE_NETWORKING
#include "../network/netplay/netplay.h"
#endif
#ifdef HAVE_CHEEVOS
#include "../cheevos/cheevos.h"
#endif
#include "../content.h"
#include "../core.h"
#include "../file_path_special.h"
#include "../configuration.h"
#include "../msg_hash.h"
#include "../retroarch.h"
#include "../verbosity.h"
#include "tasks_internal.h"
#ifdef HAVE_CHEATS
#include "../cheat_manager.h"
#endif
#if defined(HAVE_LIBNX) || defined(_3DS)
#define SAVE_STATE_CHUNK 4096 * 10
#else
#define SAVE_STATE_CHUNK 4096
#endif
#define RASTATE_VERSION 1
#define RASTATE_MEM_BLOCK "MEM "
#define RASTATE_CHEEVOS_BLOCK "ACHV"
#define RASTATE_END_BLOCK "END "
struct ram_type
{
const char *path;
int type;
};
struct save_state_buf
{
void* data;
size_t size;
char path[PATH_MAX_LENGTH];
};
struct ram_save_state_buf
{
struct save_state_buf state_buf;
bool to_write_file;
};
struct sram_block
{
void *data;
size_t size;
unsigned type;
};
typedef struct
{
intfstream_t *file;
void *data;
void *undo_data;
ssize_t size;
ssize_t undo_size;
ssize_t written;
ssize_t bytes_read;
int state_slot;
char path[PATH_MAX_LENGTH];
bool load_to_backup_buffer;
bool autoload;
bool autosave;
bool undo_save;
bool mute;
bool thumbnail_enable;
bool has_valid_framebuffer;
bool compress_files;
} save_task_state_t;
#ifdef HAVE_THREADS
typedef struct autosave autosave_t;
/* Autosave support. */
struct autosave_st
{
autosave_t **list;
unsigned num;
};
struct autosave
{
void *buffer;
const void *retro_buffer;
const char *path;
slock_t *lock;
slock_t *cond_lock;
scond_t *cond;
sthread_t *thread;
size_t bufsize;
unsigned interval;
volatile bool quit;
bool compress_files;
};
#endif
typedef save_task_state_t load_task_data_t;
/* Holds the previous saved state
* Can be restored to disk with undo_save_state(). */
/* TODO/FIXME - global state - perhaps move outside this file */
static struct save_state_buf undo_save_buf;
/* Holds the data from before a load_state() operation
* Can be restored with undo_load_state(). */
static struct save_state_buf undo_load_buf;
/* Buffer that stores state instead of file.
* This is useful for devices with slow I/O. */
static struct ram_save_state_buf ram_buf;
#ifdef HAVE_THREADS
/* TODO/FIXME - global state - perhaps move outside this file */
static struct autosave_st autosave_state;
#endif
/* TODO/FIXME - global state - perhaps move outside this file */
static bool save_state_in_background = false;
static struct string_list *task_save_files = NULL;
typedef struct rastate_size_info
{
size_t total_size;
size_t coremem_size;
#ifdef HAVE_CHEEVOS
size_t cheevos_size;
#endif
} rastate_size_info_t;
#ifdef HAVE_THREADS
/**
* autosave_thread:
* @data : pointer to autosave object
*
* Callback function for (threaded) autosave.
**/
static void autosave_thread(void *data)
{
autosave_t *save = (autosave_t*)data;
while (!save->quit)
{
bool differ;
slock_lock(save->lock);
differ = string_is_not_equal_fast(save->buffer, save->retro_buffer,
save->bufsize);
if (differ)
memcpy(save->buffer, save->retro_buffer, save->bufsize);
slock_unlock(save->lock);
if (differ)
{
intfstream_t *file = NULL;
/* Should probably deal with this more elegantly. */
if (save->compress_files)
file = intfstream_open_rzip_file(save->path,
RETRO_VFS_FILE_ACCESS_WRITE);
else
file = intfstream_open_file(save->path,
RETRO_VFS_FILE_ACCESS_WRITE, RETRO_VFS_FILE_ACCESS_HINT_NONE);
if (file)
{
intfstream_write(file, save->buffer, save->bufsize);
intfstream_flush(file);
intfstream_close(file);
free(file);
}
}
slock_lock(save->cond_lock);
if (!save->quit)
{
#if defined(_MSC_VER) && _MSC_VER <= 1200
int64_t timeout_us = 1000000;
#else
int64_t timeout_us = 1000000LL;
#endif
scond_wait_timeout(save->cond, save->cond_lock,
save->interval * timeout_us);
}
slock_unlock(save->cond_lock);
}
}
/**
* autosave_new:
* @path : path to autosave file
* @data : pointer to buffer
* @size : size of @data buffer
* @interval : interval at which saves should be performed.
*
* Create and initialize autosave object.
*
* Returns: pointer to new autosave_t object if successful, otherwise
* NULL.
**/
static autosave_t *autosave_new(const char *path,
const void *data, size_t size,
unsigned interval, bool compress)
{
void *buf = NULL;
autosave_t *handle = (autosave_t*)malloc(sizeof(*handle));
if (!handle)
return NULL;
handle->quit = false;
handle->bufsize = size;
handle->interval = interval;
handle->compress_files = compress;
handle->retro_buffer = data;
handle->path = path;
buf = malloc(size);
if (!buf)
{
free(handle);
return NULL;
}
handle->buffer = buf;
memcpy(handle->buffer, handle->retro_buffer, handle->bufsize);
handle->lock = slock_new();
handle->cond_lock = slock_new();
handle->cond = scond_new();
handle->thread = sthread_create(autosave_thread, handle);
return handle;
}
/**
* autosave_free:
* @handle : pointer to autosave object
*
* Frees autosave object.
