RetroArch/gfx/include/d3d8/d3dx8math.h
orbea bfc366decc Squeeze extra blank lines with cat(1).
Example:

find . -type f -iname '*.c' | while read -r i; do
  cat -s "$i" > "$i.new"
  mv "$i.new" "$i"
done
2019-01-08 11:04:58 -08:00

1183 lines
35 KiB
C++

/*
*
* Copyright (C) Microsoft Corporation. All Rights Reserved.
*
* File: d3dx8math.h
* Content: D3DX math types and functions
*
*/
#include "d3dx8.h"
#ifndef __D3DX8MATH_H__
#define __D3DX8MATH_H__
#include <math.h>
#pragma warning(disable:4201) /* anonymous unions warning */
/*
*
* General purpose utilities
*
*/
#define D3DX_PI ((FLOAT) 3.141592654f)
#define D3DX_1BYPI ((FLOAT) 0.318309886f)
#define D3DXToRadian( degree ) ((degree) * (D3DX_PI / 180.0f))
#define D3DXToDegree( radian ) ((radian) * (180.0f / D3DX_PI))
/*
*
* Vectors
*
*/
/*
* 2D Vector
*/
typedef struct D3DXVECTOR2
{
#ifdef __cplusplus
public:
D3DXVECTOR2() {};
D3DXVECTOR2( CONST FLOAT * );
D3DXVECTOR2( FLOAT x, FLOAT y );
/* casting */
operator FLOAT* ();
operator CONST FLOAT* () const;
/* assignment operators */
D3DXVECTOR2& operator += ( CONST D3DXVECTOR2& );
D3DXVECTOR2& operator -= ( CONST D3DXVECTOR2& );
D3DXVECTOR2& operator *= ( FLOAT );
D3DXVECTOR2& operator /= ( FLOAT );
/* unary operators */
D3DXVECTOR2 operator + () const;
D3DXVECTOR2 operator - () const;
/* binary operators */
D3DXVECTOR2 operator + ( CONST D3DXVECTOR2& ) const;
D3DXVECTOR2 operator - ( CONST D3DXVECTOR2& ) const;
D3DXVECTOR2 operator * ( FLOAT ) const;
D3DXVECTOR2 operator / ( FLOAT ) const;
friend D3DXVECTOR2 operator * ( FLOAT, CONST D3DXVECTOR2& );
BOOL operator == ( CONST D3DXVECTOR2& ) const;
BOOL operator != ( CONST D3DXVECTOR2& ) const;
public:
#endif /* __cplusplus */
FLOAT x, y;
} D3DXVECTOR2, *LPD3DXVECTOR2;
/*
* 3D Vector
*/
#ifdef __cplusplus
typedef struct D3DXVECTOR3 : public D3DVECTOR
{
public:
D3DXVECTOR3() {};
D3DXVECTOR3( CONST FLOAT * );
D3DXVECTOR3( CONST D3DVECTOR& );
D3DXVECTOR3( FLOAT x, FLOAT y, FLOAT z );
/* casting */
operator FLOAT* ();
operator CONST FLOAT* () const;
/* assignment operators */
D3DXVECTOR3& operator += ( CONST D3DXVECTOR3& );
D3DXVECTOR3& operator -= ( CONST D3DXVECTOR3& );
D3DXVECTOR3& operator *= ( FLOAT );
D3DXVECTOR3& operator /= ( FLOAT );
/* unary operators */
D3DXVECTOR3 operator + () const;
D3DXVECTOR3 operator - () const;
/* binary operators */
D3DXVECTOR3 operator + ( CONST D3DXVECTOR3& ) const;
D3DXVECTOR3 operator - ( CONST D3DXVECTOR3& ) const;
D3DXVECTOR3 operator * ( FLOAT ) const;
D3DXVECTOR3 operator / ( FLOAT ) const;
friend D3DXVECTOR3 operator * ( FLOAT, CONST struct D3DXVECTOR3& );
BOOL operator == ( CONST D3DXVECTOR3& ) const;
BOOL operator != ( CONST D3DXVECTOR3& ) const;
} D3DXVECTOR3, *LPD3DXVECTOR3;
#else /* !__cplusplus */
typedef struct _D3DVECTOR D3DXVECTOR3, *LPD3DXVECTOR3;
#endif /* !__cplusplus */
/*
* 4D Vector
*/
typedef struct D3DXVECTOR4
{
#ifdef __cplusplus
public:
D3DXVECTOR4() {};
D3DXVECTOR4( CONST FLOAT* );
D3DXVECTOR4( FLOAT x, FLOAT y, FLOAT z, FLOAT w );
/* casting */
operator FLOAT* ();
operator CONST FLOAT* () const;
/* assignment operators */
D3DXVECTOR4& operator += ( CONST D3DXVECTOR4& );
D3DXVECTOR4& operator -= ( CONST D3DXVECTOR4& );
D3DXVECTOR4& operator *= ( FLOAT );
D3DXVECTOR4& operator /= ( FLOAT );
/* unary operators */
D3DXVECTOR4 operator + () const;
D3DXVECTOR4 operator - () const;
/* binary operators */
D3DXVECTOR4 operator + ( CONST D3DXVECTOR4& ) const;
D3DXVECTOR4 operator - ( CONST D3DXVECTOR4& ) const;
D3DXVECTOR4 operator * ( FLOAT ) const;
D3DXVECTOR4 operator / ( FLOAT ) const;
friend D3DXVECTOR4 operator * ( FLOAT, CONST D3DXVECTOR4& );
BOOL operator == ( CONST D3DXVECTOR4& ) const;
BOOL operator != ( CONST D3DXVECTOR4& ) const;
public:
#endif /* __cplusplus */
FLOAT x, y, z, w;
} D3DXVECTOR4, *LPD3DXVECTOR4;
/*
*
* Matrices
*
*/
#ifdef __cplusplus
typedef struct D3DXMATRIX : public D3DMATRIX
{
public:
D3DXMATRIX() {};
D3DXMATRIX( CONST FLOAT * );
D3DXMATRIX( CONST D3DMATRIX& );
D3DXMATRIX( FLOAT _11, FLOAT _12, FLOAT _13, FLOAT _14,
FLOAT _21, FLOAT _22, FLOAT _23, FLOAT _24,
FLOAT _31, FLOAT _32, FLOAT _33, FLOAT _34,
FLOAT _41, FLOAT _42, FLOAT _43, FLOAT _44 );
/* access grants */
FLOAT& operator () ( UINT Row, UINT Col );
FLOAT operator () ( UINT Row, UINT Col ) const;
/* casting operators */
operator FLOAT* ();
operator CONST FLOAT* () const;
/* assignment operators */
D3DXMATRIX& operator *= ( CONST D3DXMATRIX& );
D3DXMATRIX& operator += ( CONST D3DXMATRIX& );
D3DXMATRIX& operator -= ( CONST D3DXMATRIX& );
D3DXMATRIX& operator *= ( FLOAT );
D3DXMATRIX& operator /= ( FLOAT );
/* unary operators */
D3DXMATRIX operator + () const;
D3DXMATRIX operator - () const;
/* binary operators */
D3DXMATRIX operator * ( CONST D3DXMATRIX& ) const;
D3DXMATRIX operator + ( CONST D3DXMATRIX& ) const;
D3DXMATRIX operator - ( CONST D3DXMATRIX& ) const;
D3DXMATRIX operator * ( FLOAT ) const;
D3DXMATRIX operator / ( FLOAT ) const;
friend D3DXMATRIX operator * ( FLOAT, CONST D3DXMATRIX& );
BOOL operator == ( CONST D3DXMATRIX& ) const;
BOOL operator != ( CONST D3DXMATRIX& ) const;
} D3DXMATRIX, *LPD3DXMATRIX;
#else /* !__cplusplus */
typedef struct _D3DMATRIX D3DXMATRIX, *LPD3DXMATRIX;
#endif /* !__cplusplus */
/*
*
* Aligned Matrices
*
* This class helps keep matrices 16-byte aligned as preferred by P4 cpus.
