mirror of
https://github.com/libretro/RetroArch.git
synced 2024-12-11 18:23:45 +00:00
357b7d68f6
(rcheevos) Rename rhash to rc_hash
296 lines
9.3 KiB
C
296 lines
9.3 KiB
C
/*
|
|
* This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
|
|
* MD5 Message-Digest Algorithm (RFC 1321).
|
|
*
|
|
* Homepage:
|
|
* http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
|
|
*
|
|
* Author:
|
|
* Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
|
|
*
|
|
* This software was written by Alexander Peslyak in 2001. No copyright is
|
|
* claimed, and the software is hereby placed in the public domain.
|
|
* In case this attempt to disclaim copyright and place the software in the
|
|
* public domain is deemed null and void, then the software is
|
|
* Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
|
|
* general public under the following terms:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted.
|
|
*
|
|
* There's ABSOLUTELY NO WARRANTY, express or implied.
|
|
*
|
|
* (This is a heavily cut-down "BSD license".)
|
|
*
|
|
* This differs from Colin Plumb's older public domain implementation in that
|
|
* no exactly 32-bit integer data type is required (any 32-bit or wider
|
|
* unsigned integer data type will do), there's no compile-time endianness
|
|
* configuration, and the function prototypes match OpenSSL's. No code from
|
|
* Colin Plumb's implementation has been reused; this comment merely compares
|
|
* the properties of the two independent implementations.
|
|
*
|
|
* The primary goals of this implementation are portability and ease of use.
|
|
* It is meant to be fast, but not as fast as possible. Some known
|
|
* optimizations are not included to reduce source code size and avoid
|
|
* compile-time configuration.
|
|
*/
|
|
#include <lrc_hash.h>
|
|
|
|
#include <string.h>
|
|
|
|
/*
|
|
* The basic MD5 functions.
|
|
*
|
|
* F and G are optimized compared to their RFC 1321 definitions for
|
|
* architectures that lack an AND-NOT instruction, just like in Colin Plumb's
|
|
* implementation.
|
|
*/
|
|
#define MD5_F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
|
|
#define MD5_G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
|
|
#define MD5_H(x, y, z) (((x) ^ (y)) ^ (z))
|
|
#define MD5_H2(x, y, z) ((x) ^ ((y) ^ (z)))
|
|
#define MD5_I(x, y, z) ((y) ^ ((x) | ~(z)))
|
|
|
|
/*
|
|
* The MD5 transformation for all four rounds.
|
|
*/
|
|
#define MD5_STEP(f, a, b, c, d, x, t, s) \
|
|
(a) += f((b), (c), (d)) + (x) + (t); \
|
|
(a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
|
|
(a) += (b);
|
|
|
|
/*
|
|
* MD5_SET reads 4 input bytes in little-endian byte order and stores them
|
|
* in a properly aligned word in host byte order.
|
|
*
|
|
* The check for little-endian architectures that tolerate unaligned
|
|
* memory accesses is just an optimization. Nothing will break if it
|
|
* doesn't work.
|
|
*/
|
|
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
|
|
#define MD5_SET(n) \
|
|
(*(MD5_u32plus *)&ptr[(n) * 4])
|
|
#define MD5_GET(n) \
|
|
MD5_SET(n)
|
|
#else
|
|
#define MD5_SET(n) \
|
|
(ctx->block[(n)] = \
|
|
(MD5_u32plus)ptr[(n) * 4] | \
|
|
((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
|
|
((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
|
|
((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
|
|
#define MD5_GET(n) \
|
|
(ctx->block[(n)])
|
|
#endif
|
|
|
|
/*
|
|
* This processes one or more 64-byte data blocks, but does NOT update
|
|
* the bit counters. There are no alignment requirements.
