RetroArch/tasks/task_save.c
2018-04-13 00:47:42 +02:00

1547 lines
38 KiB
C

/* RetroArch - A frontend for libretro.
* Copyright (C) 2011-2017 - Daniel De Matteis
* Copyright (C) 2016-2017 - Brad Parker
*
* RetroArch is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with RetroArch.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#include <string.h>
#include <time.h>
#ifdef _WIN32
#include <direct.h>
#else
#include <unistd.h>
#endif
#include <errno.h>
#include <compat/strl.h>
#include <retro_assert.h>
#include <lists/string_list.h>
#include <streams/interface_stream.h>
#include <streams/file_stream.h>
#include <rthreads/rthreads.h>
#include <file/file_path.h>
#include <retro_miscellaneous.h>
#include <string/stdstring.h>
#ifdef HAVE_CONFIG_H
#include "../core.h"
#endif
#ifdef HAVE_NETWORKING
#include "../network/netplay/netplay.h"
#endif
#include "../core.h"
#include "../file_path_special.h"
#include "../configuration.h"
#include "../gfx/video_driver.h"
#include "../msg_hash.h"
#include "../retroarch.h"
#include "../verbosity.h"
#include "tasks_internal.h"
#define SAVE_STATE_CHUNK 4096
static struct string_list *task_save_files = NULL;
struct ram_type
{
const char *path;
int type;
};
struct save_state_buf
{
void* data;
char path[PATH_MAX_LENGTH];
size_t size;
};
struct sram_block
{
unsigned type;
void *data;
size_t size;
};
typedef struct
{
intfstream_t *file;
char path[PATH_MAX_LENGTH];
void *data;
void *undo_data;
ssize_t size;
ssize_t undo_size;
ssize_t written;
ssize_t bytes_read;
bool load_to_backup_buffer;
bool autoload;
bool autosave;
bool undo_save;
bool mute;
int state_slot;
bool thumbnail_enable;
bool has_valid_framebuffer;
} save_task_state_t;
typedef save_task_state_t load_task_data_t;
/* Holds the previous saved state
* Can be restored to disk with undo_save_state(). */
static struct save_state_buf undo_save_buf;
/* Holds the data from before a load_state() operation
* Can be restored with undo_load_state(). */
static struct save_state_buf undo_load_buf;
#ifdef HAVE_THREADS
typedef struct autosave autosave_t;
/* Autosave support. */
struct autosave_st
{
autosave_t **list;
unsigned num;
};
struct autosave
{
volatile bool quit;
size_t bufsize;
unsigned interval;
void *buffer;
const void *retro_buffer;
const char *path;
slock_t *lock;
slock_t *cond_lock;
scond_t *cond;
sthread_t *thread;
};
static struct autosave_st autosave_state;
/**
* autosave_thread:
* @data : pointer to autosave object
*
* Callback function for (threaded) autosave.
**/
static void autosave_thread(void *data)
{
bool first_log = true;
autosave_t *save = (autosave_t*)data;
while (!save->quit)
{
bool differ;
slock_lock(save->lock);
differ = string_is_not_equal_fast(save->buffer, save->retro_buffer,
save->bufsize);
if (differ)
memcpy(save->buffer, save->retro_buffer, save->bufsize);
slock_unlock(save->lock);
if (differ)
{
/* Should probably deal with this more elegantly. */
intfstream_t *file = intfstream_open_file(save->path,
RETRO_VFS_FILE_ACCESS_WRITE, RETRO_VFS_FILE_ACCESS_HINT_NONE);
if (file)
{
bool failed = false;
/* Avoid spamming down stderr ... */
if (first_log)
{
RARCH_LOG("Autosaving SRAM to \"%s\", will continue to check every %u seconds ...\n",
save->path, save->interval);
first_log = false;
}
else
RARCH_LOG("SRAM changed ... autosaving ...\n");
failed |= ((size_t)intfstream_write(file, save->buffer, save->bufsize) != save->bufsize);
failed |= (intfstream_flush(file) != 0);
failed |= (intfstream_close(file) != 0);
free(file);
if (failed)
RARCH_WARN("Failed to autosave SRAM. Disk might be full.\n");
}
}
slock_lock(save->cond_lock);
if (!save->quit)
#if defined(_MSC_VER) && _MSC_VER <= 1200
scond_wait_timeout(save->cond, save->cond_lock, save->interval * 1000000);
#else
scond_wait_timeout(save->cond, save->cond_lock, save->interval * 1000000LL);
#endif
slock_unlock(save->cond_lock);
}
}
/**
* autosave_new:
* @path : path to autosave file
* @data : pointer to buffer
* @size : size of @data buffer
* @interval : interval at which saves should be performed.
*
* Create and initialize autosave object.