* It aligns matrices on the stack and on the heap or in global scope.
* It does this using __declspec(align(16)) which works on VC7 and on VC 6
* with the processor pack. Unfortunately there is no way to detect the
* latter so this is turned on only on VC7. On other compilers this is the
* the same as D3DXMATRIX.
* Using this class on a compiler that does not actually do the alignment
* can be dangerous since it will not expose bugs that ignore alignment.
* E.g if an object of this class in inside a struct or class, and some code
* memcopys data in it assuming tight packing. This could break on a compiler
* that eventually start aligning the matrix.
*
*/
#ifdef __cplusplus
typedef struct _D3DXMATRIXA16 : public D3DXMATRIX
{
_D3DXMATRIXA16() {}
_D3DXMATRIXA16( CONST FLOAT * f): D3DXMATRIX(f) {}
_D3DXMATRIXA16( CONST D3DMATRIX& m): D3DXMATRIX(m) {}
_D3DXMATRIXA16( FLOAT _11, FLOAT _12, FLOAT _13, FLOAT _14,
FLOAT _21, FLOAT _22, FLOAT _23, FLOAT _24,
FLOAT _31, FLOAT _32, FLOAT _33, FLOAT _34,
FLOAT _41, FLOAT _42, FLOAT _43, FLOAT _44 ) :
D3DXMATRIX(_11, _12, _13, _14,
_21, _22, _23, _24,
_31, _32, _33, _34,
_41, _42, _43, _44) {}
void* operator new(size_t s)
{
LPBYTE p = ::new BYTE[s + 16];
if (p)
{
BYTE offset = (BYTE)(16 - ((UINT_PTR)p & 15));
p += offset;
p[-1] = offset;
}
return p;
};
void* operator new[](size_t s)
{
LPBYTE p = ::new BYTE[s + 16];
if (p)
{
BYTE offset = (BYTE)(16 - ((UINT_PTR)p & 15));
p += offset;
p[-1] = offset;
}
return p;
};
/* This is NOT a virtual operator. If you cast
* to D3DXMATRIX, do not delete using that */
void operator delete(void* p)
{
if(p)
{
BYTE* pb = static_cast<BYTE*>(p);
pb -= pb[-1];
::delete [] pb;
}
};
/* This is NOT a virtual operator. If you cast
* to D3DXMATRIX, do not delete using that */
void operator delete[](void* p)
{
if(p)
{
BYTE* pb = static_cast<BYTE*>(p);
pb -= pb[-1];
::delete [] pb;
}
};
struct _D3DXMATRIXA16& operator=(CONST D3DXMATRIX& rhs)
{
memcpy(&_11, &rhs, sizeof(D3DXMATRIX));
return *this;
};
} _D3DXMATRIXA16;
#else /* !__cplusplus */
typedef D3DXMATRIX _D3DXMATRIXA16;
#endif /* !__cplusplus */
#if _MSC_VER >= 1300 /* VC7 */
#define _ALIGN_16 __declspec(align(16))
#else
#define _ALIGN_16 /* Earlier compiler may not understand this, do nothing. */
#endif
#define D3DXMATRIXA16 _ALIGN_16 _D3DXMATRIXA16
typedef D3DXMATRIXA16 *LPD3DXMATRIXA16;
/*
*
* Quaternions
*
*/
typedef struct D3DXQUATERNION
{
#ifdef __cplusplus
public:
D3DXQUATERNION() {}
D3DXQUATERNION( CONST FLOAT * );
D3DXQUATERNION( FLOAT x, FLOAT y, FLOAT z, FLOAT w );
/* casting */
operator FLOAT* ();
operator CONST FLOAT* () const;
/* assignment operators */
D3DXQUATERNION& operator += ( CONST D3DXQUATERNION& );
D3DXQUATERNION& operator -= ( CONST D3DXQUATERNION& );
D3DXQUATERNION& operator *= ( CONST D3DXQUATERNION& );
D3DXQUATERNION& operator *= ( FLOAT );
D3DXQUATERNION& operator /= ( FLOAT );
/* unary operators */
D3DXQUATERNION operator + () const;
D3DXQUATERNION operator - () const;
/* binary operators */
D3DXQUATERNION operator + ( CONST D3DXQUATERNION& ) const;
D3DXQUATERNION operator - ( CONST D3DXQUATERNION& ) const;
D3DXQUATERNION operator * ( CONST D3DXQUATERNION& ) const;
D3DXQUATERNION operator * ( FLOAT ) const;
D3DXQUATERNION operator / ( FLOAT ) const;
friend D3DXQUATERNION operator * (FLOAT, CONST D3DXQUATERNION& );
BOOL operator == ( CONST D3DXQUATERNION& ) const;
BOOL operator != ( CONST D3DXQUATERNION& ) const;
#endif /*__cplusplus */
FLOAT x, y, z, w;
} D3DXQUATERNION, *LPD3DXQUATERNION;
/*
*
* Planes
*
*/
typedef struct D3DXPLANE
{
#ifdef __cplusplus
public:
D3DXPLANE() {}
D3DXPLANE( CONST FLOAT* );
D3DXPLANE( FLOAT a, FLOAT b, FLOAT c, FLOAT d );
/* casting */
operator FLOAT* ();
operator CONST FLOAT* () const;
/* unary operators */
D3DXPLANE operator + () const;
D3DXPLANE operator - () const;
/* binary operators */