**/
static void autosave_free(autosave_t *handle)
{
slock_lock(handle->cond_lock);
handle->quit = true;
slock_unlock(handle->cond_lock);
scond_signal(handle->cond);
sthread_join(handle->thread);
slock_free(handle->lock);
slock_free(handle->cond_lock);
scond_free(handle->cond);
if (handle->buffer)
free(handle->buffer);
handle->buffer = NULL;
}
bool autosave_init(void)
{
unsigned i;
autosave_t **list = NULL;
settings_t *settings = config_get_ptr();
unsigned autosave_interval = settings->uints.autosave_interval;
#if defined(HAVE_ZLIB)
bool compress_files = settings->bools.save_file_compression;
#else
bool compress_files = false;
#endif
if (autosave_interval < 1 || !task_save_files)
return false;
list = (autosave_t**)
calloc(task_save_files->size,
sizeof(*autosave_state.list));
if (!list)
return false;
autosave_state.list = list;
autosave_state.num = (unsigned)task_save_files->size;
for (i = 0; i < task_save_files->size; i++)
{
retro_ctx_memory_info_t mem_info;
autosave_t *auto_st = NULL;
const char *path = task_save_files->elems[i].data;
unsigned type = task_save_files->elems[i].attr.i;
mem_info.id = type;
core_get_memory(&mem_info);
if (mem_info.size <= 0)
continue;
auto_st = autosave_new(path,
mem_info.data,
mem_info.size,
autosave_interval,
compress_files);
if (!auto_st)
{
RARCH_WARN("%s\n", msg_hash_to_str(MSG_AUTOSAVE_FAILED));
continue;
}
autosave_state.list[i] = auto_st;
}
return true;
}
void autosave_deinit(void)
{
unsigned i;
for (i = 0; i < autosave_state.num; i++)
{
autosave_t *handle = autosave_state.list[i];
if (handle)
{
autosave_free(handle);
free(autosave_state.list[i]);
}
autosave_state.list[i] = NULL;
}
free(autosave_state.list);
autosave_state.list = NULL;
autosave_state.num = 0;
}
/**
* autosave_lock:
*
* Lock autosave.
**/
void autosave_lock(void)
{
unsigned i;
for (i = 0; i < autosave_state.num; i++)
{
autosave_t *handle = autosave_state.list[i];
if (handle)
slock_lock(handle->lock);
}
}
/**
* autosave_unlock:
*
* Unlocks autosave.
**/
void autosave_unlock(void)
{
unsigned i;
for (i = 0; i < autosave_state.num; i++)
{
autosave_t *handle = autosave_state.list[i];
if (handle)
slock_unlock(handle->lock);
}
}
#endif
/**
* undo_load_state:
* Revert to the state before a state was loaded.
*
* Returns: true if successful, false otherwise.
**/
bool content_undo_load_state(void)
{
unsigned i;
size_t temp_data_size;
bool ret = false;
unsigned num_blocks = 0;
void* temp_data = NULL;
struct sram_block *blocks = NULL;
settings_t *settings = config_get_ptr();
bool block_sram_overwrite = settings->bools.block_sram_overwrite;
RARCH_LOG("[State]: %s \"%s\", %u %s.\n",
msg_hash_to_str(MSG_LOADING_STATE),
undo_load_buf.path,
(unsigned)undo_load_buf.size,
msg_hash_to_str(MSG_BYTES));
/* TODO/FIXME - This checking of SRAM overwrite,
* the backing up of it and
* its flushing could all be in their
* own functions... */
if (block_sram_overwrite && task_save_files
&& task_save_files->size)
{
RARCH_LOG("[SRAM]: %s.\n",
msg_hash_to_str(MSG_BLOCKING_SRAM_OVERWRITE));
blocks = (struct sram_block*)
calloc(task_save_files->size, sizeof(*blocks));
if (blocks)
{
num_blocks = (unsigned)task_save_files->size;
for (i = 0; i < num_blocks; i++)
blocks[i].type = task_save_files->elems[i].attr.i;
}
}
for (i = 0; i < num_blocks; i++)
{
retro_ctx_memory_info_t mem_info;
mem_info.id = blocks[i].type;
core_get_memory(&mem_info);
blocks[i].size = mem_info.size;
}
for (i = 0; i < num_blocks; i++)
if (blocks[i].size)
blocks[i].data = malloc(blocks[i].size);
/* Backup current SRAM which is overwritten by unserialize. */
for (i = 0; i < num_blocks; i++)
{
if (blocks[i].data)
{
retro_ctx_memory_info_t mem_info;
const void *ptr = NULL;
mem_info.id = blocks[i].type;
core_get_memory(&mem_info);
ptr = mem_info.data;
if (ptr)
memcpy(blocks[i].data, ptr, blocks[i].size);
}
}
/* We need to make a temporary copy of the buffer, to allow the swap below */
temp_data = malloc(undo_load_buf.size);
temp_data_size = undo_load_buf.size;
memcpy(temp_data, undo_load_buf.data, undo_load_buf.size);
/* Swap the current state with the backup state. This way, we can undo
what we're undoing */
content_save_state("RAM", false, false);
ret = content_deserialize_state(temp_data, temp_data_size);
/* Clean up the temporary copy */
free(temp_data);
temp_data = NULL;
/* Flush back. */
for (i = 0; i < num_blocks; i++)
{
if (blocks[i].data)
{
retro_ctx_memory_info_t mem_info;
void *ptr = NULL;
mem_info.id = blocks[i].type;
core_get_memory(&mem_info);
ptr = mem_info.data;
if (ptr)
memcpy(ptr, blocks[i].data, blocks[i].size);
}
}
for (i = 0; i < num_blocks; i++)
free(blocks[i].data);
free(blocks);
if (!ret)
{
RARCH_ERR("[State]: %s \"%s\".\n",
msg_hash_to_str(MSG_FAILED_TO_UNDO_LOAD_STATE),
undo_load_buf.path);
}
return ret;
}
static void undo_save_state_cb(retro_task_t *task,
void *task_data,
void *user_data, const char *error)
{
save_task_state_t *state = (save_task_state_t*)task_data;
/* Wipe the save file buffer as it's intended to be one use only */
undo_save_buf.path[0] = '\0';
undo_save_buf.size = 0;
if (undo_save_buf.data)
{
free(undo_save_buf.data);
undo_save_buf.data = NULL;
}
free(state);
}
/**
* task_save_handler_finished:
* @task : the task to finish
* @state : the state associated with this task
*
* Close the save state file and finish the task.