*
* Returns: pointer to new autosave_t object if successful, otherwise
* NULL.
**/
static autosave_t *autosave_new(const char *path,
const void *data, size_t size,
unsigned interval)
{
autosave_t *handle = (autosave_t*)malloc(sizeof(*handle));
if (!handle)
goto error;
handle->quit = false;
handle->bufsize = size;
handle->interval = interval;
handle->buffer = malloc(size);
handle->retro_buffer = data;
handle->path = path;
if (!handle->buffer)
goto error;
memcpy(handle->buffer, handle->retro_buffer, handle->bufsize);
handle->lock = slock_new();
handle->cond_lock = slock_new();
handle->cond = scond_new();
handle->thread = sthread_create(autosave_thread, handle);
return handle;
error:
if (handle)
free(handle);
return NULL;
}
/**
* autosave_free:
* @handle : pointer to autosave object
*
* Frees autosave object.
**/
static void autosave_free(autosave_t *handle)
{
slock_lock(handle->cond_lock);
handle->quit = true;
slock_unlock(handle->cond_lock);
scond_signal(handle->cond);
sthread_join(handle->thread);
slock_free(handle->lock);
slock_free(handle->cond_lock);
scond_free(handle->cond);
if (handle->buffer)
free(handle->buffer);
handle->buffer = NULL;
}
bool autosave_init(void)
{
unsigned i;
autosave_t **list = NULL;
settings_t *settings = config_get_ptr();
unsigned autosave_interval = settings->uints.autosave_interval;
if (autosave_interval < 1 || !task_save_files)
return false;
list = (autosave_t**)
calloc(task_save_files->size,
sizeof(*autosave_state.list));
if (!list)
return false;
autosave_state.list = list;
autosave_state.num = (unsigned)task_save_files->size;
for (i = 0; i < task_save_files->size; i++)
{
retro_ctx_memory_info_t mem_info;
autosave_t *auto_st = NULL;
const char *path = task_save_files->elems[i].data;
unsigned type = task_save_files->elems[i].attr.i;
mem_info.id = type;
core_get_memory(&mem_info);
if (mem_info.size <= 0)
continue;
auto_st = autosave_new(path,
mem_info.data,
mem_info.size,
autosave_interval);
if (!auto_st)
{
RARCH_WARN("%s\n", msg_hash_to_str(MSG_AUTOSAVE_FAILED));
continue;
}
autosave_state.list[i] = auto_st;
}
return true;
}
void autosave_deinit(void)
{
unsigned i;
for (i = 0; i < autosave_state.num; i++)
{
autosave_t *handle = autosave_state.list[i];
if (handle)
{
autosave_free(handle);
free(autosave_state.list[i]);
}
autosave_state.list[i] = NULL;
}
free(autosave_state.list);
autosave_state.list = NULL;
autosave_state.num = 0;
}
#endif
/**
* autosave_lock:
*
* Lock autosave.
**/
void autosave_lock(void)
{
#ifdef HAVE_THREADS
unsigned i;
for (i = 0; i < autosave_state.num; i++)
{
autosave_t *handle = autosave_state.list[i];
if (handle)
slock_lock(handle->lock);
}
#endif
}
/**
* autosave_unlock:
*
* Unlocks autosave.
**/
void autosave_unlock(void)
{
#ifdef HAVE_THREADS
unsigned i;
for (i = 0; i < autosave_state.num; i++)
{
autosave_t *handle = autosave_state.list[i];
if (handle)
slock_unlock(handle->lock);
}
#endif
}
/**
* undo_load_state:
* Revert to the state before a state was loaded.
*
* Returns: true if successful, false otherwise.
