RetroArch/deps/ibxm/ibxm.c
SimpleTease 8017ecd2b8 ibxm: update to 20191214
- Fix music playback (sample skipping)
- Add more platforms
- Fix Mr. Boom music
2020-11-21 20:30:19 +00:00

1943 lines
64 KiB
C

#include "stdlib.h"
#include "string.h"
#include "ibxm.h"
const char *IBXM_VERSION = "ibxm/ac mod/xm/s3m replay 20191214 (c)mumart@gmail.com";
static const int FP_SHIFT = 15, FP_ONE = 32768, FP_MASK = 32767;
static const int exp2_table[] = {
32768, 32946, 33125, 33305, 33486, 33667, 33850, 34034,
34219, 34405, 34591, 34779, 34968, 35158, 35349, 35541,
35734, 35928, 36123, 36319, 36516, 36715, 36914, 37114,
37316, 37518, 37722, 37927, 38133, 38340, 38548, 38757,
38968, 39180, 39392, 39606, 39821, 40037, 40255, 40473,
40693, 40914, 41136, 41360, 41584, 41810, 42037, 42265,
42495, 42726, 42958, 43191, 43425, 43661, 43898, 44137,
44376, 44617, 44859, 45103, 45348, 45594, 45842, 46091,
46341, 46593, 46846, 47100, 47356, 47613, 47871, 48131,
48393, 48655, 48920, 49185, 49452, 49721, 49991, 50262,
50535, 50810, 51085, 51363, 51642, 51922, 52204, 52488,
52773, 53059, 53347, 53637, 53928, 54221, 54515, 54811,
55109, 55408, 55709, 56012, 56316, 56622, 56929, 57238,
57549, 57861, 58176, 58491, 58809, 59128, 59449, 59772,
60097, 60423, 60751, 61081, 61413, 61746, 62081, 62419,
62757, 63098, 63441, 63785, 64132, 64480, 64830, 65182,
65536
};
static const short sine_table[] = {
0, 24, 49, 74, 97, 120, 141, 161, 180, 197, 212, 224, 235, 244, 250, 253,
255, 253, 250, 244, 235, 224, 212, 197, 180, 161, 141, 120, 97, 74, 49, 24
};
struct note {
unsigned char key, instrument, volume, effect, param;
};
struct channel {
struct replay *replay;
struct instrument *instrument;
struct sample *sample;
struct note note;
int id, key_on, random_seed, pl_row;
int sample_off, sample_idx, sample_fra, freq, ampl, pann;
int volume, panning, fadeout_vol, vol_env_tick, pan_env_tick;
int period, porta_period, retrig_count, fx_count, av_count;
int porta_up_param, porta_down_param, tone_porta_param, offset_param;
int fine_porta_up_param, fine_porta_down_param, xfine_porta_param;
int arpeggio_param, vol_slide_param, gvol_slide_param, pan_slide_param;
int fine_vslide_up_param, fine_vslide_down_param;
int retrig_volume, retrig_ticks, tremor_on_ticks, tremor_off_ticks;
int vibrato_type, vibrato_phase, vibrato_speed, vibrato_depth;
int tremolo_type, tremolo_phase, tremolo_speed, tremolo_depth;
int tremolo_add, vibrato_add, arpeggio_add;
};
struct replay {
int sample_rate, interpolation, global_vol;
int seq_pos, break_pos, row, next_row, tick;
int speed, tempo, pl_count, pl_chan;
int *ramp_buf;
char **play_count;
struct channel *channels;
struct module *module;
};
static int exp_2( int x ) {
int c, m, y;
int x0 = ( x & FP_MASK ) >> ( FP_SHIFT - 7 );
c = exp2_table[ x0 ];
m = exp2_table[ x0 + 1 ] - c;
y = ( m * ( x & ( FP_MASK >> 7 ) ) >> 8 ) + c;
return ( y << FP_SHIFT ) >> ( FP_SHIFT - ( x >> FP_SHIFT ) );
}
static int log_2( int x ) {
int step;
int y = 16 << FP_SHIFT;
for( step = y; step > 0; step >>= 1 ) {
if( exp_2( y - step ) >= x ) {
y -= step;
}
}
return y;
}
static char* data_ascii( struct data *data, int offset, int length, char *dest ) {
int idx, chr;
memset( dest, 32, length );