BOOL operator == ( CONST D3DXPLANE& ) const;
BOOL operator != ( CONST D3DXPLANE& ) const;
#endif /* __cplusplus */
FLOAT a, b, c, d;
} D3DXPLANE, *LPD3DXPLANE;
/*
*
* Colors
*
*/
typedef struct D3DXCOLOR
{
#ifdef __cplusplus
public:
D3DXCOLOR() {}
D3DXCOLOR( DWORD argb );
D3DXCOLOR( CONST FLOAT * );
D3DXCOLOR( CONST D3DCOLORVALUE& );
D3DXCOLOR( FLOAT r, FLOAT g, FLOAT b, FLOAT a );
/* casting */
operator DWORD () const;
operator FLOAT* ();
operator CONST FLOAT* () const;
operator D3DCOLORVALUE* ();
operator CONST D3DCOLORVALUE* () const;
operator D3DCOLORVALUE& ();
operator CONST D3DCOLORVALUE& () const;
/* assignment operators */
D3DXCOLOR& operator += ( CONST D3DXCOLOR& );
D3DXCOLOR& operator -= ( CONST D3DXCOLOR& );
D3DXCOLOR& operator *= ( FLOAT );
D3DXCOLOR& operator /= ( FLOAT );
/* unary operators */
D3DXCOLOR operator + () const;
D3DXCOLOR operator - () const;
/* binary operators */
D3DXCOLOR operator + ( CONST D3DXCOLOR& ) const;
D3DXCOLOR operator - ( CONST D3DXCOLOR& ) const;
D3DXCOLOR operator * ( FLOAT ) const;
D3DXCOLOR operator / ( FLOAT ) const;
friend D3DXCOLOR operator * (FLOAT, CONST D3DXCOLOR& );
BOOL operator == ( CONST D3DXCOLOR& ) const;
BOOL operator != ( CONST D3DXCOLOR& ) const;
#endif /* __cplusplus */
FLOAT r, g, b, a;
} D3DXCOLOR, *LPD3DXCOLOR;
/*
*
* D3DX math functions:
*
* NOTE:
* * All these functions can take the same object as in and out parameters.
*
* * Out parameters are typically also returned as return values, so that
* the output of one function may be used as a parameter to another.
*
*/
/*
* 2D Vector
*/
/* inline */
FLOAT D3DXVec2Length
( CONST D3DXVECTOR2 *pV );
FLOAT D3DXVec2LengthSq
( CONST D3DXVECTOR2 *pV );
FLOAT D3DXVec2Dot
( CONST D3DXVECTOR2 *pV1, CONST D3DXVECTOR2 *pV2 );
/* Z component of ((x1,y1,0) cross (x2,y2,0)) */
FLOAT D3DXVec2CCW
( CONST D3DXVECTOR2 *pV1, CONST D3DXVECTOR2 *pV2 );
D3DXVECTOR2* D3DXVec2Add
( D3DXVECTOR2 *pOut, CONST D3DXVECTOR2 *pV1, CONST D3DXVECTOR2 *pV2 );
D3DXVECTOR2* D3DXVec2Subtract
( D3DXVECTOR2 *pOut, CONST D3DXVECTOR2 *pV1, CONST D3DXVECTOR2 *pV2 );
/* Minimize each component. x = min(x1, x2), y = min(y1, y2) */
D3DXVECTOR2* D3DXVec2Minimize
( D3DXVECTOR2 *pOut, CONST D3DXVECTOR2 *pV1, CONST D3DXVECTOR2 *pV2 );
/* Maximize each component. x = max(x1, x2), y = max(y1, y2) */
D3DXVECTOR2* D3DXVec2Maximize
( D3DXVECTOR2 *pOut, CONST D3DXVECTOR2 *pV1, CONST D3DXVECTOR2 *pV2 );
D3DXVECTOR2* D3DXVec2Scale
( D3DXVECTOR2 *pOut, CONST D3DXVECTOR2 *pV, FLOAT s );
/* Linear interpolation. V1 + s(V2-V1) */
D3DXVECTOR2* D3DXVec2Lerp
( D3DXVECTOR2 *pOut, CONST D3DXVECTOR2 *pV1, CONST D3DXVECTOR2 *pV2,
FLOAT s );
/* non-inline */
#ifdef __cplusplus
extern "C" {
#endif
D3DXVECTOR2* WINAPI D3DXVec2Normalize
( D3DXVECTOR2 *pOut, CONST D3DXVECTOR2 *pV );
/* Hermite interpolation between position V1, tangent T1 (when s == 0)
* and position V2, tangent T2 (when s == 1). */
D3DXVECTOR2* WINAPI D3DXVec2Hermite
( D3DXVECTOR2 *pOut, CONST D3DXVECTOR2 *pV1, CONST D3DXVECTOR2 *pT1,
CONST D3DXVECTOR2 *pV2, CONST D3DXVECTOR2 *pT2, FLOAT s );
/* CatmullRom interpolation between V1 (when s == 0) and V2 (when s == 1) */
D3DXVECTOR2* WINAPI D3DXVec2CatmullRom
( D3DXVECTOR2 *pOut, CONST D3DXVECTOR2 *pV0, CONST D3DXVECTOR2 *pV1,
CONST D3DXVECTOR2 *pV2, CONST D3DXVECTOR2 *pV3, FLOAT s );
/* Barycentric coordinates. V1 + f(V2-V1) + g(V3-V1) */
D3DXVECTOR2* WINAPI D3DXVec2BaryCentric
( D3DXVECTOR2 *pOut, CONST D3DXVECTOR2 *pV1, CONST D3DXVECTOR2 *pV2,
CONST D3DXVECTOR2 *pV3, FLOAT f, FLOAT g);
/* Transform (x, y, 0, 1) by matrix. */
D3DXVECTOR4* WINAPI D3DXVec2Transform
( D3DXVECTOR4 *pOut, CONST D3DXVECTOR2 *pV, CONST D3DXMATRIX *pM );
/* Transform (x, y, 0, 1) by matrix, project result back into w=1. */
D3DXVECTOR2* WINAPI D3DXVec2TransformCoord
( D3DXVECTOR2 *pOut, CONST D3DXVECTOR2 *pV, CONST D3DXMATRIX *pM );
/* Transform (x, y, 0, 0) by matrix. */