**/
bool content_undo_load_state(void)
{
unsigned i;
retro_ctx_serialize_info_t serial_info;
size_t temp_data_size;
bool ret = false;
unsigned num_blocks = 0;
void* temp_data = NULL;
struct sram_block *blocks = NULL;
settings_t *settings = config_get_ptr();
RARCH_LOG("%s: \"%s\".\n",
msg_hash_to_str(MSG_LOADING_STATE),
undo_load_buf.path);
RARCH_LOG("%s: %u %s.\n",
msg_hash_to_str(MSG_STATE_SIZE),
undo_load_buf.size,
msg_hash_to_str(MSG_BYTES));
/* TODO/FIXME - This checking of SRAM overwrite,
* the backing up of it and
* its flushing could all be in their
* own functions... */
if (settings->bools.block_sram_overwrite && task_save_files
&& task_save_files->size)
{
RARCH_LOG("%s.\n",
msg_hash_to_str(MSG_BLOCKING_SRAM_OVERWRITE));
blocks = (struct sram_block*)
calloc(task_save_files->size, sizeof(*blocks));
if (blocks)
{
num_blocks = (unsigned)task_save_files->size;
for (i = 0; i < num_blocks; i++)
blocks[i].type = task_save_files->elems[i].attr.i;
}
}
for (i = 0; i < num_blocks; i++)
{
retro_ctx_memory_info_t mem_info;
mem_info.id = blocks[i].type;
core_get_memory(&mem_info);
blocks[i].size = mem_info.size;
}
for (i = 0; i < num_blocks; i++)
if (blocks[i].size)
blocks[i].data = malloc(blocks[i].size);
/* Backup current SRAM which is overwritten by unserialize. */
for (i = 0; i < num_blocks; i++)
{
if (blocks[i].data)
{
retro_ctx_memory_info_t mem_info;
const void *ptr = NULL;
mem_info.id = blocks[i].type;
core_get_memory(&mem_info);
ptr = mem_info.data;
if (ptr)
memcpy(blocks[i].data, ptr, blocks[i].size);
}
}
/* We need to make a temporary copy of the buffer, to allow the swap below */
temp_data = malloc(undo_load_buf.size);
temp_data_size = undo_load_buf.size;
memcpy(temp_data, undo_load_buf.data, undo_load_buf.size);
serial_info.data_const = temp_data;
serial_info.size = temp_data_size;
/* Swap the current state with the backup state. This way, we can undo
what we're undoing */
content_save_state("RAM", false, false);
ret = core_unserialize(&serial_info);
/* Clean up the temporary copy */
free(temp_data);
temp_data = NULL;
/* Flush back. */
for (i = 0; i < num_blocks; i++)
{
if (blocks[i].data)
{
retro_ctx_memory_info_t mem_info;
void *ptr = NULL;
mem_info.id = blocks[i].type;
core_get_memory(&mem_info);
ptr = mem_info.data;
if (ptr)
memcpy(ptr, blocks[i].data, blocks[i].size);
}
}
for (i = 0; i < num_blocks; i++)
free(blocks[i].data);
free(blocks);
if (!ret)
{
RARCH_ERR("%s \"%s\".\n",
msg_hash_to_str(MSG_FAILED_TO_UNDO_LOAD_STATE),
undo_load_buf.path);
}
return ret;
}
static void undo_save_state_cb(void *task_data,
void *user_data, const char *error)
{
/* Wipe the save file buffer as it's intended to be one use only */
undo_save_buf.path[0] = '\0';
undo_save_buf.size = 0;
if (undo_save_buf.data)
{
free(undo_save_buf.data);
undo_save_buf.data = NULL;
}
}
/**
* task_save_handler_finished:
* @task : the task to finish
* @state : the state associated with this task
*
* Close the save state file and finish the task.
**/
static void task_save_handler_finished(retro_task_t *task,
save_task_state_t *state)
{
save_task_state_t *task_data = NULL;
task_set_finished(task, true);
intfstream_close(state->file);
free(state->file);
if (!task_get_error(task) && task_get_cancelled(task))
task_set_error(task, strdup("Task canceled"));
task_data = (save_task_state_t*)calloc(1, sizeof(*task_data));
memcpy(task_data, state, sizeof(*state));
task_set_data(task, task_data);
if (state->data)
{
if (state->undo_save && state->data == undo_save_buf.data)
undo_save_buf.data = NULL;
free(state->data);
state->data = NULL;
}
free(state);
}
/**
* task_save_handler:
* @task : the task being worked on
*
* Write a chunk of data to the save state file.
**/
static void task_save_handler(retro_task_t *task)
{
int written;
ssize_t remaining;
save_task_state_t *state = (save_task_state_t*)task->state;
if (!state->file)
{
state->file = intfstream_open_file(state->path, RETRO_VFS_FILE_ACCESS_WRITE,
RETRO_VFS_FILE_ACCESS_HINT_NONE);
if (!state->file)
return;
}
remaining = MIN(state->size - state->written, SAVE_STATE_CHUNK);
written = (int)intfstream_write(state->file,
(uint8_t*)state->data + state->written, remaining);
state->written += written;
task_set_progress(task, (state->written / (float)state->size) * 100);
if (task_get_cancelled(task) || written != remaining)
{
char err[256];
err[0] = '\0';
if (state->undo_save)
{
RARCH_ERR("%s \"%s\".\n",
msg_hash_to_str(MSG_FAILED_TO_UNDO_SAVE_STATE),
undo_save_buf.path);
snprintf(err, sizeof(err), "%s \"%s\".",
msg_hash_to_str(MSG_FAILED_TO_UNDO_SAVE_STATE),
"RAM");
}
else
snprintf(err, sizeof(err), "%s %s", msg_hash_to_str(MSG_FAILED_TO_SAVE_STATE_TO), state->path);
task_set_error(task, strdup(err));
task_save_handler_finished(task, state);
return;
}
if (state->written == state->size)
{
char *msg = NULL;
task_free_title(task);
if (state->undo_save)
msg = strdup(msg_hash_to_str(MSG_RESTORED_OLD_SAVE_STATE));
else if (state->state_slot < 0)
msg = strdup(msg_hash_to_str(MSG_SAVED_STATE_TO_SLOT_AUTO));
else
{
char new_msg[128];
new_msg[0] = '\0';
snprintf(new_msg, sizeof(new_msg), msg_hash_to_str(MSG_SAVED_STATE_TO_SLOT),
state->state_slot);
msg = strdup(new_msg);
}
if (!task_get_mute(task) && msg)
{
task_set_title(task, msg);
msg = NULL;
}
task_save_handler_finished(task, state);
if (!string_is_empty(msg))
free(msg);
return;
}
}
/**
* task_push_undo_save_state:
* @path : file path of the save state
* @data : the save state data to write
* @size : the total size of the save state
*
* Create a new task to undo the last save of the content state.