|
|
*/
|
|
static const void *MD5_body(MD5_CTX *ctx, const void *data, unsigned long size)
|
|
{
|
|
const unsigned char *ptr;
|
|
MD5_u32plus a, b, c, d;
|
|
MD5_u32plus saved_a, saved_b, saved_c, saved_d;
|
|
|
|
ptr = (const unsigned char *)data;
|
|
|
|
a = ctx->a;
|
|
b = ctx->b;
|
|
c = ctx->c;
|
|
d = ctx->d;
|
|
|
|
do {
|
|
saved_a = a;
|
|
saved_b = b;
|
|
saved_c = c;
|
|
saved_d = d;
|
|
|
|
/* Round 1 */
|
|
MD5_STEP(MD5_F, a, b, c, d, MD5_SET(0), 0xd76aa478, 7)
|
|
MD5_STEP(MD5_F, d, a, b, c, MD5_SET(1), 0xe8c7b756, 12)
|
|
MD5_STEP(MD5_F, c, d, a, b, MD5_SET(2), 0x242070db, 17)
|
|
MD5_STEP(MD5_F, b, c, d, a, MD5_SET(3), 0xc1bdceee, 22)
|
|
MD5_STEP(MD5_F, a, b, c, d, MD5_SET(4), 0xf57c0faf, 7)
|
|
MD5_STEP(MD5_F, d, a, b, c, MD5_SET(5), 0x4787c62a, 12)
|
|
MD5_STEP(MD5_F, c, d, a, b, MD5_SET(6), 0xa8304613, 17)
|
|
MD5_STEP(MD5_F, b, c, d, a, MD5_SET(7), 0xfd469501, 22)
|
|
MD5_STEP(MD5_F, a, b, c, d, MD5_SET(8), 0x698098d8, 7)
|
|
MD5_STEP(MD5_F, d, a, b, c, MD5_SET(9), 0x8b44f7af, 12)
|
|
MD5_STEP(MD5_F, c, d, a, b, MD5_SET(10), 0xffff5bb1, 17)
|
|
MD5_STEP(MD5_F, b, c, d, a, MD5_SET(11), 0x895cd7be, 22)
|
|
MD5_STEP(MD5_F, a, b, c, d, MD5_SET(12), 0x6b901122, 7)
|
|
MD5_STEP(MD5_F, d, a, b, c, MD5_SET(13), 0xfd987193, 12)
|
|
MD5_STEP(MD5_F, c, d, a, b, MD5_SET(14), 0xa679438e, 17)
|
|
MD5_STEP(MD5_F, b, c, d, a, MD5_SET(15), 0x49b40821, 22)
|
|
|
|
/* Round 2 */
|
|
MD5_STEP(MD5_G, a, b, c, d, MD5_GET(1), 0xf61e2562, 5)
|
|
MD5_STEP(MD5_G, d, a, b, c, MD5_GET(6), 0xc040b340, 9)
|
|
MD5_STEP(MD5_G, c, d, a, b, MD5_GET(11), 0x265e5a51, 14)
|
|
MD5_STEP(MD5_G, b, c, d, a, MD5_GET(0), 0xe9b6c7aa, 20)
|
|
MD5_STEP(MD5_G, a, b, c, d, MD5_GET(5), 0xd62f105d, 5)
|
|
MD5_STEP(MD5_G, d, a, b, c, MD5_GET(10), 0x02441453, 9)
|
|
MD5_STEP(MD5_G, c, d, a, b, MD5_GET(15), 0xd8a1e681, 14)
|
|
MD5_STEP(MD5_G, b, c, d, a, MD5_GET(4), 0xe7d3fbc8, 20)
|
|
MD5_STEP(MD5_G, a, b, c, d, MD5_GET(9), 0x21e1cde6, 5)
|
|
MD5_STEP(MD5_G, d, a, b, c, MD5_GET(14), 0xc33707d6, 9)
|
|
MD5_STEP(MD5_G, c, d, a, b, MD5_GET(3), 0xf4d50d87, 14)
|
|
MD5_STEP(MD5_G, b, c, d, a, MD5_GET(8), 0x455a14ed, 20)
|
|
MD5_STEP(MD5_G, a, b, c, d, MD5_GET(13), 0xa9e3e905, 5)
|
|
MD5_STEP(MD5_G, d, a, b, c, MD5_GET(2), 0xfcefa3f8, 9)
|
|