D3DXVECTOR2* WINAPI D3DXVec2TransformNormal
( D3DXVECTOR2 *pOut, CONST D3DXVECTOR2 *pV, CONST D3DXMATRIX *pM );
#ifdef __cplusplus
}
#endif
/*
* 3D Vector
*/
/* inline */
FLOAT D3DXVec3Length
( CONST D3DXVECTOR3 *pV );
FLOAT D3DXVec3LengthSq
( CONST D3DXVECTOR3 *pV );
FLOAT D3DXVec3Dot
( CONST D3DXVECTOR3 *pV1, CONST D3DXVECTOR3 *pV2 );
D3DXVECTOR3* D3DXVec3Cross
( D3DXVECTOR3 *pOut, CONST D3DXVECTOR3 *pV1, CONST D3DXVECTOR3 *pV2 );
D3DXVECTOR3* D3DXVec3Add
( D3DXVECTOR3 *pOut, CONST D3DXVECTOR3 *pV1, CONST D3DXVECTOR3 *pV2 );
D3DXVECTOR3* D3DXVec3Subtract
( D3DXVECTOR3 *pOut, CONST D3DXVECTOR3 *pV1, CONST D3DXVECTOR3 *pV2 );
/* Minimize each component. x = min(x1, x2), y = min(y1, y2), ... */
D3DXVECTOR3* D3DXVec3Minimize
( D3DXVECTOR3 *pOut, CONST D3DXVECTOR3 *pV1, CONST D3DXVECTOR3 *pV2 );
/* Maximize each component. x = max(x1, x2), y = max(y1, y2), ... */
D3DXVECTOR3* D3DXVec3Maximize
( D3DXVECTOR3 *pOut, CONST D3DXVECTOR3 *pV1, CONST D3DXVECTOR3 *pV2 );
D3DXVECTOR3* D3DXVec3Scale
( D3DXVECTOR3 *pOut, CONST D3DXVECTOR3 *pV, FLOAT s);
/* Linear interpolation. V1 + s(V2-V1) */
D3DXVECTOR3* D3DXVec3Lerp
( D3DXVECTOR3 *pOut, CONST D3DXVECTOR3 *pV1, CONST D3DXVECTOR3 *pV2,
FLOAT s );
/* non-inline */
#ifdef __cplusplus
extern "C" {
#endif
D3DXVECTOR3* WINAPI D3DXVec3Normalize
( D3DXVECTOR3 *pOut, CONST D3DXVECTOR3 *pV );
/* Hermite interpolation between position V1, tangent T1 (when s == 0)
* and position V2, tangent T2 (when s == 1). */
D3DXVECTOR3* WINAPI D3DXVec3Hermite
( D3DXVECTOR3 *pOut, CONST D3DXVECTOR3 *pV1, CONST D3DXVECTOR3 *pT1,
CONST D3DXVECTOR3 *pV2, CONST D3DXVECTOR3 *pT2, FLOAT s );
/* CatmullRom interpolation between V1 (when s == 0) and V2 (when s == 1) */
D3DXVECTOR3* WINAPI D3DXVec3CatmullRom
( D3DXVECTOR3 *pOut, CONST D3DXVECTOR3 *pV0, CONST D3DXVECTOR3 *pV1,
CONST D3DXVECTOR3 *pV2, CONST D3DXVECTOR3 *pV3, FLOAT s );
/* Barycentric coordinates. V1 + f(V2-V1) + g(V3-V1) */
D3DXVECTOR3* WINAPI D3DXVec3BaryCentric
( D3DXVECTOR3 *pOut, CONST D3DXVECTOR3 *pV1, CONST D3DXVECTOR3 *pV2,
CONST D3DXVECTOR3 *pV3, FLOAT f, FLOAT g);
/* Transform (x, y, z, 1) by matrix. */
D3DXVECTOR4* WINAPI D3DXVec3Transform
( D3DXVECTOR4 *pOut, CONST D3DXVECTOR3 *pV, CONST D3DXMATRIX *pM );
/* Transform (x, y, z, 1) by matrix, project result back into w=1. */
D3DXVECTOR3* WINAPI D3DXVec3TransformCoord
( D3DXVECTOR3 *pOut, CONST D3DXVECTOR3 *pV, CONST D3DXMATRIX *pM );
/* Transform (x, y, z, 0) by matrix. If you transforming a normal by a
* non-affine matrix, the matrix you pass to this function should be the
* transpose of the inverse of the matrix you would use to transform a coord. */
D3DXVECTOR3* WINAPI D3DXVec3TransformNormal
( D3DXVECTOR3 *pOut, CONST D3DXVECTOR3 *pV, CONST D3DXMATRIX *pM );
/* Project vector from object space into screen space */
D3DXVECTOR3* WINAPI D3DXVec3Project
( D3DXVECTOR3 *pOut, CONST D3DXVECTOR3 *pV, CONST D3DVIEWPORT8 *pViewport,
CONST D3DXMATRIX *pProjection, CONST D3DXMATRIX *pView, CONST D3DXMATRIX *pWorld);
/* Project vector from screen space into object space */
D3DXVECTOR3* WINAPI D3DXVec3Unproject
( D3DXVECTOR3 *pOut, CONST D3DXVECTOR3 *pV, CONST D3DVIEWPORT8 *pViewport,
CONST D3DXMATRIX *pProjection, CONST D3DXMATRIX *pView, CONST D3DXMATRIX *pWorld);
#ifdef __cplusplus
}
#endif
/*
* 4D Vector
*/
/* inline */
FLOAT D3DXVec4Length
( CONST D3DXVECTOR4 *pV );
FLOAT D3DXVec4LengthSq
( CONST D3DXVECTOR4 *pV );
FLOAT D3DXVec4Dot
( CONST D3DXVECTOR4 *pV1, CONST D3DXVECTOR4 *pV2 );
D3DXVECTOR4* D3DXVec4Add
( D3DXVECTOR4 *pOut, CONST D3DXVECTOR4 *pV1, CONST D3DXVECTOR4 *pV2);
D3DXVECTOR4* D3DXVec4Subtract
( D3DXVECTOR4 *pOut, CONST D3DXVECTOR4 *pV1, CONST D3DXVECTOR4 *pV2);
/* Minimize each component. x = min(x1, x2), y = min(y1, y2), ... */
D3DXVECTOR4* D3DXVec4Minimize
( D3DXVECTOR4 *pOut, CONST D3DXVECTOR4 *pV1, CONST D3DXVECTOR4 *pV2);