if( offset > data->length ) {
offset = data->length;
}
if( ( unsigned int ) offset + length > ( unsigned int ) data->length ) {
length = data->length - offset;
}
for( idx = 0; idx < length; idx++ ) {
chr = data->buffer[ offset + idx ] & 0xFF;
if( chr > 32 ) {
dest[ idx ] = chr;
}
}
return dest;
}
static int data_s8( struct data *data, int offset ) {
int value = 0;
if( offset < data->length ) {
value = data->buffer[ offset ];
value = ( value & 0x7F ) - ( value & 0x80 );
}
return value;
}
static int data_u8( struct data *data, int offset ) {
int value = 0;
if( offset < data->length ) {
value = data->buffer[ offset ] & 0xFF;
}
return value;
}
static int data_u16be( struct data *data, int offset ) {
int value = 0;
if( offset + 1 < data->length ) {
value = ( ( data->buffer[ offset ] & 0xFF ) << 8 )
| ( data->buffer[ offset + 1 ] & 0xFF );
}
return value;
}
static int data_u16le( struct data *data, int offset ) {
int value = 0;
if( offset + 1 < data->length ) {
value = ( data->buffer[ offset ] & 0xFF )
| ( ( data->buffer[ offset + 1 ] & 0xFF ) << 8 );
}
return value;
}
static unsigned int data_u32le( struct data *data, int offset ) {
unsigned int value = 0;
if( offset + 3 < data->length ) {
value = ( data->buffer[ offset ] & 0xFF )
| ( ( data->buffer[ offset + 1 ] & 0xFF ) << 8 )
| ( ( data->buffer[ offset + 2 ] & 0xFF ) << 16 )
| ( ( data->buffer[ offset + 3 ] & 0xFF ) << 24 );
}
return value;
}
static void data_sam_s8( struct data *data, int offset, int count, short *dest ) {
int idx, amp, length = data->length;
char *buffer = data->buffer;
if( offset > length ) {
offset = length;
}
if( offset + count > length ) {
count = length - offset;
}
for( idx = 0; idx < count; idx++ ) {
amp = ( buffer[ offset + idx ] & 0xFF ) << 8;
dest[ idx ] = ( amp & 0x7FFF ) - ( amp & 0x8000 );
}
}
static void data_sam_s16le( struct data *data, int offset, int count, short *dest ) {
int idx, amp, length = data->length;
char *buffer = data->buffer;
if( offset > length ) {
offset = length;
}
if( offset + count * 2 > length ) {
count = ( length - offset ) / 2;
}
for( idx = 0; idx < count; idx++ ) {
amp = ( buffer[ offset + idx * 2 ] & 0xFF ) | ( buffer[ offset + idx * 2 + 1 ] << 8 );
dest[ idx ] = ( amp & 0x7FFF ) - ( amp & 0x8000 );
}
}
static int envelope_next_tick( struct envelope *envelope, int tick, int key_on ) {
tick++;
if( envelope->looped && tick >= envelope->loop_end_tick ) {
tick = envelope->loop_start_tick;
}
if( envelope->sustain && key_on && tick >= envelope->sustain_tick ) {
tick = envelope->sustain_tick;
}
return tick;
}
static int envelope_calculate_ampl( struct envelope *envelope, int tick ) {
int idx, point, dt, da;
int ampl = envelope->points_ampl[ envelope->num_points - 1 ];
if( tick < envelope->points_tick[ envelope->num_points - 1 ] ) {
point = 0;
for( idx = 1; idx < envelope->num_points; idx++ ) {
if( envelope->points_tick[ idx ] <= tick ) {
point = idx;
}
}
dt = envelope->points_tick[ point + 1 ] - envelope->points_tick[ point ];
da = envelope->points_ampl[ point + 1 ] - envelope->points_ampl[ point ];
ampl = envelope->points_ampl[ point ];
ampl += ( ( da << 24 ) / dt ) * ( tick - envelope->points_tick[ point ] ) >> 24;
}
return ampl;
}
static void sample_ping_pong( struct sample *sample ) {