MD5_STEP(MD5_G, c, d, a, b, MD5_GET(7), 0x676f02d9, 14)
|
|
MD5_STEP(MD5_G, b, c, d, a, MD5_GET(12), 0x8d2a4c8a, 20)
|
|
|
|
/* Round 3 */
|
|
MD5_STEP(MD5_H, a, b, c, d, MD5_GET(5), 0xfffa3942, 4)
|
|
MD5_STEP(MD5_H2, d, a, b, c, MD5_GET(8), 0x8771f681, 11)
|
|
MD5_STEP(MD5_H, c, d, a, b, MD5_GET(11), 0x6d9d6122, 16)
|
|
MD5_STEP(MD5_H2, b, c, d, a, MD5_GET(14), 0xfde5380c, 23)
|
|
MD5_STEP(MD5_H, a, b, c, d, MD5_GET(1), 0xa4beea44, 4)
|
|
MD5_STEP(MD5_H2, d, a, b, c, MD5_GET(4), 0x4bdecfa9, 11)
|
|
MD5_STEP(MD5_H, c, d, a, b, MD5_GET(7), 0xf6bb4b60, 16)
|
|
MD5_STEP(MD5_H2, b, c, d, a, MD5_GET(10), 0xbebfbc70, 23)
|
|
MD5_STEP(MD5_H, a, b, c, d, MD5_GET(13), 0x289b7ec6, 4)
|
|
MD5_STEP(MD5_H2, d, a, b, c, MD5_GET(0), 0xeaa127fa, 11)
|
|
MD5_STEP(MD5_H, c, d, a, b, MD5_GET(3), 0xd4ef3085, 16)
|
|
MD5_STEP(MD5_H2, b, c, d, a, MD5_GET(6), 0x04881d05, 23)
|
|
MD5_STEP(MD5_H, a, b, c, d, MD5_GET(9), 0xd9d4d039, 4)
|
|
MD5_STEP(MD5_H2, d, a, b, c, MD5_GET(12), 0xe6db99e5, 11)
|
|
MD5_STEP(MD5_H, c, d, a, b, MD5_GET(15), 0x1fa27cf8, 16)
|
|
MD5_STEP(MD5_H2, b, c, d, a, MD5_GET(2), 0xc4ac5665, 23)
|
|
|
|
/* Round 4 */
|
|
MD5_STEP(MD5_I, a, b, c, d, MD5_GET(0), 0xf4292244, 6)
|
|
MD5_STEP(MD5_I, d, a, b, c, MD5_GET(7), 0x432aff97, 10)
|
|
MD5_STEP(MD5_I, c, d, a, b, MD5_GET(14), 0xab9423a7, 15)
|
|
MD5_STEP(MD5_I, b, c, d, a, MD5_GET(5), 0xfc93a039, 21)
|
|
MD5_STEP(MD5_I, a, b, c, d, MD5_GET(12), 0x655b59c3, 6)
|
|
MD5_STEP(MD5_I, d, a, b, c, MD5_GET(3), 0x8f0ccc92, 10)
|
|
MD5_STEP(MD5_I, c, d, a, b, MD5_GET(10), 0xffeff47d, 15)
|
|
MD5_STEP(MD5_I, b, c, d, a, MD5_GET(1), 0x85845dd1, 21)
|
|
MD5_STEP(MD5_I, a, b, c, d, MD5_GET(8), 0x6fa87e4f, 6)
|
|
MD5_STEP(MD5_I, d, a, b, c, MD5_GET(15), 0xfe2ce6e0, 10)
|
|
MD5_STEP(MD5_I, c, d, a, b, MD5_GET(6), 0xa3014314, 15)
|
|
MD5_STEP(MD5_I, b, c, d, a, MD5_GET(13), 0x4e0811a1, 21)
|
|
MD5_STEP(MD5_I, a, b, c, d, MD5_GET(4), 0xf7537e82, 6)
|
|
MD5_STEP(MD5_I, d, a, b, c, MD5_GET(11), 0xbd3af235, 10)
|
|
MD5_STEP(MD5_I, c, d, a, b, MD5_GET(2), 0x2ad7d2bb, 15)
|
|
MD5_STEP(MD5_I, b, c, d, a, MD5_GET(9), 0xeb86d391, 21)
|
|
|
|
a += saved_a;
|
|
b += saved_b;
|
|
c += saved_c;
|
|
d += saved_d;
|
|
|
|
ptr += 64;
|
|
} while (size -= 64);
|
|
|
|
ctx->a = a;
|
|
ctx->b = b;
|
|
ctx->c = c;
|
|
ctx->d = d;
|
|