/* Maximize each component. x = max(x1, x2), y = max(y1, y2), ... */
D3DXVECTOR4* D3DXVec4Maximize
( D3DXVECTOR4 *pOut, CONST D3DXVECTOR4 *pV1, CONST D3DXVECTOR4 *pV2);
D3DXVECTOR4* D3DXVec4Scale
( D3DXVECTOR4 *pOut, CONST D3DXVECTOR4 *pV, FLOAT s);
/* Linear interpolation. V1 + s(V2-V1) */
D3DXVECTOR4* D3DXVec4Lerp
( D3DXVECTOR4 *pOut, CONST D3DXVECTOR4 *pV1, CONST D3DXVECTOR4 *pV2,
FLOAT s );
/* non-inline */
#ifdef __cplusplus
extern "C" {
#endif
/* Cross-product in 4 dimensions. */
D3DXVECTOR4* WINAPI D3DXVec4Cross
( D3DXVECTOR4 *pOut, CONST D3DXVECTOR4 *pV1, CONST D3DXVECTOR4 *pV2,
CONST D3DXVECTOR4 *pV3);
D3DXVECTOR4* WINAPI D3DXVec4Normalize
( D3DXVECTOR4 *pOut, CONST D3DXVECTOR4 *pV );
/* Hermite interpolation between position V1, tangent T1 (when s == 0)
* and position V2, tangent T2 (when s == 1). */
D3DXVECTOR4* WINAPI D3DXVec4Hermite
( D3DXVECTOR4 *pOut, CONST D3DXVECTOR4 *pV1, CONST D3DXVECTOR4 *pT1,
CONST D3DXVECTOR4 *pV2, CONST D3DXVECTOR4 *pT2, FLOAT s );
/* CatmullRom interpolation between V1 (when s == 0) and V2 (when s == 1) */
D3DXVECTOR4* WINAPI D3DXVec4CatmullRom
( D3DXVECTOR4 *pOut, CONST D3DXVECTOR4 *pV0, CONST D3DXVECTOR4 *pV1,
CONST D3DXVECTOR4 *pV2, CONST D3DXVECTOR4 *pV3, FLOAT s );
/* Barycentric coordinates. V1 + f(V2-V1) + g(V3-V1) */
D3DXVECTOR4* WINAPI D3DXVec4BaryCentric
( D3DXVECTOR4 *pOut, CONST D3DXVECTOR4 *pV1, CONST D3DXVECTOR4 *pV2,
CONST D3DXVECTOR4 *pV3, FLOAT f, FLOAT g);
/* Transform vector by matrix. */
D3DXVECTOR4* WINAPI D3DXVec4Transform
( D3DXVECTOR4 *pOut, CONST D3DXVECTOR4 *pV, CONST D3DXMATRIX *pM );
#ifdef __cplusplus
}
#endif
/*
* 4D Matrix
*/
/* inline */
D3DXMATRIX* D3DXMatrixIdentity
( D3DXMATRIX *pOut );
BOOL D3DXMatrixIsIdentity
( CONST D3DXMATRIX *pM );
/* non-inline */
#ifdef __cplusplus
extern "C" {
#endif
FLOAT WINAPI D3DXMatrixfDeterminant
( CONST D3DXMATRIX *pM );
D3DXMATRIX* WINAPI D3DXMatrixTranspose
( D3DXMATRIX *pOut, CONST D3DXMATRIX *pM );
/* Matrix multiplication. The result represents the transformation M2
* followed by the transformation M1. (Out = M1 * M2) */
D3DXMATRIX* WINAPI D3DXMatrixMultiply
( D3DXMATRIX *pOut, CONST D3DXMATRIX *pM1, CONST D3DXMATRIX *pM2 );
/* Matrix multiplication, followed by a transpose. (Out = T(M1 * M2)) */
D3DXMATRIX* WINAPI D3DXMatrixMultiplyTranspose
( D3DXMATRIX *pOut, CONST D3DXMATRIX *pM1, CONST D3DXMATRIX *pM2 );
/* Calculate inverse of matrix. Inversion my fail, in which case NULL will
* be returned. The determinant of pM is also returned it pfDeterminant
* is non-NULL. */
D3DXMATRIX* WINAPI D3DXMatrixInverse
( D3DXMATRIX *pOut, FLOAT *pDeterminant, CONST D3DXMATRIX *pM );
/* Build a matrix which scales by (sx, sy, sz) */
D3DXMATRIX* WINAPI D3DXMatrixScaling
( D3DXMATRIX *pOut, FLOAT sx, FLOAT sy, FLOAT sz );
/* Build a matrix which translates by (x, y, z) */
D3DXMATRIX* WINAPI D3DXMatrixTranslation
( D3DXMATRIX *pOut, FLOAT x, FLOAT y, FLOAT z );
/* Build a matrix which rotates around the X axis */
D3DXMATRIX* WINAPI D3DXMatrixRotationX
( D3DXMATRIX *pOut, FLOAT Angle );
/* Build a matrix which rotates around the Y axis */
D3DXMATRIX* WINAPI D3DXMatrixRotationY
( D3DXMATRIX *pOut, FLOAT Angle );
/* Build a matrix which rotates around the Z axis */
D3DXMATRIX* WINAPI D3DXMatrixRotationZ
( D3DXMATRIX *pOut, FLOAT Angle );
/* Build a matrix which rotates around an arbitrary axis */
D3DXMATRIX* WINAPI D3DXMatrixRotationAxis
( D3DXMATRIX *pOut, CONST D3DXVECTOR3 *pV, FLOAT Angle );
/* Build a matrix from a quaternion */
D3DXMATRIX* WINAPI D3DXMatrixRotationQuaternion
( D3DXMATRIX *pOut, CONST D3DXQUATERNION *pQ);
/* Yaw around the Y axis, a pitch around the X axis,
* and a roll around the Z axis. */
D3DXMATRIX* WINAPI D3DXMatrixRotationYawPitchRoll
( D3DXMATRIX *pOut, FLOAT Yaw, FLOAT Pitch, FLOAT Roll );
/* Build transformation matrix. NULL arguments are treated as identity.