int idx;
int loop_start = sample->loop_start;
int loop_length = sample->loop_length;
int loop_end = loop_start + loop_length;
short *sample_data = sample->data;
short *new_data = (short*)calloc( loop_end + loop_length + 1, sizeof( short ) );
if( new_data ) {
memcpy( new_data, sample_data, loop_end * sizeof( short ) );
for( idx = 0; idx < loop_length; idx++ ) {
new_data[ loop_end + idx ] = sample_data[ loop_end - idx - 1 ];
}
free( sample->data );
sample->data = new_data;
sample->loop_length *= 2;
sample->data[ loop_start + sample->loop_length ] = sample->data[ loop_start ];
}
}
/* Deallocate the specified module. */
void dispose_module( struct module *module ) {
int idx, sam;
struct instrument *instrument;
free( module->default_panning );
free( module->sequence );
if( module->patterns ) {
for( idx = 0; idx < module->num_patterns; idx++ ) {
free( module->patterns[ idx ].data );
}
free( module->patterns );
}
if( module->instruments ) {
for( idx = 0; idx <= module->num_instruments; idx++ ) {
instrument = &module->instruments[ idx ];
if( instrument->samples ) {
for( sam = 0; sam < instrument->num_samples; sam++ ) {
free( instrument->samples[ sam ].data );
}
free( instrument->samples );
}
}
free( module->instruments );
}
free( module );
}
static struct module* module_load_xm( struct data *data, char *message ) {
int delta_env, offset, next_offset, idx, entry;
int num_rows, num_notes, pat_data_len, pat_data_offset;
int sam, sam_head_offset, sam_data_bytes, sam_data_samples;
int num_samples, sam_loop_start, sam_loop_length, amp;
int note, flags, key, ins, vol, fxc, fxp;
int point, point_tick, point_offset;
int looped, ping_pong, sixteen_bit;
char ascii[ 16 ], *pattern_data;
struct instrument *instrument;
struct sample *sample;
struct module *module = (struct module*)calloc( 1, sizeof( struct module ) );
if( module ) {
if( data_u16le( data, 58 ) != 0x0104 ) {
strcpy( message, "XM format version must be 0x0104!" );
dispose_module( module );
return NULL;
}
data_ascii( data, 17, 20, module->name );
delta_env = !memcmp( data_ascii( data, 38, 15, ascii ), "DigiBooster Pro", 15 );
offset = 60 + data_u32le( data, 60 );
module->sequence_len = data_u16le( data, 64 );
module->restart_pos = data_u16le( data, 66 );
module->num_channels = data_u16le( data, 68 );
module->num_patterns = data_u16le( data, 70 );
module->num_instruments = data_u16le( data, 72 );
module->linear_periods = data_u16le( data, 74 ) & 0x1;
module->default_gvol = 64;
module->default_speed = data_u16le( data, 76 );
module->default_tempo = data_u16le( data, 78 );
module->c2_rate = 8363;
module->gain = 64;
module->default_panning = (unsigned char*)calloc( module->num_channels, sizeof( unsigned char ) );
if( !module->default_panning ) {
dispose_module( module );
return NULL;
}
for( idx = 0; idx < module->num_channels; idx++ ) {
module->default_panning[ idx ] = 128;
}
module->sequence = (unsigned char*)calloc( module->sequence_len, sizeof( unsigned char ) );
if( !module->sequence ) {
dispose_module( module );
return NULL;
}
for( idx = 0; idx < module->sequence_len; idx++ ) {
entry = data_u8( data, 80 + idx );
module->sequence[ idx ] = entry < module->num_patterns ? entry : 0;
}