**/
static void task_save_handler_finished(retro_task_t *task,
save_task_state_t *state)
{
save_task_state_t *task_data = NULL;
task_set_finished(task, true);
intfstream_close(state->file);
free(state->file);
if (!task_get_error(task) && task_get_cancelled(task))
task_set_error(task, strdup("Task canceled"));
task_data = (save_task_state_t*)calloc(1, sizeof(*task_data));
memcpy(task_data, state, sizeof(*state));
task_set_data(task, task_data);
if (state->data)
{
if (state->undo_save && state->data == undo_save_buf.data)
undo_save_buf.data = NULL;
free(state->data);
state->data = NULL;
}
free(state);
}
static size_t content_align_size(size_t size)
{
/* align to 8-byte boundary */
return ((size + 7) & ~7);
}
static bool content_get_rastate_size(rastate_size_info_t* size)
{
retro_ctx_size_info_t info;
core_serialize_size(&info);
if (!info.size)
return false;
size->coremem_size = info.size;
/* 8-byte identifier, 8-byte block header, content, 8-byte terminator */
size->total_size = 8 + 8 + content_align_size(info.size) + 8;
#ifdef HAVE_CHEEVOS
size->cheevos_size = rcheevos_get_serialize_size();
if (size->cheevos_size > 0)
size->total_size += 8 + content_align_size(size->cheevos_size); /* 8-byte block header + content */
#endif
return true;
}
size_t content_get_serialized_size(void)
{
rastate_size_info_t size;
if (!content_get_rastate_size(&size))
return 0;
return size.total_size;
}
static void content_write_block_header(unsigned char* output, const char* header, size_t size)
{
memcpy(output, header, 4);
output[4] = ((size) & 0xFF);
output[5] = ((size >> 8) & 0xFF);
output[6] = ((size >> 16) & 0xFF);
output[7] = ((size >> 24) & 0xFF);
}
static bool content_write_serialized_state(void* buffer, rastate_size_info_t* size)
{
retro_ctx_serialize_info_t serial_info;
unsigned char* output = (unsigned char*)buffer;
/* 8-byte identifier "RASTATE1" where 1 is the version */
memcpy(output, "RASTATE", 7);
output[7] = RASTATE_VERSION;
output += 8;
/* important - write the unaligned size - some cores fail if they aren't passed the exact right size. */
content_write_block_header(output, RASTATE_MEM_BLOCK, size->coremem_size);
output += 8;
/* important - pass the unaligned size to the core. some fail if it isn't exactly what they're expecting. */
serial_info.size = size->coremem_size;
serial_info.data = (void*)output;
if (!core_serialize(&serial_info))
return false;
output += content_align_size(size->coremem_size);
#ifdef HAVE_CHEEVOS
if (size->cheevos_size)
{
content_write_block_header(output, RASTATE_CHEEVOS_BLOCK, size->cheevos_size);
if (rcheevos_get_serialized_data(output + 8))
output += content_align_size(size->cheevos_size) + 8;
}
#endif
content_write_block_header(output, RASTATE_END_BLOCK, 0);
return true;
}
bool content_serialize_state(void* buffer, size_t buffer_size)
{
rastate_size_info_t size;
if (!content_get_rastate_size(&size))
return false;
if (size.total_size > buffer_size)
return false;
return content_write_serialized_state(buffer, &size);
}
static void *content_get_serialized_data(size_t* serial_size)
{
void* data;
rastate_size_info_t size;
if (!content_get_rastate_size(&size))
return NULL;
/* Ensure buffer is initialised to zero
* > Prevents inconsistent compressed state file
* sizes when core requests a larger buffer
* than it needs (and leaves the excess
* as uninitialised garbage) */
data = calloc(size.total_size, 1);
if (!data)
return NULL;
if (!content_write_serialized_state(data, &size))
{
free(data);
return NULL;
}
*serial_size = size.total_size;
return data;
}
/**
* task_save_handler:
* @task : the task being worked on
*
* Write a chunk of data to the save state file.
**/
static void task_save_handler(retro_task_t *task)
{
int written;
ssize_t remaining;
save_task_state_t *state = (save_task_state_t*)task->state;
if (!state->file)
{
if (state->compress_files)
state->file = intfstream_open_rzip_file(
state->path, RETRO_VFS_FILE_ACCESS_WRITE);
else
state->file = intfstream_open_file(
state->path, RETRO_VFS_FILE_ACCESS_WRITE,
RETRO_VFS_FILE_ACCESS_HINT_NONE);
if (!state->file)
return;
}
if (!state->data)
{
size_t size = 0;
state->data = content_get_serialized_data(&size);
state->size = (ssize_t)size;
}
remaining = MIN(state->size - state->written, SAVE_STATE_CHUNK);
if (state->data)
written = (int)intfstream_write(state->file,
(uint8_t*)state->data + state->written, remaining);
else
written = 0;
state->written += written;
task_set_progress(task, (state->written / (float)state->size) * 100);
if (task_get_cancelled(task) || written != remaining)
{
size_t err_size = 8192 * sizeof(char);
char *err = (char*)malloc(err_size);
err[0] = '\0';
if (state->undo_save)
{
RARCH_ERR("[State]: %s \"%s\".\n",
msg_hash_to_str(MSG_FAILED_TO_UNDO_SAVE_STATE),
undo_save_buf.path);
snprintf(err, err_size - 1, "%s \"%s\".",
msg_hash_to_str(MSG_FAILED_TO_UNDO_SAVE_STATE),
"RAM");
}
else
snprintf(err, err_size - 1,
"%s %s",
msg_hash_to_str(MSG_FAILED_TO_SAVE_STATE_TO), state->path);
task_set_error(task, strdup(err));
free(err);
task_save_handler_finished(task, state);
return;
}
if (state->written == state->size)
{
char *msg = NULL;
task_free_title(task);
if (state->undo_save)
msg = strdup(msg_hash_to_str(MSG_RESTORED_OLD_SAVE_STATE));
else if (state->state_slot < 0)
msg = strdup(msg_hash_to_str(MSG_SAVED_STATE_TO_SLOT_AUTO));
else
{
char new_msg[128];
new_msg[0] = '\0';
snprintf(new_msg, sizeof(new_msg), msg_hash_to_str(MSG_SAVED_STATE_TO_SLOT),
state->state_slot);
msg = strdup(new_msg);
}
if (!task_get_mute(task) && msg)
{
task_set_title(task, msg);
msg = NULL;
}
task_save_handler_finished(task, state);
if (!string_is_empty(msg))
free(msg);
return;
}
}
/**
* task_push_undo_save_state:
* @path : file path of the save state
* @data : the save state data to write
* @size : the total size of the save state
*
* Create a new task to undo the last save of the content state.