**/
static bool task_push_undo_save_state(const char *path, void *data, size_t size)
{
retro_task_t *task = (retro_task_t*)calloc(1, sizeof(*task));
save_task_state_t *state = (save_task_state_t*)calloc(1, sizeof(*state));
settings_t *settings = config_get_ptr();
if (!task || !state)
goto error;
strlcpy(state->path, path, sizeof(state->path));
state->data = data;
state->size = size;
state->undo_save = true;
state->state_slot = settings->ints.state_slot;
state->has_valid_framebuffer = video_driver_cached_frame_has_valid_framebuffer();
task->type = TASK_TYPE_BLOCKING;
task->state = state;
task->handler = task_save_handler;
task->callback = undo_save_state_cb;
task->title = strdup(msg_hash_to_str(MSG_UNDOING_SAVE_STATE));
task_queue_push(task);
return true;
error:
if (data)
free(data);
if (state)
free(state);
if (task)
free(task);
return false;
}
/**
* undo_save_state:
* Reverts the last save operation
*
* Returns: true if successful, false otherwise.
**/
bool content_undo_save_state(void)
{
return task_push_undo_save_state(undo_save_buf.path,
undo_save_buf.data,
undo_save_buf.size);
}
/**
* task_load_handler_finished:
* @task : the task to finish
* @state : the state associated with this task
*
* Close the loaded state file and finish the task.
**/
static void task_load_handler_finished(retro_task_t *task,
save_task_state_t *state)
{
load_task_data_t *task_data = NULL;
task_set_finished(task, true);
if (state->file)
{
intfstream_close(state->file);
free(state->file);
}
if (!task_get_error(task) && task_get_cancelled(task))
task_set_error(task, strdup("Task canceled"));
task_data = (load_task_data_t*)calloc(1, sizeof(*task_data));
memcpy(task_data, state, sizeof(*task_data));
task_set_data(task, task_data);
free(state);
}
/**
* task_load_handler:
* @task : the task being worked on
*
* Load a chunk of data from the save state file.
**/
static void task_load_handler(retro_task_t *task)
{
ssize_t remaining, bytes_read;
save_task_state_t *state = (save_task_state_t*)task->state;
if (!state->file)
{
state->file = intfstream_open_file(state->path,
RETRO_VFS_FILE_ACCESS_READ,
RETRO_VFS_FILE_ACCESS_HINT_NONE);
if (!state->file)
goto error;
if (intfstream_seek(state->file, 0, SEEK_END) != 0)
goto error;
state->size = intfstream_tell(state->file);
if (state->size < 0)
goto error;
intfstream_rewind(state->file);
state->data = malloc(state->size + 1);
if (!state->data)
goto error;
}
remaining = MIN(state->size - state->bytes_read, SAVE_STATE_CHUNK);
bytes_read = intfstream_read(state->file,
(uint8_t*)state->data + state->bytes_read, remaining);
state->bytes_read += bytes_read;
if (state->size > 0)
task_set_progress(task, (state->bytes_read / (float)state->size) * 100);
if (task_get_cancelled(task) || bytes_read != remaining)
{
if (state->autoload)
{
char *msg = (char*)malloc(1024 * sizeof(char));
msg[0] = '\0';
snprintf(msg,
1024 * sizeof(char),
"%s \"%s\" %s.",
msg_hash_to_str(MSG_AUTOLOADING_SAVESTATE_FROM),
state->path,
msg_hash_to_str(MSG_FAILED));
task_set_error(task, strdup(msg));
free(msg);
}
else
task_set_error(task, strdup(msg_hash_to_str(MSG_FAILED_TO_LOAD_STATE)));
free(state->data);
state->data = NULL;
task_load_handler_finished(task, state);
return;
}
if (state->bytes_read == state->size)
{
char *msg = (char*)malloc(1024 * sizeof(char));
msg[0] = '\0';
task_free_title(task);
if (state->autoload)
{
snprintf(msg,
1024 * sizeof(char),
"%s \"%s\" %s.",
msg_hash_to_str(MSG_AUTOLOADING_SAVESTATE_FROM),
state->path,
msg_hash_to_str(MSG_SUCCEEDED));
}
else
{
if (state->state_slot < 0)
strlcpy(msg, msg_hash_to_str(MSG_LOADED_STATE_FROM_SLOT_AUTO),
1024 * sizeof(char)
);
else
snprintf(msg,
1024 * sizeof(char),
msg_hash_to_str(MSG_LOADED_STATE_FROM_SLOT),
state->state_slot);
}
if (!task_get_mute(task))
task_set_title(task, strdup(msg));
free(msg);
task_load_handler_finished(task, state);
return;
}
return;
error:
task_load_handler_finished(task, state);
}
/**
* content_load_state_cb:
* @path : path that state will be loaded from.