module->patterns = (struct pattern*)calloc( module->num_patterns, sizeof( struct pattern ) );
if( !module->patterns ) {
dispose_module( module );
return NULL;
}
for( idx = 0; idx < module->num_patterns; idx++ ) {
if( data_u8( data, offset + 4 ) ) {
strcpy( message, "Unknown pattern packing type!" );
dispose_module( module );
return NULL;
}
num_rows = data_u16le( data, offset + 5 );
if( num_rows < 1 ) {
num_rows = 1;
}
pat_data_len = data_u16le( data, offset + 7 );
offset += data_u32le( data, offset );
next_offset = offset + pat_data_len;
num_notes = num_rows * module->num_channels;
pattern_data = (char*)calloc( num_notes, 5 );
if( !pattern_data ) {
dispose_module( module );
return NULL;
}
module->patterns[ idx ].num_channels = module->num_channels;
module->patterns[ idx ].num_rows = num_rows;
module->patterns[ idx ].data = pattern_data;
if( pat_data_len > 0 ) {
pat_data_offset = 0;
for( note = 0; note < num_notes; note++ ) {
flags = data_u8( data, offset );
if( ( flags & 0x80 ) == 0 ) {
flags = 0x1F;
} else {
offset++;
}
key = ( flags & 0x01 ) > 0 ? data_u8( data, offset++ ) : 0;
pattern_data[ pat_data_offset++ ] = key;
ins = ( flags & 0x02 ) > 0 ? data_u8( data, offset++ ) : 0;
pattern_data[ pat_data_offset++ ] = ins;
vol = ( flags & 0x04 ) > 0 ? data_u8( data, offset++ ) : 0;
pattern_data[ pat_data_offset++ ] = vol;
fxc = ( flags & 0x08 ) > 0 ? data_u8( data, offset++ ) : 0;
fxp = ( flags & 0x10 ) > 0 ? data_u8( data, offset++ ) : 0;
if( fxc >= 0x40 ) {
fxc = fxp = 0;
}
pattern_data[ pat_data_offset++ ] = fxc;
pattern_data[ pat_data_offset++ ] = fxp;
}
}
offset = next_offset;
}
module->instruments = (struct instrument*)calloc( module->num_instruments + 1, sizeof( struct instrument ) );
if( !module->instruments ) {
dispose_module( module );
return NULL;
}
instrument = &module->instruments[ 0 ];
instrument->samples = (struct sample*)calloc( 1, sizeof( struct sample ) );
if( !instrument->samples ) {
dispose_module( module );
return NULL;
}
for( ins = 1; ins <= module->num_instruments; ins++ ) {
instrument = &module->instruments[ ins ];
data_ascii( data, offset + 4, 22, instrument->name );
num_samples = data_u16le( data, offset + 27 );
instrument->num_samples = ( num_samples > 0 ) ? num_samples : 1;
instrument->samples = (struct sample*)calloc( instrument->num_samples, sizeof( struct sample ) );
if( !instrument->samples ) {
dispose_module( module );
return NULL;
}
if( num_samples > 0 ) {
for( key = 0; key < 96; key++ ) {
instrument->key_to_sample[ key + 1 ] = data_u8( data, offset + 33 + key );
}
point_tick = 0;
for( point = 0; point < 12; point++ ) {
point_offset = offset + 129 + ( point * 4 );
point_tick = ( delta_env ? point_tick : 0 ) + data_u16le( data, point_offset );
instrument->vol_env.points_tick[ point ] = point_tick;
instrument->vol_env.points_ampl[ point ] = data_u16le( data, point_offset + 2 );
}
point_tick = 0;
for( point = 0; point < 12; point++ ) {
point_offset = offset + 177 + ( point * 4 );
point_tick = ( delta_env ? point_tick : 0 ) + data_u16le( data, point_offset );
instrument->pan_env.points_tick[ point ] = point_tick;
instrument->pan_env.points_ampl[ point ] = data_u16le( data, point_offset + 2 );
}
instrument->vol_env.num_points = data_u8( data, offset + 225 );