**/
static bool task_push_undo_save_state(const char *path, void *data, size_t size)
{
retro_task_t *task = task_init();
save_task_state_t *state = (save_task_state_t*)calloc(1, sizeof(*state));
settings_t *settings = config_get_ptr();
#if defined(HAVE_ZLIB)
bool compress_files = settings->bools.savestate_file_compression;
#else
bool compress_files = false;
#endif
if (!task || !state)
goto error;
strlcpy(state->path, path, sizeof(state->path));
state->data = data;
state->size = size;
state->undo_save = true;
state->state_slot = settings->ints.state_slot;
state->has_valid_framebuffer = video_driver_cached_frame_has_valid_framebuffer();
state->compress_files = compress_files;
task->type = TASK_TYPE_BLOCKING;
task->state = state;
task->handler = task_save_handler;
task->callback = undo_save_state_cb;
task->title = strdup(msg_hash_to_str(MSG_UNDOING_SAVE_STATE));
task_queue_push(task);
return true;
error:
if (data)
free(data);
if (state)
free(state);
if (task)
free(task);
return false;
}
/**
* undo_save_state:
* Reverts the last save operation
*
* Returns: true if successful, false otherwise.
**/
bool content_undo_save_state(void)
{
return task_push_undo_save_state(undo_save_buf.path,
undo_save_buf.data,
undo_save_buf.size);
}
/**
* task_load_handler_finished:
* @task : the task to finish
* @state : the state associated with this task
*
* Close the loaded state file and finish the task.
**/
static void task_load_handler_finished(retro_task_t *task,
save_task_state_t *state)
{
load_task_data_t *task_data = NULL;
task_set_finished(task, true);
if (state->file)
{
intfstream_close(state->file);
free(state->file);
}
if (!task_get_error(task) && task_get_cancelled(task))
task_set_error(task, strdup("Task canceled"));
task_data = (load_task_data_t*)calloc(1, sizeof(*task_data));
if (!task_data)
return;
memcpy(task_data, state, sizeof(*task_data));
task_set_data(task, task_data);
free(state);
}
/**
* task_load_handler:
* @task : the task being worked on
*
* Load a chunk of data from the save state file.
**/
static void task_load_handler(retro_task_t *task)
{
ssize_t remaining, bytes_read;
save_task_state_t *state = (save_task_state_t*)task->state;
if (!state->file)
{
#if defined(HAVE_ZLIB)
/* Always use RZIP interface when reading state
* files - this will automatically handle uncompressed
* data */
state->file = intfstream_open_rzip_file(state->path,
RETRO_VFS_FILE_ACCESS_READ);
#else
state->file = intfstream_open_file(state->path,
RETRO_VFS_FILE_ACCESS_READ,
RETRO_VFS_FILE_ACCESS_HINT_NONE);
#endif
if (!state->file)
goto end;
state->size = intfstream_get_size(state->file);
if (state->size < 0)
goto end;
state->data = malloc(state->size + 1);
if (!state->data)
goto end;
}
#ifdef HAVE_CHEEVOS
if (rcheevos_hardcore_active())
task_set_cancelled(task, true);
#endif
remaining = MIN(state->size - state->bytes_read, SAVE_STATE_CHUNK);
bytes_read = intfstream_read(state->file,
(uint8_t*)state->data + state->bytes_read, remaining);
state->bytes_read += bytes_read;
if (state->size > 0)
task_set_progress(task, (state->bytes_read / (float)state->size) * 100);
if (task_get_cancelled(task) || bytes_read != remaining)
{
if (state->autoload)
{
char *msg = (char*)malloc(8192 * sizeof(char));
msg[0] = '\0';
snprintf(msg,
8192 * sizeof(char),
msg_hash_to_str(MSG_AUTOLOADING_SAVESTATE_FAILED),
state->path);
task_set_error(task, strdup(msg));
free(msg);
}
else
task_set_error(task, strdup(msg_hash_to_str(MSG_FAILED_TO_LOAD_STATE)));
free(state->data);
state->data = NULL;
task_load_handler_finished(task, state);
return;
}
if (state->bytes_read == state->size)
{
task_free_title(task);
if (!task_get_mute(task))
{
size_t msg_size = 8192 * sizeof(char);
char *msg = (char*)malloc(msg_size);
msg[0] = '\0';
if (state->autoload)
snprintf(msg, msg_size - 1,
msg_hash_to_str(MSG_AUTOLOADING_SAVESTATE_SUCCEEDED),
state->path);
else
{
if (state->state_slot < 0)
strlcpy(msg, msg_hash_to_str(MSG_LOADED_STATE_FROM_SLOT_AUTO),
msg_size - 1);
else
snprintf(msg, msg_size - 1,
msg_hash_to_str(MSG_LOADED_STATE_FROM_SLOT),
state->state_slot);
}
task_set_title(task, strdup(msg));
free(msg);
}
goto end;
}
return;
end:
task_load_handler_finished(task, state);
}
static bool content_load_rastate1(unsigned char* input, size_t size)
{
unsigned char* stop = input + size;
unsigned char* marker;
bool seen_core = false;
#ifdef HAVE_CHEEVOS
bool seen_cheevos = false;
#endif
input += 8;
while (input < stop)
{
size_t block_size = (input[7] << 24 | input[6] << 16 | input[5] << 8 | input[4]);
marker = input;
input += 8;
if (memcmp(marker, RASTATE_MEM_BLOCK, 4) == 0)
{
retro_ctx_serialize_info_t serial_info;
serial_info.data_const = (void*)input;
serial_info.size = block_size;
if (!core_unserialize(&serial_info))
return false;
seen_core = true;
}
#ifdef HAVE_CHEEVOS
else if (memcmp(marker, RASTATE_CHEEVOS_BLOCK, 4) == 0)
{
if (rcheevos_set_serialized_data((void*)input))
seen_cheevos = true;
}
#endif
else if (memcmp(marker, RASTATE_END_BLOCK, 4) == 0)
{
break;
}
input += content_align_size(block_size);
}
if (!seen_core)
return false;
#ifdef HAVE_CHEEVOS
if (!seen_cheevos)
rcheevos_set_serialized_data(NULL);
#endif
return true;
}
bool content_deserialize_state(const void* serialized_data, size_t serialized_size)
{
if (memcmp(serialized_data, "RASTATE", 7) != 0)
{
/* old format is just core data, load it directly */
retro_ctx_serialize_info_t serial_info;
serial_info.data_const = serialized_data;
serial_info.size = serialized_size;
if (!core_unserialize(&serial_info))
return false;
#ifdef HAVE_CHEEVOS
rcheevos_set_serialized_data(NULL);
#endif
}
else
{
unsigned char* input = (unsigned char*)serialized_data;
switch (input[7]) /* version */
{
case 1:
if (!content_load_rastate1(input, serialized_size))
return false;
break;
default:
return false;
}
}
return true;
}
/**
* content_load_state_cb:
* @path : path that state will be loaded from.