* Load a state from disk to memory.
*
**/
static void content_load_state_cb(void *task_data,
void *user_data, const char *error)
{
retro_ctx_serialize_info_t serial_info;
unsigned i;
bool ret;
load_task_data_t *load_data = (load_task_data_t*)task_data;
ssize_t size = load_data->size;
unsigned num_blocks = 0;
void *buf = load_data->data;
struct sram_block *blocks = NULL;
settings_t *settings = config_get_ptr();
RARCH_LOG("%s: \"%s\".\n",
msg_hash_to_str(MSG_LOADING_STATE),
load_data->path);
if (size < 0 || !buf)
goto error;
RARCH_LOG("%s: %u %s.\n",
msg_hash_to_str(MSG_STATE_SIZE),
(unsigned)size,
msg_hash_to_str(MSG_BYTES));
/* This means we're backing up the file in memory, so content_undo_save_state()
can restore it */
if (load_data->load_to_backup_buffer)
{
/* If we were previously backing up a file, let go of it first */
if (undo_save_buf.data)
{
free(undo_save_buf.data);
undo_save_buf.data = NULL;
}
undo_save_buf.data = malloc(size);
if (!undo_save_buf.data)
goto error;
memcpy(undo_save_buf.data, buf, size);
undo_save_buf.size = size;
strlcpy(undo_save_buf.path, load_data->path, sizeof(undo_save_buf.path));
free(buf);
free(load_data);
return;
}
if (settings->bools.block_sram_overwrite && task_save_files
&& task_save_files->size)
{
RARCH_LOG("%s.\n",
msg_hash_to_str(MSG_BLOCKING_SRAM_OVERWRITE));
blocks = (struct sram_block*)
calloc(task_save_files->size, sizeof(*blocks));
if (blocks)
{
num_blocks = (unsigned)task_save_files->size;
for (i = 0; i < num_blocks; i++)
blocks[i].type = task_save_files->elems[i].attr.i;
}
}
for (i = 0; i < num_blocks; i++)
{
retro_ctx_memory_info_t mem_info;
mem_info.id = blocks[i].type;
core_get_memory(&mem_info);
blocks[i].size = mem_info.size;
}
for (i = 0; i < num_blocks; i++)
if (blocks[i].size)
blocks[i].data = malloc(blocks[i].size);
/* Backup current SRAM which is overwritten by unserialize. */
for (i = 0; i < num_blocks; i++)
{
if (blocks[i].data)
{
retro_ctx_memory_info_t mem_info;
const void *ptr = NULL;
mem_info.id = blocks[i].type;
core_get_memory(&mem_info);
ptr = mem_info.data;
if (ptr)
memcpy(blocks[i].data, ptr, blocks[i].size);
}
}
serial_info.data_const = buf;
serial_info.size = size;
/* Backup the current state so we can undo this load */
content_save_state("RAM", false, false);
ret = core_unserialize(&serial_info);
/* Flush back. */
for (i = 0; i < num_blocks; i++)
{
if (blocks[i].data)
{
retro_ctx_memory_info_t mem_info;
void *ptr = NULL;
mem_info.id = blocks[i].type;
core_get_memory(&mem_info);
ptr = mem_info.data;
if (ptr)
memcpy(ptr, blocks[i].data, blocks[i].size);
}
}
for (i = 0; i < num_blocks; i++)
free(blocks[i].data);
free(blocks);
if (!ret)
goto error;
free(buf);
free(load_data);
return;
error:
RARCH_ERR("%s \"%s\".\n",
msg_hash_to_str(MSG_FAILED_TO_LOAD_STATE),
load_data->path);
if (buf)
free(buf);
free(load_data);
}
/**
* save_state_cb:
*
* Called after the save state is done. Takes a screenshot if needed.