if( instrument->vol_env.num_points > 12 ) {
instrument->vol_env.num_points = 0;
}
instrument->pan_env.num_points = data_u8( data, offset + 226 );
if( instrument->pan_env.num_points > 12 ) {
instrument->pan_env.num_points = 0;
}
instrument->vol_env.sustain_tick = instrument->vol_env.points_tick[ data_u8( data, offset + 227 ) & 0xF ];
instrument->vol_env.loop_start_tick = instrument->vol_env.points_tick[ data_u8( data, offset + 228 ) & 0xF ];
instrument->vol_env.loop_end_tick = instrument->vol_env.points_tick[ data_u8( data, offset + 229 ) & 0xF ];
instrument->pan_env.sustain_tick = instrument->pan_env.points_tick[ data_u8( data, offset + 230 ) & 0xF ];
instrument->pan_env.loop_start_tick = instrument->pan_env.points_tick[ data_u8( data, offset + 231 ) & 0xF ];
instrument->pan_env.loop_end_tick = instrument->pan_env.points_tick[ data_u8( data, offset + 232 ) & 0xF ];
instrument->vol_env.enabled = instrument->vol_env.num_points > 0 && ( data_u8( data, offset + 233 ) & 0x1 );
instrument->vol_env.sustain = ( data_u8( data, offset + 233 ) & 0x2 ) > 0;
instrument->vol_env.looped = ( data_u8( data, offset + 233 ) & 0x4 ) > 0;
instrument->pan_env.enabled = instrument->pan_env.num_points > 0 && ( data_u8( data, offset + 234 ) & 0x1 );
instrument->pan_env.sustain = ( data_u8( data, offset + 234 ) & 0x2 ) > 0;
instrument->pan_env.looped = ( data_u8( data, offset + 234 ) & 0x4 ) > 0;
instrument->vib_type = data_u8( data, offset + 235 );
instrument->vib_sweep = data_u8( data, offset + 236 );
instrument->vib_depth = data_u8( data, offset + 237 );
instrument->vib_rate = data_u8( data, offset + 238 );
instrument->vol_fadeout = data_u16le( data, offset + 239 );
}
offset += data_u32le( data, offset );
sam_head_offset = offset;
offset += num_samples * 40;
for( sam = 0; sam < num_samples; sam++ ) {
sample = &instrument->samples[ sam ];
sam_data_bytes = data_u32le( data, sam_head_offset );
sam_loop_start = data_u32le( data, sam_head_offset + 4 );
sam_loop_length = data_u32le( data, sam_head_offset + 8 );
sample->volume = data_u8( data, sam_head_offset + 12 );
sample->fine_tune = data_s8( data, sam_head_offset + 13 );
looped = ( data_u8( data, sam_head_offset + 14 ) & 0x3 ) > 0;
ping_pong = ( data_u8( data, sam_head_offset + 14 ) & 0x2 ) > 0;
sixteen_bit = ( data_u8( data, sam_head_offset + 14 ) & 0x10 ) > 0;
sample->panning = data_u8( data, sam_head_offset + 15 ) + 1;
sample->rel_note = data_s8( data, sam_head_offset + 16 );
data_ascii( data, sam_head_offset + 18, 22, sample->name );
sam_head_offset += 40;
sam_data_samples = sam_data_bytes;
if( sixteen_bit ) {
sam_data_samples = sam_data_samples >> 1;
sam_loop_start = sam_loop_start >> 1;
sam_loop_length = sam_loop_length >> 1;
}
if( !looped || ( sam_loop_start + sam_loop_length ) > sam_data_samples ) {
sam_loop_start = sam_data_samples;
sam_loop_length = 0;
}
sample->loop_start = sam_loop_start;
sample->loop_length = sam_loop_length;
sample->data = (short*)calloc( sam_data_samples + 1, sizeof( short ) );
if( sample->data ) {
if( sixteen_bit ) {
data_sam_s16le( data, offset, sam_data_samples, sample->data );
} else {
data_sam_s8( data, offset, sam_data_samples, sample->data );
}
amp = 0;
for( idx = 0; idx < sam_data_samples; idx++ ) {