* Mout = Msc-1 * Msr-1 * Ms * Msr * Msc * Mrc-1 * Mr * Mrc * Mt */
D3DXMATRIX* WINAPI D3DXMatrixTransformation
( D3DXMATRIX *pOut, CONST D3DXVECTOR3 *pScalingCenter,
CONST D3DXQUATERNION *pScalingRotation, CONST D3DXVECTOR3 *pScaling,
CONST D3DXVECTOR3 *pRotationCenter, CONST D3DXQUATERNION *pRotation,
CONST D3DXVECTOR3 *pTranslation);
/* Build affine transformation matrix. NULL arguments are treated as identity.
* Mout = Ms * Mrc-1 * Mr * Mrc * Mt */
D3DXMATRIX* WINAPI D3DXMatrixAffineTransformation
( D3DXMATRIX *pOut, FLOAT Scaling, CONST D3DXVECTOR3 *pRotationCenter,
CONST D3DXQUATERNION *pRotation, CONST D3DXVECTOR3 *pTranslation);
/* Build a lookat matrix. (right-handed) */
D3DXMATRIX* WINAPI D3DXMatrixLookAtRH
( D3DXMATRIX *pOut, CONST D3DXVECTOR3 *pEye, CONST D3DXVECTOR3 *pAt,
CONST D3DXVECTOR3 *pUp );
/* Build a lookat matrix. (left-handed) */
D3DXMATRIX* WINAPI D3DXMatrixLookAtLH
( D3DXMATRIX *pOut, CONST D3DXVECTOR3 *pEye, CONST D3DXVECTOR3 *pAt,
CONST D3DXVECTOR3 *pUp );
/* Build a perspective projection matrix. (right-handed) */
D3DXMATRIX* WINAPI D3DXMatrixPerspectiveRH
( D3DXMATRIX *pOut, FLOAT w, FLOAT h, FLOAT zn, FLOAT zf );
/* Build a perspective projection matrix. (left-handed) */
D3DXMATRIX* WINAPI D3DXMatrixPerspectiveLH
( D3DXMATRIX *pOut, FLOAT w, FLOAT h, FLOAT zn, FLOAT zf );
/* Build a perspective projection matrix. (right-handed) */
D3DXMATRIX* WINAPI D3DXMatrixPerspectiveFovRH
( D3DXMATRIX *pOut, FLOAT fovy, FLOAT Aspect, FLOAT zn, FLOAT zf );
/* Build a perspective projection matrix. (left-handed) */
D3DXMATRIX* WINAPI D3DXMatrixPerspectiveFovLH
( D3DXMATRIX *pOut, FLOAT fovy, FLOAT Aspect, FLOAT zn, FLOAT zf );
/* Build a perspective projection matrix. (right-handed) */
D3DXMATRIX* WINAPI D3DXMatrixPerspectiveOffCenterRH
( D3DXMATRIX *pOut, FLOAT l, FLOAT r, FLOAT b, FLOAT t, FLOAT zn,
FLOAT zf );
/* Build a perspective projection matrix. (left-handed) */
D3DXMATRIX* WINAPI D3DXMatrixPerspectiveOffCenterLH
( D3DXMATRIX *pOut, FLOAT l, FLOAT r, FLOAT b, FLOAT t, FLOAT zn,
FLOAT zf );
/* Build an ortho projection matrix. (right-handed) */
D3DXMATRIX* WINAPI D3DXMatrixOrthoRH
( D3DXMATRIX *pOut, FLOAT w, FLOAT h, FLOAT zn, FLOAT zf );
/* Build an ortho projection matrix. (left-handed) */
D3DXMATRIX* WINAPI D3DXMatrixOrthoLH
( D3DXMATRIX *pOut, FLOAT w, FLOAT h, FLOAT zn, FLOAT zf );
/* Build an ortho projection matrix. (right-handed) */
D3DXMATRIX* WINAPI D3DXMatrixOrthoOffCenterRH
( D3DXMATRIX *pOut, FLOAT l, FLOAT r, FLOAT b, FLOAT t, FLOAT zn,
FLOAT zf );
/* Build an ortho projection matrix. (left-handed) */
D3DXMATRIX* WINAPI D3DXMatrixOrthoOffCenterLH
( D3DXMATRIX *pOut, FLOAT l, FLOAT r, FLOAT b, FLOAT t, FLOAT zn,
FLOAT zf );
/* Build a matrix which flattens geometry into a plane, as if casting
* a shadow from a light. */
D3DXMATRIX* WINAPI D3DXMatrixShadow
( D3DXMATRIX *pOut, CONST D3DXVECTOR4 *pLight,
CONST D3DXPLANE *pPlane );
/* Build a matrix which reflects the coordinate system about a plane */
D3DXMATRIX* WINAPI D3DXMatrixReflect
( D3DXMATRIX *pOut, CONST D3DXPLANE *pPlane );
#ifdef __cplusplus
}
#endif
/*
* Quaternion
*/
/* inline */
FLOAT D3DXQuaternionLength
( CONST D3DXQUATERNION *pQ );
/* Length squared, or "norm" */
FLOAT D3DXQuaternionLengthSq
( CONST D3DXQUATERNION *pQ );
FLOAT D3DXQuaternionDot
( CONST D3DXQUATERNION *pQ1, CONST D3DXQUATERNION *pQ2 );
/* (0, 0, 0, 1) */
D3DXQUATERNION* D3DXQuaternionIdentity
( D3DXQUATERNION *pOut );
BOOL D3DXQuaternionIsIdentity
( CONST D3DXQUATERNION *pQ );
/* (-x, -y, -z, w) */
D3DXQUATERNION* D3DXQuaternionConjugate
( D3DXQUATERNION *pOut, CONST D3DXQUATERNION *pQ );
/* non-inline */
#ifdef __cplusplus
extern "C" {
#endif
/* Compute a quaternin's axis and angle of rotation. Expects unit quaternions. */
void WINAPI D3DXQuaternionToAxisAngle
( CONST D3DXQUATERNION *pQ, D3DXVECTOR3 *pAxis, FLOAT *pAngle );
/* Build a quaternion from a rotation matrix. */
D3DXQUATERNION* WINAPI D3DXQuaternionRotationMatrix
( D3DXQUATERNION *pOut, CONST D3DXMATRIX *pM);
/* Rotation about arbitrary axis. */
D3DXQUATERNION* WINAPI D3DXQuaternionRotationAxis
( D3DXQUATERNION *pOut, CONST D3DXVECTOR3 *pV, FLOAT Angle );
/* Yaw around the Y axis, a pitch around the X axis,
* and a roll around the Z axis. */
D3DXQUATERNION* WINAPI D3DXQuaternionRotationYawPitchRoll
( D3DXQUATERNION *pOut, FLOAT Yaw, FLOAT Pitch, FLOAT Roll );
/* Quaternion multiplication. The result represents the rotation Q2
* followed by the rotation Q1. (Out = Q2 * Q1) */
D3DXQUATERNION* WINAPI D3DXQuaternionMultiply
( D3DXQUATERNION *pOut, CONST D3DXQUATERNION *pQ1,
CONST D3DXQUATERNION *pQ2 );
D3DXQUATERNION* WINAPI D3DXQuaternionNormalize
( D3DXQUATERNION *pOut, CONST D3DXQUATERNION *pQ );
/* Conjugate and re-norm */
D3DXQUATERNION* WINAPI D3DXQuaternionInverse
( D3DXQUATERNION *pOut, CONST D3DXQUATERNION *pQ );
/* Expects unit quaternions.