* Load a state from disk to memory.
*
**/
static void content_load_state_cb(retro_task_t *task,
void *task_data,
void *user_data, const char *error)
{
unsigned i;
bool ret;
load_task_data_t *load_data = (load_task_data_t*)task_data;
ssize_t size = load_data->size;
unsigned num_blocks = 0;
void *buf = load_data->data;
struct sram_block *blocks = NULL;
settings_t *settings = config_get_ptr();
bool block_sram_overwrite = settings->bools.block_sram_overwrite;
#ifdef HAVE_CHEEVOS
if (rcheevos_hardcore_active())
goto error;
#endif
RARCH_LOG("[State]: %s \"%s\", %u %s.\n",
msg_hash_to_str(MSG_LOADING_STATE),
load_data->path,
(unsigned)size,
msg_hash_to_str(MSG_BYTES));
if (size < 0 || !buf)
goto error;
/* This means we're backing up the file in memory,
* so content_undo_save_state()
* can restore it */
if (load_data->load_to_backup_buffer)
{
/* If we were previously backing up a file, let go of it first */
if (undo_save_buf.data)
{
free(undo_save_buf.data);
undo_save_buf.data = NULL;
}
undo_save_buf.data = malloc(size);
if (!undo_save_buf.data)
goto error;
memcpy(undo_save_buf.data, buf, size);
undo_save_buf.size = size;
strlcpy(undo_save_buf.path, load_data->path, sizeof(undo_save_buf.path));
free(buf);
free(load_data);
return;
}
if (block_sram_overwrite && task_save_files
&& task_save_files->size)
{
RARCH_LOG("[SRAM]: %s.\n",
msg_hash_to_str(MSG_BLOCKING_SRAM_OVERWRITE));
blocks = (struct sram_block*)
calloc(task_save_files->size, sizeof(*blocks));
if (blocks)
{
num_blocks = (unsigned)task_save_files->size;
for (i = 0; i < num_blocks; i++)
blocks[i].type = task_save_files->elems[i].attr.i;
}
}
for (i = 0; i < num_blocks; i++)
{
retro_ctx_memory_info_t mem_info;
mem_info.id = blocks[i].type;
core_get_memory(&mem_info);
blocks[i].size = mem_info.size;
}
for (i = 0; i < num_blocks; i++)
if (blocks[i].size)
blocks[i].data = malloc(blocks[i].size);
/* Backup current SRAM which is overwritten by unserialize. */
for (i = 0; i < num_blocks; i++)
{
if (blocks[i].data)
{
retro_ctx_memory_info_t mem_info;
const void *ptr = NULL;
mem_info.id = blocks[i].type;
core_get_memory(&mem_info);
ptr = mem_info.data;
if (ptr)
memcpy(blocks[i].data, ptr, blocks[i].size);
}
}
/* Backup the current state so we can undo this load */
content_save_state("RAM", false, false);
ret = content_deserialize_state(buf, size);
/* Flush back. */
for (i = 0; i < num_blocks; i++)
{
if (blocks[i].data)
{
retro_ctx_memory_info_t mem_info;
void *ptr = NULL;
mem_info.id = blocks[i].type;
core_get_memory(&mem_info);
ptr = mem_info.data;
if (ptr)
memcpy(ptr, blocks[i].data, blocks[i].size);
}
}
for (i = 0; i < num_blocks; i++)
free(blocks[i].data);
free(blocks);
if (!ret)
goto error;
free(buf);
free(load_data);
return;
error:
RARCH_ERR("[State]: %s \"%s\".\n",
msg_hash_to_str(MSG_FAILED_TO_LOAD_STATE),
load_data->path);
if (buf)
free(buf);
free(load_data);
}
/**
* save_state_cb:
*
* Called after the save state is done. Takes a screenshot if needed.
**/
static void save_state_cb(retro_task_t *task,
void *task_data,
void *user_data, const char *error)
{
save_task_state_t *state = (save_task_state_t*)task_data;
#ifdef HAVE_SCREENSHOTS
char *path = strdup(state->path);
settings_t *settings = config_get_ptr();
const char *dir_screenshot = settings->paths.directory_screenshot;
if (state->thumbnail_enable)
take_screenshot(dir_screenshot,
path, true, state->has_valid_framebuffer, false, true);
free(path);
#endif
free(state);
}
/**
* task_push_save_state:
* @path : file path of the save state
* @data : the save state data to write
* @size : the total size of the save state
*
* Create a new task to save the content state.
**/
static void task_push_save_state(const char *path, void *data, size_t size, bool autosave)
{
retro_task_t *task = task_init();
save_task_state_t *state = (save_task_state_t*)calloc(1, sizeof(*state));
settings_t *settings = config_get_ptr();
bool savestate_thumbnail_enable = settings->bools.savestate_thumbnail_enable;
int state_slot = settings->ints.state_slot;
#if defined(HAVE_ZLIB)
bool compress_files = settings->bools.savestate_file_compression;
#else
bool compress_files = false;
#endif
if (!task || !state)
goto error;
strlcpy(state->path, path, sizeof(state->path));
state->data = data;
state->size = size;
state->autosave = autosave;
state->mute = autosave; /* don't show OSD messages if we are auto-saving */
state->thumbnail_enable = savestate_thumbnail_enable;
state->state_slot = state_slot;
state->has_valid_framebuffer = video_driver_cached_frame_has_valid_framebuffer();
state->compress_files = compress_files;
task->type = TASK_TYPE_BLOCKING;
task->state = state;
task->handler = task_save_handler;
task->callback = save_state_cb;
task->title = strdup(msg_hash_to_str(MSG_SAVING_STATE));
task->mute = state->mute;
if (!task_queue_push(task))
{
/* Another blocking task is already active. */
if (data)
free(data);
if (task->title)
task_free_title(task);
free(task);
free(state);
}
return;
error:
if (data)
free(data);
if (state)
free(state);
if (task)
{
if (task->title)
task_free_title(task);
free(task);
}
}
/**
* content_load_and_save_state_cb:
* @path : path that state will be loaded from.