**/
static void save_state_cb(void *task_data,
void *user_data, const char *error)
{
save_task_state_t *state = (save_task_state_t*)task_data;
char *path = strdup(state->path);
if (state->thumbnail_enable)
take_screenshot(path, true, state->has_valid_framebuffer);
free(path);
}
/**
* task_push_save_state:
* @path : file path of the save state
* @data : the save state data to write
* @size : the total size of the save state
*
* Create a new task to save the content state.
**/
static void task_push_save_state(const char *path, void *data, size_t size, bool autosave)
{
retro_task_t *task = (retro_task_t*)calloc(1, sizeof(*task));
save_task_state_t *state = (save_task_state_t*)calloc(1, sizeof(*state));
settings_t *settings = config_get_ptr();
if (!task || !state)
goto error;
strlcpy(state->path, path, sizeof(state->path));
state->data = data;
state->size = size;
state->autosave = autosave;
state->mute = autosave; /* don't show OSD messages if we are auto-saving */
state->thumbnail_enable = settings->bools.savestate_thumbnail_enable;
state->state_slot = settings->ints.state_slot;
state->has_valid_framebuffer = video_driver_cached_frame_has_valid_framebuffer();
task->type = TASK_TYPE_BLOCKING;
task->state = state;
task->handler = task_save_handler;
task->callback = save_state_cb;
task->title = strdup(msg_hash_to_str(MSG_SAVING_STATE));
task->mute = state->mute;
task_queue_push(task);
return;
error:
if (data)
free(data);
if (state)
free(state);
if (task)
free(task);
}
/**
* content_load_and_save_state_cb:
* @path : path that state will be loaded from.
* Load then save a state.
*
**/
static void content_load_and_save_state_cb(void *task_data,
void *user_data, const char *error)
{
load_task_data_t *load_data = (load_task_data_t*)task_data;
char *path = strdup(load_data->path);
void *data = load_data->undo_data;
size_t size = load_data->undo_size;
bool autosave = load_data->autosave;
content_load_state_cb(task_data, user_data, error);
task_push_save_state(path, data, size, autosave);
free(path);
}
/**
* task_push_load_and_save_state:
* @path : file path of the save state
* @data : the save state data to write
* @size : the total size of the save state
* @load_to_backup_buffer : If true, the state will be loaded into undo_save_buf.
*
* Create a new task to load current state first into a backup buffer (for undo)
* and then save the content state.
**/
static void task_push_load_and_save_state(const char *path, void *data,
size_t size, bool load_to_backup_buffer, bool autosave)
{
retro_task_t *task = (retro_task_t*)calloc(1, sizeof(*task));
save_task_state_t *state = (save_task_state_t*)calloc(1, sizeof(*state));
settings_t *settings = config_get_ptr();
if (!task || !state)
goto error;
strlcpy(state->path, path, sizeof(state->path));
state->load_to_backup_buffer = load_to_backup_buffer;
state->undo_size = size;
state->undo_data = data;
state->autosave = autosave;
state->mute = autosave; /* don't show OSD messages if we are auto-saving */
if(load_to_backup_buffer)
state->mute = true;
state->state_slot = settings->ints.state_slot;
state->has_valid_framebuffer = video_driver_cached_frame_has_valid_framebuffer();
task->state = state;
task->type = TASK_TYPE_BLOCKING;
task->handler = task_load_handler;
task->callback = content_load_and_save_state_cb;
task->title = strdup(msg_hash_to_str(MSG_LOADING_STATE));
task->mute = state->mute;
task_queue_push(task);
return;
error:
if (data)
free(data);
if (state)
free(state);
if (task)
free(task);
}
/**
* content_save_state:
* @path : path of saved state that shall be written to.
* @save_to_disk: If false, saves the state onto undo_load_buf.
* Save a state from memory to disk.
*
* Returns: true if successful, false otherwise.