|
|
return ptr;
|
|
}
|
|
|
|
void MD5_Init(MD5_CTX *ctx)
|
|
{
|
|
ctx->a = 0x67452301;
|
|
ctx->b = 0xefcdab89;
|
|
ctx->c = 0x98badcfe;
|
|
ctx->d = 0x10325476;
|
|
|
|
ctx->lo = 0;
|
|
ctx->hi = 0;
|
|
}
|
|
|
|
void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size)
|
|
{
|
|
MD5_u32plus saved_lo;
|
|
unsigned long used, available;
|
|
|
|
saved_lo = ctx->lo;
|
|
if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
|
|
ctx->hi++;
|
|
ctx->hi += size >> 29;
|
|
|
|
used = saved_lo & 0x3f;
|
|
|
|
if (used)
|
|
{
|
|
available = 64 - used;
|
|
|
|
if (size < available)
|
|
{
|
|
memcpy(&ctx->buffer[used], data, size);
|
|
return;
|
|
}
|
|
|
|
memcpy(&ctx->buffer[used], data, available);
|
|
data = (const unsigned char *)data + available;
|
|
size -= available;
|
|
MD5_body(ctx, ctx->buffer, 64);
|
|
}
|
|
|
|
if (size >= 64)
|
|
{
|
|
data = MD5_body(ctx, data, size & ~(unsigned long)0x3f);
|
|
size &= 0x3f;
|
|
}
|
|
|
|
memcpy(ctx->buffer, data, size);
|
|
}
|
|
|
|
void MD5_Final(unsigned char *result, MD5_CTX *ctx)
|
|
{
|
|
unsigned long used, available;
|
|
|
|
used = ctx->lo & 0x3f;
|
|
|
|
ctx->buffer[used++] = 0x80;
|
|
|
|
available = 64 - used;
|
|
|
|
if (available < 8)
|
|
{
|
|
memset(&ctx->buffer[used], 0, available);
|
|
MD5_body(ctx, ctx->buffer, 64);
|
|
used = 0;
|
|
available = 64;
|
|
}
|
|
|
|
memset(&ctx->buffer[used], 0, available - 8);
|
|
|
|
ctx->lo <<= 3;
|
|
ctx->buffer[56] = ctx->lo;
|
|
ctx->buffer[57] = ctx->lo >> 8;
|
|
ctx->buffer[58] = ctx->lo >> 16;
|
|
ctx->buffer[59] = ctx->lo >> 24;
|
|
ctx->buffer[60] = ctx->hi;
|
|
ctx->buffer[61] = ctx->hi >> 8;
|
|
ctx->buffer[62] = ctx->hi >> 16;
|
|
ctx->buffer[63] = ctx->hi >> 24;
|
|
|
|
MD5_body(ctx, ctx->buffer, 64);
|
|
|
|
result[0] = ctx->a;
|
|
result[1] = ctx->a >> 8;
|
|
result[2] = ctx->a >> 16;
|
|
result[3] = ctx->a >> 24;
|
|
result[4] = ctx->b;
|
|
result[5] = ctx->b >> 8;
|
|
result[6] = ctx->b >> 16;
|
|
result[7] = ctx->b >> 24;
|
|
result[8] = ctx->c;
|
|
result[9] = ctx->c >> 8;
|
|
result[10] = ctx->c >> 16;
|
|
result[11] = ctx->c >> 24;
|
|
result[12] = ctx->d;
|
|
result[13] = ctx->d >> 8;
|
|
result[14] = ctx->d >> 16;
|
|
result[15] = ctx->d >> 24;
|
|
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
}
|