amp = amp + sample->data[ idx ];
amp = ( amp & 0x7FFF ) - ( amp & 0x8000 );
sample->data[ idx ] = amp;
}
sample->data[ sam_loop_start + sam_loop_length ] = sample->data[ sam_loop_start ];
if( ping_pong ) {
sample_ping_pong( sample );
}
} else {
dispose_module( module );
return NULL;
}
offset += sam_data_bytes;
}
}
}
return module;
}
static struct module* module_load_s3m( struct data *data, char *message ) {
int idx, module_data_idx, inst_offset, flags;
int version, sixteen_bit, tune, signed_samples;
int stereo_mode, default_pan, channel_map[ 32 ];
int sample_offset, sample_length, loop_start, loop_length;
int pat_offset, note_offset, row, chan, token;
int key, ins, volume, effect, param, panning;
char *pattern_data;
struct instrument *instrument;
struct sample *sample;
struct module *module = (struct module*)calloc( 1, sizeof( struct module ) );
if( module ) {
data_ascii( data, 0, 28, module->name );
module->sequence_len = data_u16le( data, 32 );
module->num_instruments = data_u16le( data, 34 );
module->num_patterns = data_u16le( data, 36 );
flags = data_u16le( data, 38 );
version = data_u16le( data, 40 );
module->fast_vol_slides = ( ( flags & 0x40 ) == 0x40 ) || version == 0x1300;
signed_samples = data_u16le( data, 42 ) == 1;
if( data_u32le( data, 44 ) != 0x4d524353 ) {
strcpy( message, "Not an S3M file!" );
dispose_module( module );
return NULL;
}
module->default_gvol = data_u8( data, 48 );
module->default_speed = data_u8( data, 49 );
module->default_tempo = data_u8( data, 50 );
module->c2_rate = 8363;
module->gain = data_u8( data, 51 ) & 0x7F;
stereo_mode = ( data_u8( data, 51 ) & 0x80 ) == 0x80;
default_pan = data_u8( data, 53 ) == 0xFC;
for( idx = 0; idx < 32; idx++ ) {
channel_map[ idx ] = -1;
if( data_u8( data, 64 + idx ) < 16 ) {
channel_map[ idx ] = module->num_channels++;
}
}
module->sequence = (unsigned char*)calloc( module->sequence_len, sizeof( unsigned char ) );
if( !module->sequence ){
dispose_module( module );
return NULL;
}
for( idx = 0; idx < module->sequence_len; idx++ ) {
module->sequence[ idx ] = data_u8( data, 96 + idx );
}
module_data_idx = 96 + module->sequence_len;
module->instruments = (struct instrument*)calloc( module->num_instruments + 1, sizeof( struct instrument ) );
if( !module->instruments ) {
dispose_module( module );
return NULL;
}
instrument = &module->instruments[ 0 ];
instrument->num_samples = 1;
instrument->samples = (struct sample*)calloc( 1, sizeof( struct sample ) );
if( !instrument->samples ) {
dispose_module( module );
return NULL;
}
for( ins = 1; ins <= module->num_instruments; ins++ ) {
instrument = &module->instruments[ ins ];
instrument->num_samples = 1;
instrument->samples = (struct sample*)calloc( 1, sizeof( struct sample ) );
if( !instrument->samples ) {
dispose_module( module );
return NULL;
}
sample = &instrument->samples[ 0 ];
inst_offset = data_u16le( data, module_data_idx ) << 4;
module_data_idx += 2;
data_ascii( data, inst_offset + 48, 28, instrument->name );
if( data_u8( data, inst_offset ) == 1 && data_u16le( data, inst_offset + 76 ) == 0x4353 ) {
sample_offset = ( data_u8( data, inst_offset + 13 ) << 20 )
+ ( data_u16le( data, inst_offset + 14 ) << 4 );
sample_length = data_u32le( data, inst_offset + 16 );