**/
bool content_save_state(const char *path, bool save_to_disk, bool autosave)
{
retro_ctx_serialize_info_t serial_info;
retro_ctx_size_info_t info;
bool ret = false;
void *data = NULL;
core_serialize_size(&info);
RARCH_LOG("%s: \"%s\".\n",
msg_hash_to_str(MSG_SAVING_STATE),
path);
if (info.size == 0)
return false;
data = malloc(info.size);
if (!data)
return false;
RARCH_LOG("%s: %d %s.\n",
msg_hash_to_str(MSG_STATE_SIZE),
(int)info.size,
msg_hash_to_str(MSG_BYTES));
serial_info.data = data;
serial_info.size = info.size;
ret = core_serialize(&serial_info);
if (ret)
{
if (save_to_disk)
{
if (filestream_exists(path) && !autosave)
{
/* Before overwritting the savestate file, load it into a buffer
to allow undo_save_state() to work */
/* TODO/FIXME - Use msg_hash_to_str here */
RARCH_LOG("%s ...\n",
msg_hash_to_str(MSG_FILE_ALREADY_EXISTS_SAVING_TO_BACKUP_BUFFER));
task_push_load_and_save_state(path, data, info.size, true, autosave);
}
else
task_push_save_state(path, data, info.size, autosave);
}
else
{
/* save_to_disk is false, which means we are saving the state
in undo_load_buf to allow content_undo_load_state() to restore it */
/* If we were holding onto an old state already, clean it up first */
if (undo_load_buf.data)
{
free(undo_load_buf.data);
undo_load_buf.data = NULL;
}
undo_load_buf.data = malloc(info.size);
if (!undo_load_buf.data)
{
free(data);
return false;
}
memcpy(undo_load_buf.data, data, info.size);
free(data);
undo_load_buf.size = info.size;
strlcpy(undo_load_buf.path, path, sizeof(undo_load_buf.path));
}
}
else
{
free(data);
RARCH_ERR("%s \"%s\".\n",
msg_hash_to_str(MSG_FAILED_TO_SAVE_STATE_TO),
path);
}
return ret;
}
/**
* content_load_state:
* @path : path that state will be loaded from.
* @load_to_backup_buffer: If true, the state will be loaded into undo_save_buf.
* Load a state from disk to memory.
*
* Returns: true if successful, false otherwise.
*
*
**/
bool content_load_state(const char *path,
bool load_to_backup_buffer, bool autoload)
{
retro_task_t *task = (retro_task_t*)calloc(1, sizeof(*task));
save_task_state_t *state = (save_task_state_t*)calloc(1, sizeof(*state));
settings_t *settings = config_get_ptr();
if (!task || !state)
goto error;
strlcpy(state->path, path, sizeof(state->path));
state->load_to_backup_buffer = load_to_backup_buffer;
state->autoload = autoload;
state->state_slot = settings->ints.state_slot;
state->has_valid_framebuffer = video_driver_cached_frame_has_valid_framebuffer();
task->type = TASK_TYPE_BLOCKING;
task->state = state;
task->handler = task_load_handler;
task->callback = content_load_state_cb;
task->title = strdup(msg_hash_to_str(MSG_LOADING_STATE));
task_queue_push(task);
return true;
error:
if (state)
free(state);
if (task)
free(task);
return false;
}
bool content_rename_state(const char *origin, const char *dest)
{
int ret = 0;
if (filestream_exists(dest))
filestream_delete(dest);
ret = filestream_rename(origin, dest);
if (!ret)
return true;
RARCH_LOG("Error %d renaming file %s\n", ret, origin);
return false;
}
/*
*
* TODO/FIXME: Figure out when and where this should be called.
* As it is, when e.g. closing Gambatte, we get the same printf message 4 times.
*
*/
bool content_reset_savestate_backups(void)
{
if (undo_save_buf.data)
{
free(undo_save_buf.data);
undo_save_buf.data = NULL;
}
undo_save_buf.path[0] = '\0';
undo_save_buf.size = 0;
if (undo_load_buf.data)
{
free(undo_load_buf.data);
undo_load_buf.data = NULL;
}
undo_load_buf.path[0] = '\0';
undo_load_buf.size = 0;
return true;
}
bool content_undo_load_buf_is_empty(void)
{
return undo_load_buf.data == NULL || undo_load_buf.size == 0;
}
bool content_undo_save_buf_is_empty(void)
{
return undo_save_buf.data == NULL || undo_save_buf.size == 0;
}
static bool content_get_memory(retro_ctx_memory_info_t *mem_info,
struct ram_type *ram, unsigned slot)
{
ram->type = task_save_files->elems[slot].attr.i;
ram->path = task_save_files->elems[slot].data;
mem_info->id = ram->type;
core_get_memory(mem_info);
if (!mem_info->data || mem_info->size == 0)
return false;
return true;
}
/**
* content_load_ram_file:
* @path : path of RAM state that will be loaded from.
* @type : type of memory
*
* Load a RAM state from disk to memory.