* Load then save a state.
*
**/
static void content_load_and_save_state_cb(retro_task_t *task,
void *task_data,
void *user_data, const char *error)
{
load_task_data_t *load_data = (load_task_data_t*)task_data;
char *path = strdup(load_data->path);
void *data = load_data->undo_data;
size_t size = load_data->undo_size;
bool autosave = load_data->autosave;
content_load_state_cb(task, task_data, user_data, error);
task_push_save_state(path, data, size, autosave);
free(path);
}
/**
* task_push_load_and_save_state:
* @path : file path of the save state
* @data : the save state data to write
* @size : the total size of the save state
* @load_to_backup_buffer : If true, the state will be loaded into undo_save_buf.
*
* Create a new task to load current state first into a backup buffer (for undo)
* and then save the content state.
**/
static void task_push_load_and_save_state(const char *path, void *data,
size_t size, bool load_to_backup_buffer, bool autosave)
{
retro_task_t *task = NULL;
settings_t *settings = config_get_ptr();
int state_slot = settings->ints.state_slot;
#if defined(HAVE_ZLIB)
bool compress_files = settings->bools.savestate_file_compression;
#else
bool compress_files = false;
#endif
save_task_state_t *state = (save_task_state_t*)
calloc(1, sizeof(*state));
if (!state)
return;
task = task_init();
if (!task)
{
free(state);
return;
}
strlcpy(state->path, path, sizeof(state->path));
state->load_to_backup_buffer = load_to_backup_buffer;
state->undo_size = size;
state->undo_data = data;
state->autosave = autosave;
state->mute = autosave; /* don't show OSD messages if we
are auto-saving */
if (load_to_backup_buffer)
state->mute = true;
state->state_slot = state_slot;
state->has_valid_framebuffer =
video_driver_cached_frame_has_valid_framebuffer();
state->compress_files = compress_files;
task->state = state;
task->type = TASK_TYPE_BLOCKING;
task->handler = task_load_handler;
task->callback = content_load_and_save_state_cb;
task->title = strdup(msg_hash_to_str(MSG_LOADING_STATE));
task->mute = state->mute;
if (!task_queue_push(task))
{
/* Another blocking task is already active. */
if (data)
free(data);
if (task->title)
task_free_title(task);
free(task);
free(state);
}
}
/**
* content_save_state:
* @path : path of saved state that shall be written to.
* @save_to_disk: If false, saves the state onto undo_load_buf.
* Save a state from memory to disk.
*
* Returns: true if successful, false otherwise.
**/
bool content_save_state(const char *path, bool save_to_disk, bool autosave)
{
retro_ctx_size_info_t info;
void *data = NULL;
size_t serial_size;
core_serialize_size(&info);
if (info.size == 0)
return false;
serial_size = info.size;
if (!save_state_in_background)
{
data = content_get_serialized_data(&serial_size);
if (!data)
{
RARCH_ERR("[State]: %s \"%s\".\n",
msg_hash_to_str(MSG_FAILED_TO_SAVE_STATE_TO),
path);
return false;
}
RARCH_LOG("[State]: %s \"%s\", %u %s.\n",
msg_hash_to_str(MSG_SAVING_STATE),
path,
(unsigned)serial_size,
msg_hash_to_str(MSG_BYTES));
}
if (save_to_disk)
{
if (path_is_valid(path) && !autosave)
{
/* Before overwriting the savestate file, load it into a buffer
to allow undo_save_state() to work */
/* TODO/FIXME - Use msg_hash_to_str here */
RARCH_LOG("[State]: %s ...\n",
msg_hash_to_str(MSG_FILE_ALREADY_EXISTS_SAVING_TO_BACKUP_BUFFER));
task_push_load_and_save_state(path, data, serial_size, true, autosave);
}
else
task_push_save_state(path, data, serial_size, autosave);
}
else
{
if (!data)
data = content_get_serialized_data(&serial_size);
if (!data)
{
RARCH_ERR("[State]: %s \"%s\".\n",
msg_hash_to_str(MSG_FAILED_TO_SAVE_STATE_TO),
path);
return false;
}
/* save_to_disk is false, which means we are saving the state
in undo_load_buf to allow content_undo_load_state() to restore it */
/* If we were holding onto an old state already, clean it up first */
if (undo_load_buf.data)
{
free(undo_load_buf.data);
undo_load_buf.data = NULL;
}
undo_load_buf.data = malloc(serial_size);
if (!undo_load_buf.data)
{
free(data);
return false;
}
memcpy(undo_load_buf.data, data, serial_size);
free(data);
undo_load_buf.size = serial_size;
strlcpy(undo_load_buf.path, path, sizeof(undo_load_buf.path));
}
return true;
}
/**
* content_ram_state_pending:
* Check a ram state write to disk.
*
* Returns: true if need to write, false otherwise.
**/
bool content_ram_state_pending(void)
{
return ram_buf.to_write_file;
}
static bool task_save_state_finder(retro_task_t *task, void *user_data)
{
if (!task)
return false;
if (task->handler == task_save_handler)
return true;
return false;
}
/* Returns true if a save state task is in progress */
static bool content_save_state_in_progress(void* data)
{
task_finder_data_t find_data;
find_data.func = task_save_state_finder;
find_data.userdata = NULL;
if (task_queue_find(&find_data))
return true;
return false;
}
void content_wait_for_save_state_task(void)
{
task_queue_wait(content_save_state_in_progress, NULL);
}
/**
* content_load_state:
* @path : path that state will be loaded from.
* @load_to_backup_buffer: If true, the state will be loaded into undo_save_buf.
* Load a state from disk to memory.
*
* Returns: true if successful, false otherwise.
