/* RetroArch - A frontend for libretro. * Copyright (C) 2010-2014 - Hans-Kristian Arntzen * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ /* * sha1.c * * Copyright (C) 1998, 2009 * Paul E. Jones * All Rights Reserved * ***************************************************************************** * $Id: sha1.c 12 2009-06-22 19:34:25Z paulej $ ***************************************************************************** * * Description: * This file implements the Secure Hashing Standard as defined * in FIPS PUB 180-1 published April 17, 1995. * * The Secure Hashing Standard, which uses the Secure Hashing * Algorithm (SHA), produces a 160-bit message digest for a * given data stream. In theory, it is highly improbable that * two messages will produce the same message digest. Therefore, * this algorithm can serve as a means of providing a "fingerprint" * for a message. * * Portability Issues: * SHA-1 is defined in terms of 32-bit "words". This code was * written with the expectation that the processor has at least * a 32-bit machine word size. If the machine word size is larger, * the code should still function properly. One caveat to that * is that the input functions taking characters and character * arrays assume that only 8 bits of information are stored in each * character. * * Caveats: * SHA-1 is designed to work with messages less than 2^64 bits * long. Although SHA-1 allows a message digest to be generated for * messages of any number of bits less than 2^64, this * implementation only works with messages with a length that is a * multiple of the size of an 8-bit character. * */ #include #include #include "hash.h" #include "miscellaneous.h" #define SWAP32(x) ((uint32_t)( \ (((uint32_t)(x) & 0x000000ff) << 24) | \ (((uint32_t)(x) & 0x0000ff00) << 8) | \ (((uint32_t)(x) & 0x00ff0000) >> 8) | \ (((uint32_t)(x) & 0xff000000) >> 24) \ )) static inline void store32be(uint32_t *addr, uint32_t data) { *addr = is_little_endian() ? SWAP32(data) : data; } static inline uint32_t load32be(const uint32_t *addr) { return is_little_endian() ? SWAP32(*addr) : *addr; } #define LSL32(x, n) ((uint32_t)(x) << (n)) #define LSR32(x, n) ((uint32_t)(x) >> (n)) #define ROR32(x, n) (LSR32(x, n) | LSL32(x, 32 - (n))) // First 32 bits of the fractional parts of the square roots of the first 8 primes 2..19 static const uint32_t T_H[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19, }; // First 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311 static const uint32_t T_K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, }; /* SHA256 implementation from bSNES. Written by valditx. */ struct sha256_ctx { union { uint8_t u8[64]; uint32_t u32[16]; } in; unsigned inlen; uint32_t w[64]; uint32_t h[8]; uint64_t len; }; static void sha256_init(struct sha256_ctx *p) { memset(p, 0, sizeof(struct sha256_ctx)); memcpy(p->h, T_H, sizeof(T_H)); } static void sha256_block(struct sha256_ctx *p) { unsigned i; uint32_t s0, s1; uint32_t a, b, c, d, e, f, g, h; uint32_t t1, t2, maj, ch; for (i = 0; i < 16; i++) p->w[i] = load32be(p->in.u32 + i); for (i = 16; i < 64; i++) { s0 = ROR32(p->w[i - 15], 7) ^ ROR32(p->w[i - 15], 18) ^ LSR32(p->w[i - 15], 3); s1 = ROR32(p->w[i - 2], 17) ^ ROR32(p->w[i - 2], 19) ^ LSR32(p->w[i - 2], 10); p->w[i] = p->w[i - 16] + s0 + p->w[i - 7] + s1; } a = p->h[0]; b = p->h[1]; c = p->h[2]; d = p->h[3]; e = p->h[4]; f = p->h[5]; g = p->h[6]; h = p->h[7]; for (i = 0; i < 64; i++) { s0 = ROR32(a, 2) ^ ROR32(a, 13) ^ ROR32(a, 22); maj = (a & b) ^ (a & c) ^ (b & c); t2 = s0 + maj; s1 = ROR32(e, 6) ^ ROR32(e, 11) ^ ROR32(e, 25); ch = (e & f) ^ (~e & g); t1 = h + s1 + ch + T_K[i] + p->w[i]; h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; } p->h[0] += a; p->h[1] += b; p->h[2] += c; p->h[3] += d; p->h[4] += e; p->h[5] += f; p->h[6] += g; p->h[7] += h; /* Next block */ p->inlen = 0; } static void sha256_chunk(struct sha256_ctx *p, const uint8_t *s, unsigned len) { unsigned l; p->len += len; while (len) { l = 64 - p->inlen; l = (len < l) ? len : l; memcpy(p->in.u8 + p->inlen, s, l); s += l; p->inlen += l; len -= l; if (p->inlen == 64) sha256_block(p); } } static void sha256_final(struct sha256_ctx *p) { uint64_t len; p->in.u8[p->inlen++] = 0x80; if (p->inlen > 56) { memset(p->in.u8 + p->inlen, 0, 64 - p->inlen); sha256_block(p); } memset(p->in.u8 + p->inlen, 0, 56 - p->inlen); len = p->len << 3; store32be(p->in.u32 + 14, (uint32_t)(len >> 32)); store32be(p->in.u32 + 15, (uint32_t)len); sha256_block(p); } static void sha256_subhash(struct sha256_ctx *p, uint32_t *t) { unsigned i; for (i = 0; i < 8; i++) store32be(t++, p->h[i]); } void sha256_hash(char *out, const uint8_t *in, size_t size) { unsigned i; struct sha256_ctx sha; union { uint32_t u32[8]; uint8_t u8[32]; } shahash; sha256_init(&sha); sha256_chunk(&sha, in, size); sha256_final(&sha); sha256_subhash(&sha, shahash.u32); for (i = 0; i < 32; i++) snprintf(out + 2 * i, 3, "%02x", (unsigned)shahash.u8[i]); } #ifndef HAVE_ZLIB /* Zlib CRC32. */ static const uint32_t crc32_table[256] = { 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d }; uint32_t crc32_adjust(uint32_t crc32, uint8_t input) { return ((crc32 >> 8) & 0x00ffffff) ^ crc32_table[(crc32 ^ input) & 0xff]; } uint32_t crc32_calculate(const uint8_t *data, size_t length) { size_t i; uint32_t crc32 = ~0; for (i = 0; i < length; i++) crc32 = crc32_adjust(crc32, data[i]); return ~crc32; } #endif /* SHA-1 implementation. */ /* Define the circular shift macro */ #define SHA1CircularShift(bits,word) ((((word) << (bits)) & 0xFFFFFFFF) | ((word) >> (32-(bits)))) void SHA1Reset(SHA1Context *context) { context->Length_Low = 0; context->Length_High = 0; context->Message_Block_Index = 0; context->Message_Digest[0] = 0x67452301; context->Message_Digest[1] = 0xEFCDAB89; context->Message_Digest[2] = 0x98BADCFE; context->Message_Digest[3] = 0x10325476; context->Message_Digest[4] = 0xC3D2E1F0; context->Computed = 0; context->Corrupted = 0; } void SHA1ProcessMessageBlock(SHA1Context *context) { const unsigned K[] = /* Constants defined in SHA-1 */ { 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6 }; int t; /* Loop counter */ unsigned temp; /* Temporary word value */ unsigned W[80]; /* Word sequence */ unsigned A, B, C, D, E; /* Word buffers */ /* Initialize the first 16 words in the array W */ for(t = 0; t < 16; t++) { W[t] = ((unsigned) context->Message_Block[t * 4]) << 24; W[t] |= ((unsigned) context->Message_Block[t * 4 + 1]) << 16; W[t] |= ((unsigned) context->Message_Block[t * 4 + 2]) << 8; W[t] |= ((unsigned) context->Message_Block[t * 4 + 3]); } for(t = 16; t < 80; t++) W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]); A = context->Message_Digest[0]; B = context->Message_Digest[1]; C = context->Message_Digest[2]; D = context->Message_Digest[3]; E = context->Message_Digest[4]; for(t = 0; t < 20; t++) { temp = SHA1CircularShift(5,A) + ((B & C) | ((~B) & D)) + E + W[t] + K[0]; temp &= 0xFFFFFFFF; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } for(t = 20; t < 40; t++) { temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1]; temp &= 0xFFFFFFFF; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } for(t = 40; t < 60; t++) { temp = SHA1CircularShift(5,A) + ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2]; temp &= 0xFFFFFFFF; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } for(t = 60; t < 80; t++) { temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3]; temp &= 0xFFFFFFFF; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } context->Message_Digest[0] = (context->Message_Digest[0] + A) & 0xFFFFFFFF; context->Message_Digest[1] = (context->Message_Digest[1] + B) & 0xFFFFFFFF; context->Message_Digest[2] = (context->Message_Digest[2] + C) & 0xFFFFFFFF; context->Message_Digest[3] = (context->Message_Digest[3] + D) & 0xFFFFFFFF; context->Message_Digest[4] = (context->Message_Digest[4] + E) & 0xFFFFFFFF; context->Message_Block_Index = 0; } void SHA1PadMessage(SHA1Context *context) { /* * Check to see if the current message block is too small to hold * the initial padding bits and length. If so, we will pad the * block, process it, and then continue padding into a second * block. */ if (context->Message_Block_Index > 55) { context->Message_Block[context->Message_Block_Index++] = 0x80; while(context->Message_Block_Index < 64) context->Message_Block[context->Message_Block_Index++] = 0; SHA1ProcessMessageBlock(context); while(context->Message_Block_Index < 56) context->Message_Block[context->Message_Block_Index++] = 0; } else { context->Message_Block[context->Message_Block_Index++] = 0x80; while(context->Message_Block_Index < 56) context->Message_Block[context->Message_Block_Index++] = 0; } /* Store the message length as the last 8 octets */ context->Message_Block[56] = (context->Length_High >> 24) & 0xFF; context->Message_Block[57] = (context->Length_High >> 16) & 0xFF; context->Message_Block[58] = (context->Length_High >> 8) & 0xFF; context->Message_Block[59] = (context->Length_High) & 0xFF; context->Message_Block[60] = (context->Length_Low >> 24) & 0xFF; context->Message_Block[61] = (context->Length_Low >> 16) & 0xFF; context->Message_Block[62] = (context->Length_Low >> 8) & 0xFF; context->Message_Block[63] = (context->Length_Low) & 0xFF; SHA1ProcessMessageBlock(context); } int SHA1Result(SHA1Context *context) { if (context->Corrupted) return 0; if (!context->Computed) { SHA1PadMessage(context); context->Computed = 1; } return 1; } void SHA1Input( SHA1Context *context, const unsigned char *message_array, unsigned length) { if (!length) return; if (context->Computed || context->Corrupted) { context->Corrupted = 1; return; } while(length-- && !context->Corrupted) { context->Message_Block[context->Message_Block_Index++] = (*message_array & 0xFF); context->Length_Low += 8; /* Force it to 32 bits */ context->Length_Low &= 0xFFFFFFFF; if (context->Length_Low == 0) { context->Length_High++; /* Force it to 32 bits */ context->Length_High &= 0xFFFFFFFF; if (context->Length_High == 0) context->Corrupted = 1; /* Message is too long */ } if (context->Message_Block_Index == 64) SHA1ProcessMessageBlock(context); message_array++; } }