*/
bool content_load_ram_file(unsigned slot)
{
int64_t rc;
struct ram_type ram;
retro_ctx_memory_info_t mem_info;
void *buf = NULL;
if (!content_get_memory(&mem_info, &ram, slot))
return false;
if (!filestream_read_file(ram.path, &buf, &rc))
return false;
if (rc > 0)
{
if (rc > (ssize_t)mem_info.size)
{
RARCH_WARN("SRAM is larger than implementation expects, "
"doing partial load (truncating %u %s %s %u).\n",
(unsigned)rc,
msg_hash_to_str(MSG_BYTES),
msg_hash_to_str(MSG_TO),
(unsigned)mem_info.size);
rc = mem_info.size;
}
memcpy(mem_info.data, buf, (size_t)rc);
}
if (buf)
free(buf);
return true;
}
/**
* dump_to_file_desperate:
* @data : pointer to data buffer.
* @size : size of @data.
* @type : type of file to be saved.
*
* Attempt to save valuable RAM data somewhere.
**/
static bool dump_to_file_desperate(const void *data,
size_t size, unsigned type)
{
time_t time_;
char *path = (char*)malloc(PATH_MAX_LENGTH * sizeof(char));
char *timebuf = (char*)malloc(256 * sizeof(char));
char *application_data = (char*)malloc(PATH_MAX_LENGTH * sizeof(char));
timebuf[0] = application_data[0] = path[0] = '\0';
if (!fill_pathname_application_data(application_data,
PATH_MAX_LENGTH * sizeof(char)))
goto error;
snprintf(path,
PATH_MAX_LENGTH * sizeof(char),
"%s/RetroArch-recovery-%u",
application_data, type);
time(&time_);
strftime(timebuf,
256 * sizeof(char),
"%Y-%m-%d-%H-%M-%S", localtime(&time_));
strlcat(path, timebuf,
PATH_MAX_LENGTH * sizeof(char)
);
if (!filestream_write_file(path, data, size))
goto error;
free(application_data);
free(timebuf);
RARCH_WARN("Succeeded in saving RAM data to \"%s\".\n", path);
free(path);
return true;
error:
free(application_data);
free(timebuf);
free(path);
return false;
}
/**
* content_save_ram_file:
* @path : path of RAM state that shall be written to.
* @type : type of memory
*
* Save a RAM state from memory to disk.
*
*/
bool content_save_ram_file(unsigned slot)
{
struct ram_type ram;
retro_ctx_memory_info_t mem_info;
if (!content_get_memory(&mem_info, &ram, slot))
return false;
RARCH_LOG("%s #%u %s \"%s\".\n",
msg_hash_to_str(MSG_SAVING_RAM_TYPE),
ram.type,
msg_hash_to_str(MSG_TO),
ram.path);
if (!filestream_write_file(
ram.path, mem_info.data, mem_info.size))
{
RARCH_ERR("%s.\n",
msg_hash_to_str(MSG_FAILED_TO_SAVE_SRAM));
RARCH_WARN("Attempting to recover ...\n");
/* In case the file could not be written to,
* the fallback function 'dump_to_file_desperate'
* will be called. */
if (!dump_to_file_desperate(
mem_info.data, mem_info.size, ram.type))
{
RARCH_WARN("Failed ... Cannot recover save file.\n");
}
return false;
}
RARCH_LOG("%s \"%s\".\n",
msg_hash_to_str(MSG_SAVED_SUCCESSFULLY_TO),
ram.path);
return true;
}
bool event_save_files(void)
{
unsigned i;
if (!task_save_files ||
!rarch_ctl(RARCH_CTL_IS_SRAM_USED, NULL))
return false;
for (i = 0; i < task_save_files->size; i++)
content_save_ram_file(i);
return true;
}
bool event_load_save_files(void)
{
unsigned i;
if (!task_save_files ||
rarch_ctl(RARCH_CTL_IS_SRAM_LOAD_DISABLED, NULL))
return false;
for (i = 0; i < task_save_files->size; i++)
content_load_ram_file(i);
return true;
}
void path_init_savefile_rtc(const char *savefile_path)
{
union string_list_elem_attr attr;
char *savefile_name_rtc = (char*)
malloc(PATH_MAX_LENGTH * sizeof(char));
savefile_name_rtc[0] = '\0';
attr.i = RETRO_MEMORY_SAVE_RAM;
string_list_append(task_save_files, savefile_path, attr);
/* Infer .rtc save path from save ram path. */
attr.i = RETRO_MEMORY_RTC;
fill_pathname(savefile_name_rtc,
savefile_path,
file_path_str(FILE_PATH_RTC_EXTENSION),
PATH_MAX_LENGTH * sizeof(char));
string_list_append(task_save_files, savefile_name_rtc, attr);
free(savefile_name_rtc);
}
void path_deinit_savefile(void)
{
if (task_save_files)
string_list_free(task_save_files);
task_save_files = NULL;
}
void path_init_savefile_new(void)
{
task_save_files = string_list_new();
retro_assert(task_save_files);
}
void *savefile_ptr_get(void)
{
return task_save_files;
}