*
*
**/
bool content_load_state(const char *path,
bool load_to_backup_buffer, bool autoload)
{
retro_task_t *task = task_init();
save_task_state_t *state = (save_task_state_t*)calloc(1, sizeof(*state));
settings_t *settings = config_get_ptr();
int state_slot = settings->ints.state_slot;
#if defined(HAVE_ZLIB)
bool compress_files = settings->bools.savestate_file_compression;
#else
bool compress_files = false;
#endif
if (!task || !state)
goto error;
strlcpy(state->path, path, sizeof(state->path));
state->load_to_backup_buffer = load_to_backup_buffer;
state->autoload = autoload;
state->state_slot = state_slot;
state->has_valid_framebuffer =
video_driver_cached_frame_has_valid_framebuffer();
state->compress_files = compress_files;
task->type = TASK_TYPE_BLOCKING;
task->state = state;
task->handler = task_load_handler;
task->callback = content_load_state_cb;
task->title = strdup(msg_hash_to_str(MSG_LOADING_STATE));
task_queue_push(task);
return true;
error:
if (state)
free(state);
if (task)
free(task);
return false;
}
bool content_rename_state(const char *origin, const char *dest)
{
int ret = 0;
if (filestream_exists(dest))
filestream_delete(dest);
ret = filestream_rename(origin, dest);
if (!ret)
return true;
RARCH_ERR("[State]: Error %d renaming file \"%s\".\n", ret, origin);
return false;
}
/*
*
* TODO/FIXME: Figure out when and where this should be called.
* As it is, when e.g. closing Gambatte, we get the
* same printf message 4 times.
*/
bool content_reset_savestate_backups(void)
{
if (undo_save_buf.data)
{
free(undo_save_buf.data);
undo_save_buf.data = NULL;
}
undo_save_buf.path[0] = '\0';
undo_save_buf.size = 0;
if (undo_load_buf.data)
{
free(undo_load_buf.data);
undo_load_buf.data = NULL;
}
undo_load_buf.path[0] = '\0';
undo_load_buf.size = 0;
if (ram_buf.state_buf.data)
{
free(ram_buf.state_buf.data);
ram_buf.state_buf.data = NULL;
}
ram_buf.state_buf.path[0] = '\0';
ram_buf.state_buf.size = 0;
ram_buf.to_write_file = false;
return true;
}
bool content_undo_load_buf_is_empty(void)
{
return undo_load_buf.data == NULL || undo_load_buf.size == 0;
}
bool content_undo_save_buf_is_empty(void)
{
return undo_save_buf.data == NULL || undo_save_buf.size == 0;
}
static bool content_get_memory(retro_ctx_memory_info_t *mem_info,
struct ram_type *ram, unsigned slot)
{
ram->type = task_save_files->elems[slot].attr.i;
ram->path = task_save_files->elems[slot].data;
mem_info->id = ram->type;
core_get_memory(mem_info);
if (!mem_info->data || mem_info->size == 0)
return false;
return true;
}
/**
* content_load_ram_file:
* @path : path of RAM state that will be loaded from.
* @type : type of memory
*
* Load a RAM state from disk to memory.
*/
bool content_load_ram_file(unsigned slot)
{
int64_t rc;
struct ram_type ram;
retro_ctx_memory_info_t mem_info;
void *buf = NULL;
if (!content_get_memory(&mem_info, &ram, slot))
return false;
/* On first run of content, SRAM file will
* not exist. This is a common enough occurrence
* that we should check before attempting to
* invoke the relevant read_file() function */
if (string_is_empty(ram.path) ||
!path_is_valid(ram.path))
return false;
#if defined(HAVE_ZLIB)
/* Always use RZIP interface when reading SRAM
* files - this will automatically handle uncompressed
* data */
if (!rzipstream_read_file(ram.path, &buf, &rc))
#else
if (!filestream_read_file(ram.path, &buf, &rc))
#endif
return false;
if (rc > 0)
{
if (rc > (ssize_t)mem_info.size)
{
RARCH_WARN("[SRAM]: SRAM is larger than implementation expects, "
"doing partial load (truncating %u %s %s %u).\n",
(unsigned)rc,
msg_hash_to_str(MSG_BYTES),
msg_hash_to_str(MSG_TO),
(unsigned)mem_info.size);
rc = mem_info.size;
}
memcpy(mem_info.data, buf, (size_t)rc);
}
if (buf)
free(buf);
return true;
}
/**
* dump_to_file_desperate:
* @data : pointer to data buffer.
* @size : size of @data.
* @type : type of file to be saved.
*
* Attempt to save valuable RAM data somewhere.
**/
static bool dump_to_file_desperate(const void *data,
size_t size, unsigned type)
{
time_t time_;
struct tm tm_;
char timebuf[256];
char path[PATH_MAX_LENGTH];
char application_data[PATH_MAX_LENGTH];
application_data[0] = '\0';
path [0] = '\0';
timebuf [0] = '\0';
if (!fill_pathname_application_data(application_data,
sizeof(application_data)))
return false;
time(&time_);
rtime_localtime(&time_, &tm_);
strftime(timebuf,
256 * sizeof(char),
"%Y-%m-%d-%H-%M-%S", &tm_);
snprintf(path, sizeof(path),
"%s/RetroArch-recovery-%u%s",
application_data, type,
timebuf);
/* Fallback (emergency) saves are always
* uncompressed
* > If a regular save fails, then the host
* system is experiencing serious technical
* difficulties (most likely some kind of
* hardware failure)
* > In this case, we don't want to further
* complicate matters by introducing zlib
* compression overheads */
if (!filestream_write_file(path, data, size))
return false;
RARCH_WARN("[SRAM]: Succeeded in saving RAM data to \"%s\".\n", path);
return true;
}
/**
* content_load_state_from_ram:
* Load a state from ram.
*
* Returns: true if successful, false otherwise.
**/
bool content_load_state_from_ram(void)
{
size_t temp_data_size;
bool ret = false;
void* temp_data = NULL;
if (!ram_buf.state_buf.data)
return false;
RARCH_LOG("[State]: %s, %u %s.\n",
msg_hash_to_str(MSG_LOADING_STATE),
(unsigned)ram_buf.state_buf.size,
msg_hash_to_str(MSG_BYTES));
/* We need to make a temporary copy of the buffer, to allow the swap below */
temp_data = malloc(ram_buf.state_buf.size);
temp_data_size = ram_buf.state_buf.size;
memcpy(temp_data, ram_buf.state_buf.data, ram_buf.state_buf.size);
/* Swap the current state with the backup state. This way, we can undo
what we're undoing */
content_save_state("RAM", false, false);
ret = content_deserialize_state(temp_data, temp_data_size);
/* Clean up the temporary copy */
free(temp_data);
temp_data = NULL;
if (!ret)
{
RARCH_ERR("[State]: %s.\n",
msg_hash_to_str(MSG_FAILED_TO_LOAD_SRAM));
}
return ret;
}
/**
* content_save_state_from_ram:
* Save a state to ram.