loop_start = data_u32le( data, inst_offset + 20 );
loop_length = data_u32le( data, inst_offset + 24 ) - loop_start;
sample->volume = data_u8( data, inst_offset + 28 );
if( data_u8( data, inst_offset + 30 ) != 0 ) {
strcpy( message, "Packed samples not supported!" );
dispose_module( module );
return NULL;
}
if( loop_start + loop_length > sample_length ) {
loop_length = sample_length - loop_start;
}
if( loop_length < 1 || !( data_u8( data, inst_offset + 31 ) & 0x1 ) ) {
loop_start = sample_length;
loop_length = 0;
}
sample->loop_start = loop_start;
sample->loop_length = loop_length;
/* stereo = data_u8( data, inst_offset + 31 ) & 0x2; */
sixteen_bit = data_u8( data, inst_offset + 31 ) & 0x4;
tune = ( log_2( data_u32le( data, inst_offset + 32 ) ) - log_2( module->c2_rate ) ) * 12;
sample->rel_note = tune >> FP_SHIFT;
sample->fine_tune = ( tune & FP_MASK ) >> ( FP_SHIFT - 7 );
sample->data = (short*)calloc( sample_length + 1, sizeof( short ) );
if( sample->data ) {
if( sixteen_bit ) {
data_sam_s16le( data, sample_offset, sample_length, sample->data );
} else {
data_sam_s8( data, sample_offset, sample_length, sample->data );
}
if( !signed_samples ) {
for( idx = 0; idx < sample_length; idx++ ) {
sample->data[ idx ] = ( sample->data[ idx ] & 0xFFFF ) - 32768;
}
}
sample->data[ loop_start + loop_length ] = sample->data[ loop_start ];
} else {
dispose_module( module );
return NULL;
}
}
}
module->patterns = (struct pattern*)calloc( module->num_patterns, sizeof( struct pattern ) );
if( !module->patterns ) {
dispose_module( module );
return NULL;
}
for( idx = 0; idx < module->num_patterns; idx++ ) {
module->patterns[ idx ].num_channels = module->num_channels;
module->patterns[ idx ].num_rows = 64;
pattern_data = (char*)calloc( module->num_channels * 64, 5 );
if( !pattern_data ) {
dispose_module( module );
return NULL;
}
module->patterns[ idx ].data = pattern_data;
pat_offset = ( data_u16le( data, module_data_idx ) << 4 ) + 2;
row = 0;
while( row < 64 ) {
token = data_u8( data, pat_offset++ );
if( token ) {
key = ins = 0;
if( ( token & 0x20 ) == 0x20 ) {
/* Key + Instrument.*/
key = data_u8( data, pat_offset++ );
ins = data_u8( data, pat_offset++ );
if( key < 0xFE ) {
key = ( key >> 4 ) * 12 + ( key & 0xF ) + 1;
} else if( key == 0xFF ) {
key = 0;
}
}
volume = 0;
if( ( token & 0x40 ) == 0x40 ) {
/* Volume Column.*/
volume = ( data_u8( data, pat_offset++ ) & 0x7F ) + 0x10;
if( volume > 0x50 ) {
volume = 0;
}
}
effect = param = 0;
if( ( token & 0x80 ) == 0x80 ) {
/* Effect + Param.*/
effect = data_u8( data, pat_offset++ );
param = data_u8( data, pat_offset++ );
if( effect < 1 || effect >= 0x40 ) {
effect = param = 0;
} else if( effect > 0 ) {
effect += 0x80;
}
}
chan = channel_map[ token & 0x1F ];
if( chan >= 0 ) {
note_offset = ( row * module->num_channels + chan ) * 5;
pattern_data[ note_offset ] = key;
pattern_data[ note_offset + 1 ] = ins;
pattern_data[ note_offset + 2 ] = volume;
pattern_data[ note_offset + 3 ] = effect;
pattern_data[ note_offset + 4 ] = param;
}
} else {
row++;
}
}
module_data_idx += 2;
}
module->default_panning = (unsigned char*)calloc( module->num_channels, sizeof( unsigned char ) );
if( module->default_panning ) {
for( chan = 0; chan < 32; chan++ ) {