* if q = (cos(theta), sin(theta) * v); ln(q) = (0, theta * v) */
D3DXQUATERNION* WINAPI D3DXQuaternionLn
( D3DXQUATERNION *pOut, CONST D3DXQUATERNION *pQ );
/* Expects pure quaternions. (w == 0) w is ignored in calculation.
* if q = (0, theta * v); exp(q) = (cos(theta), sin(theta) * v) */
D3DXQUATERNION* WINAPI D3DXQuaternionExp
( D3DXQUATERNION *pOut, CONST D3DXQUATERNION *pQ );
/* Spherical linear interpolation between Q1 (t == 0) and Q2 (t == 1).
* Expects unit quaternions. */
D3DXQUATERNION* WINAPI D3DXQuaternionSlerp
( D3DXQUATERNION *pOut, CONST D3DXQUATERNION *pQ1,
CONST D3DXQUATERNION *pQ2, FLOAT t );
/* Spherical quadrangle interpolation.
* Slerp(Slerp(Q1, C, t), Slerp(A, B, t), 2t(1-t)) */
D3DXQUATERNION* WINAPI D3DXQuaternionSquad
( D3DXQUATERNION *pOut, CONST D3DXQUATERNION *pQ1,
CONST D3DXQUATERNION *pA, CONST D3DXQUATERNION *pB,
CONST D3DXQUATERNION *pC, FLOAT t );
/* Setup control points for spherical quadrangle interpolation
* from Q1 to Q2. The control points are chosen in such a way
* to ensure the continuity of tangents with adjacent segments. */
void WINAPI D3DXQuaternionSquadSetup
( D3DXQUATERNION *pAOut, D3DXQUATERNION *pBOut, D3DXQUATERNION *pCOut,
CONST D3DXQUATERNION *pQ0, CONST D3DXQUATERNION *pQ1,
CONST D3DXQUATERNION *pQ2, CONST D3DXQUATERNION *pQ3 );
/* Barycentric interpolation.
* Slerp(Slerp(Q1, Q2, f+g), Slerp(Q1, Q3, f+g), g/(f+g)) */
D3DXQUATERNION* WINAPI D3DXQuaternionBaryCentric
( D3DXQUATERNION *pOut, CONST D3DXQUATERNION *pQ1,
CONST D3DXQUATERNION *pQ2, CONST D3DXQUATERNION *pQ3,
FLOAT f, FLOAT g );
#ifdef __cplusplus
}
#endif
/*
* Plane
*/
/* inline */
/* ax + by + cz + dw */
FLOAT D3DXPlaneDot
( CONST D3DXPLANE *pP, CONST D3DXVECTOR4 *pV);
/* ax + by + cz + d */
FLOAT D3DXPlaneDotCoord
( CONST D3DXPLANE *pP, CONST D3DXVECTOR3 *pV);
/* ax + by + cz */
FLOAT D3DXPlaneDotNormal
( CONST D3DXPLANE *pP, CONST D3DXVECTOR3 *pV);
/* non-inline */
#ifdef __cplusplus
extern "C" {
#endif
/* Normalize plane (so that |a,b,c| == 1) */
D3DXPLANE* WINAPI D3DXPlaneNormalize
( D3DXPLANE *pOut, CONST D3DXPLANE *pP);
/* Find the intersection between a plane and a line. If the line is
* parallel to the plane, NULL is returned. */
D3DXVECTOR3* WINAPI D3DXPlaneIntersectLine
( D3DXVECTOR3 *pOut, CONST D3DXPLANE *pP, CONST D3DXVECTOR3 *pV1,
CONST D3DXVECTOR3 *pV2);
/* Construct a plane from a point and a normal */
D3DXPLANE* WINAPI D3DXPlaneFromPointNormal
( D3DXPLANE *pOut, CONST D3DXVECTOR3 *pPoint, CONST D3DXVECTOR3 *pNormal);
/* Construct a plane from 3 points */
D3DXPLANE* WINAPI D3DXPlaneFromPoints
( D3DXPLANE *pOut, CONST D3DXVECTOR3 *pV1, CONST D3DXVECTOR3 *pV2,
CONST D3DXVECTOR3 *pV3);
/* Transform a plane by a matrix. The vector (a,b,c) must be normal.