*
* Returns: true if successful, false otherwise.
**/
bool content_save_state_to_ram(void)
{
retro_ctx_size_info_t info;
void *data = NULL;
size_t serial_size;
core_serialize_size(&info);
if (info.size == 0)
return false;
serial_size = info.size;
if (!save_state_in_background)
{
data = content_get_serialized_data(&serial_size);
if (!data)
{
RARCH_ERR("[State]: %s.\n",
msg_hash_to_str(MSG_FAILED_TO_SAVE_SRAM));
return false;
}
RARCH_LOG("[State]: %s, %u %s.\n",
msg_hash_to_str(MSG_SAVING_STATE),
(unsigned)serial_size,
msg_hash_to_str(MSG_BYTES));
}
if (!data)
data = content_get_serialized_data(&serial_size);
if (!data)
{
RARCH_ERR("[State]: %s.\n",
msg_hash_to_str(MSG_FAILED_TO_SAVE_SRAM));
return false;
}
/* If we were holding onto an old state already, clean it up first */
if (ram_buf.state_buf.data)
{
free(ram_buf.state_buf.data);
ram_buf.state_buf.data = NULL;
}
ram_buf.state_buf.data = malloc(serial_size);
if (!ram_buf.state_buf.data)
{
free(data);
return false;
}
memcpy(ram_buf.state_buf.data, data, serial_size);
free(data);
ram_buf.state_buf.size = serial_size;
ram_buf.to_write_file = true;
return true;
}
/**
* content_ram_state_to_file:
* @path : path of ram state that shall be written to.
* Save a ram state from memory to disk.
*
* Returns: true if successful, false otherwise.
**/
bool content_ram_state_to_file(const char *path)
{
settings_t *settings = config_get_ptr();
#if defined(HAVE_ZLIB)
bool compress_files = settings->bools.save_file_compression;
#else
bool compress_files = false;
#endif
bool write_success;
if (!path)
return false;
if (!ram_buf.state_buf.data)
return false;
if (!ram_buf.to_write_file)
return false;
#if defined(HAVE_ZLIB)
if (compress_files)
write_success = rzipstream_write_file(
path, ram_buf.state_buf.data, ram_buf.state_buf.size);
else
#endif
write_success = filestream_write_file(
path, ram_buf.state_buf.data, ram_buf.state_buf.size);
if (write_success)
ram_buf.to_write_file = false;
return write_success;
}
/**
* content_save_ram_file:
* @path : path of RAM state that shall be written to.
* @type : type of memory
*
* Save a RAM state from memory to disk.
*
*/
bool content_save_ram_file(unsigned slot, bool compress)
{
struct ram_type ram;
retro_ctx_memory_info_t mem_info;
bool write_success;
if (!content_get_memory(&mem_info, &ram, slot))
return false;
RARCH_LOG("[SRAM]: %s #%u %s \"%s\".\n",
msg_hash_to_str(MSG_SAVING_RAM_TYPE),
ram.type,
msg_hash_to_str(MSG_TO),
ram.path);
#if defined(HAVE_ZLIB)
if (compress)
write_success = rzipstream_write_file(
ram.path, mem_info.data, mem_info.size);
else
#endif
write_success = filestream_write_file(
ram.path, mem_info.data, mem_info.size);
if (!write_success)
{
RARCH_ERR("[SRAM]: %s.\n",
msg_hash_to_str(MSG_FAILED_TO_SAVE_SRAM));
RARCH_WARN("[SRAM]: Attempting to recover ...\n");
/* In case the file could not be written to,
* the fallback function 'dump_to_file_desperate'
* will be called. */
if (!dump_to_file_desperate(
mem_info.data, mem_info.size, ram.type))
{
RARCH_WARN("[SRAM]: Failed ... Cannot recover save file.\n");
}
return false;
}
RARCH_LOG("[SRAM]: %s \"%s\".\n",
msg_hash_to_str(MSG_SAVED_SUCCESSFULLY_TO),
ram.path);
return true;
}
bool event_save_files(bool is_sram_used)
{
unsigned i;
settings_t *settings = config_get_ptr();
#ifdef HAVE_CHEATS
const char *path_cheat_database = settings->paths.path_cheat_database;
#endif
#if defined(HAVE_ZLIB)
bool compress_files = settings->bools.save_file_compression;
#else
bool compress_files = false;
#endif
#ifdef HAVE_CHEATS
cheat_manager_save_game_specific_cheats(
path_cheat_database);
#endif
if (!task_save_files || !is_sram_used)
return false;
for (i = 0; i < task_save_files->size; i++)
content_save_ram_file(i, compress_files);
return true;
}
bool event_load_save_files(bool is_sram_load_disabled)
{
unsigned i;
bool success = false;
if (!task_save_files || is_sram_load_disabled)
return false;
/* Report a successful load operation if
* any type of ram file is found and
* processed correctly */
for (i = 0; i < task_save_files->size; i++)
success |= content_load_ram_file(i);
return success;
}
void path_init_savefile_rtc(const char *savefile_path)
{
union string_list_elem_attr attr;
char savefile_name_rtc[PATH_MAX_LENGTH];
savefile_name_rtc[0] = '\0';
attr.i = RETRO_MEMORY_SAVE_RAM;
string_list_append(task_save_files, savefile_path, attr);
/* Infer .rtc save path from save ram path. */
attr.i = RETRO_MEMORY_RTC;
fill_pathname(savefile_name_rtc,
savefile_path, ".rtc",
sizeof(savefile_name_rtc));
string_list_append(task_save_files, savefile_name_rtc, attr);
}
void path_deinit_savefile(void)
{
if (task_save_files)
string_list_free(task_save_files);
task_save_files = NULL;
}
void path_init_savefile_new(void)
{
task_save_files = string_list_new();
retro_assert(task_save_files);
}
void *savefile_ptr_get(void)
{
return task_save_files;
}
void set_save_state_in_background(bool state)
{
save_state_in_background = state;
}