* M should be the inverse transpose of the transformation desired. */
D3DXPLANE* WINAPI D3DXPlaneTransform
( D3DXPLANE *pOut, CONST D3DXPLANE *pP, CONST D3DXMATRIX *pM );
#ifdef __cplusplus
}
#endif
/*
* Color
*/
/* inline */
/* (1-r, 1-g, 1-b, a) */
D3DXCOLOR* D3DXColorNegative
(D3DXCOLOR *pOut, CONST D3DXCOLOR *pC);
D3DXCOLOR* D3DXColorAdd
(D3DXCOLOR *pOut, CONST D3DXCOLOR *pC1, CONST D3DXCOLOR *pC2);
D3DXCOLOR* D3DXColorSubtract
(D3DXCOLOR *pOut, CONST D3DXCOLOR *pC1, CONST D3DXCOLOR *pC2);
D3DXCOLOR* D3DXColorScale
(D3DXCOLOR *pOut, CONST D3DXCOLOR *pC, FLOAT s);
/* (r1*r2, g1*g2, b1*b2, a1*a2) */
D3DXCOLOR* D3DXColorModulate
(D3DXCOLOR *pOut, CONST D3DXCOLOR *pC1, CONST D3DXCOLOR *pC2);
/* Linear interpolation of r,g,b, and a. C1 + s(C2-C1) */
D3DXCOLOR* D3DXColorLerp
(D3DXCOLOR *pOut, CONST D3DXCOLOR *pC1, CONST D3DXCOLOR *pC2, FLOAT s);
/* non-inline */
#ifdef __cplusplus
extern "C" {
#endif
/* Interpolate r,g,b between desaturated color and color.
* DesaturatedColor + s(Color - DesaturatedColor) */
D3DXCOLOR* WINAPI D3DXColorAdjustSaturation
(D3DXCOLOR *pOut, CONST D3DXCOLOR *pC, FLOAT s);
/* Interpolate r,g,b between 50% grey and color. Grey + s(Color - Grey) */
D3DXCOLOR* WINAPI D3DXColorAdjustContrast
(D3DXCOLOR *pOut, CONST D3DXCOLOR *pC, FLOAT c);
#ifdef __cplusplus
}
#endif
/*
* Misc
*/
#ifdef __cplusplus
extern "C" {
#endif
/* Calculate Fresnel term given the cosine of theta (likely obtained by
* taking the dot of two normals), and the refraction index of the material. */
FLOAT WINAPI D3DXFresnelTerm
(FLOAT CosTheta, FLOAT RefractionIndex);
#ifdef __cplusplus
}
#endif
/*
*
* Matrix Stack
*
*/
typedef interface ID3DXMatrixStack ID3DXMatrixStack;
typedef interface ID3DXMatrixStack *LPD3DXMATRIXSTACK;
/* {E3357330-CC5E-11d2-A434-00A0C90629A8} */
DEFINE_GUID( IID_ID3DXMatrixStack,
0xe3357330, 0xcc5e, 0x11d2, 0xa4, 0x34, 0x0, 0xa0, 0xc9, 0x6, 0x29, 0xa8);
#undef INTERFACE
#define INTERFACE ID3DXMatrixStack
DECLARE_INTERFACE_(ID3DXMatrixStack, IUnknown)
{
/* IUnknown methods */
STDMETHOD(QueryInterface)(THIS_ REFIID riid, LPVOID * ppvObj) PURE;
STDMETHOD_(ULONG,AddRef)(THIS) PURE;
STDMETHOD_(ULONG,Release)(THIS) PURE;
/* ID3DXMatrixStack methods */
/* Pops the top of the stack, returns the current top
* *after* popping the top. */
STDMETHOD(Pop)(THIS) PURE;
/* Pushes the stack by one, duplicating the current matrix. */
STDMETHOD(Push)(THIS) PURE;
/* Loads identity in the current matrix. */
STDMETHOD(LoadIdentity)(THIS) PURE;
/* Loads the given matrix into the current matrix */
STDMETHOD(LoadMatrix)(THIS_ CONST D3DXMATRIX* pM ) PURE;
/* Right-Multiplies the given matrix to the current matrix.
* (transformation is about the current world origin) */
STDMETHOD(MultMatrix)(THIS_ CONST D3DXMATRIX* pM ) PURE;
/* Left-Multiplies the given matrix to the current matrix
* (transformation is about the local origin of the object) */
STDMETHOD(MultMatrixLocal)(THIS_ CONST D3DXMATRIX* pM ) PURE;
/* Right multiply the current matrix with the computed rotation
* matrix, counterclockwise about the given axis with the given angle.
* (rotation is about the current world origin) */
STDMETHOD(RotateAxis)
(THIS_ CONST D3DXVECTOR3* pV, FLOAT Angle) PURE;
/* Left multiply the current matrix with the computed rotation
* matrix, counterclockwise about the given axis with the given angle.
* (rotation is about the local origin of the object) */
STDMETHOD(RotateAxisLocal)
(THIS_ CONST D3DXVECTOR3* pV, FLOAT Angle) PURE;
/* Right multiply the current matrix with the computed rotation
* matrix. All angles are counterclockwise. (rotation is about the
* current world origin)
* The rotation is composed of a yaw around the Y axis, a pitch around
* the X axis, and a roll around the Z axis. */
STDMETHOD(RotateYawPitchRoll)
(THIS_ FLOAT Yaw, FLOAT Pitch, FLOAT Roll) PURE;
/* Left multiply the current matrix with the computed rotation
* matrix. All angles are counterclockwise. (rotation is about the
* local origin of the object)
* The rotation is composed of a yaw around the Y axis, a pitch around
* the X axis, and a roll around the Z axis. */
STDMETHOD(RotateYawPitchRollLocal)
(THIS_ FLOAT Yaw, FLOAT Pitch, FLOAT Roll) PURE;
/* Right multiply the current matrix with the computed scale
* matrix. (transformation is about the current world origin) */
STDMETHOD(Scale)(THIS_ FLOAT x, FLOAT y, FLOAT z) PURE;
/* Left multiply the current matrix with the computed scale
* matrix. (transformation is about the local origin of the object) */
STDMETHOD(ScaleLocal)(THIS_ FLOAT x, FLOAT y, FLOAT z) PURE;
/* Right multiply the current matrix with the computed translation
* matrix. (transformation is about the current world origin) */
STDMETHOD(Translate)(THIS_ FLOAT x, FLOAT y, FLOAT z ) PURE;
/* Left multiply the current matrix with the computed translation
* matrix. (transformation is about the local origin of the object) */
STDMETHOD(TranslateLocal)(THIS_ FLOAT x, FLOAT y, FLOAT z) PURE;
/* Obtain the current matrix at the top of the stack */
STDMETHOD_(D3DXMATRIX*, GetTop)(THIS) PURE;
};
#ifdef __cplusplus
extern "C" {
#endif
HRESULT WINAPI
D3DXCreateMatrixStack(
DWORD Flags,
LPD3DXMATRIXSTACK* ppStack);
#ifdef __cplusplus
}
#endif
#include "d3dx8math.inl"
#pragma warning(default:4201)
#endif /* __D3DX8MATH_H__ */