if( channel_map[ chan ] >= 0 ) {
panning = 7;
if( stereo_mode ) {
panning = 12;
if( data_u8( data, 64 + chan ) < 8 ) {
panning = 3;
}
}
if( default_pan ) {
flags = data_u8( data, module_data_idx + chan );
if( ( flags & 0x20 ) == 0x20 ) {
panning = flags & 0xF;
}
}
module->default_panning[ channel_map[ chan ] ] = panning * 17;
}
}
} else {
dispose_module( module );
return NULL;
}
}
return module;
}
static struct module* module_load_mod( struct data *data, char *message ) {
int idx, pat, module_data_idx, pat_data_len, pat_data_idx;
int period, key, ins, effect, param, fine_tune;
int sample_length, loop_start, loop_length;
char *pattern_data;
struct instrument *instrument;
struct sample *sample;
struct module *module = (struct module*)calloc( 1, sizeof( struct module ) );
if( module ) {
data_ascii( data, 0, 20, module->name );
module->sequence_len = data_u8( data, 950 ) & 0x7F;
module->restart_pos = data_u8( data, 951 ) & 0x7F;
if( module->restart_pos >= module->sequence_len ) {
module->restart_pos = 0;
}
module->sequence = (unsigned char*)calloc( 128, sizeof( unsigned char ) );
if( !module->sequence ){
dispose_module( module );
return NULL;
}
for( idx = 0; idx < 128; idx++ ) {
pat = data_u8( data, 952 + idx ) & 0x7F;
module->sequence[ idx ] = pat;
if( pat >= module->num_patterns ) {
module->num_patterns = pat + 1;
}
}
switch( data_u16be( data, 1082 ) ) {
case 0x4b2e: /* M.K. */
case 0x4b21: /* M!K! */
case 0x5434: /* FLT4 */
module->num_channels = 4;
module->c2_rate = 8287;
module->gain = 64;
break;
case 0x484e: /* xCHN */
module->num_channels = data_u8( data, 1080 ) - 48;
module->c2_rate = 8363;
module->gain = 32;
break;
case 0x4348: /* xxCH */
module->num_channels = ( data_u8( data, 1080 ) - 48 ) * 10;
module->num_channels += data_u8( data, 1081 ) - 48;
module->c2_rate = 8363;
module->gain = 32;
break;
default:
strcpy( message, "MOD Format not recognised!" );
dispose_module( module );
return NULL;
}
module->default_gvol = 64;
module->default_speed = 6;
module->default_tempo = 125;
module->default_panning = (unsigned char*)calloc( module->num_channels, sizeof( unsigned char ) );
if( !module->default_panning ) {
dispose_module( module );
return NULL;
}
for( idx = 0; idx < module->num_channels; idx++ ) {
module->default_panning[ idx ] = 51;
if( ( idx & 3 ) == 1 || ( idx & 3 ) == 2 ) {
module->default_panning[ idx ] = 204;
}
}
module_data_idx = 1084;
module->patterns = (struct pattern*)calloc( module->num_patterns, sizeof( struct pattern ) );
if( !module->patterns ) {
dispose_module( module );
return NULL;
}
pat_data_len = module->num_channels * 64 * 5;
for( pat = 0; pat < module->num_patterns; pat++ ) {
module->patterns[ pat ].num_channels = module->num_channels;
module->patterns[ pat ].num_rows = 64;
pattern_data = (char*)calloc( 1, pat_data_len );
if( !pattern_data ) {
dispose_module( module );
return NULL;
}
module->patterns[ pat ].data = pattern_data;
for( pat_data_idx = 0; pat_data_idx < pat_data_len; pat_data_idx += 5 ) {
period = ( data_u8( data, module_data_idx ) & 0xF ) << 8;
period = ( period | data_u8( data, module_data_idx + 1 ) ) * 4;
if( period >= 112 && period <= 6848 ) {
key = -12 * log_2( ( period << FP_SHIFT ) / 29021 );
key = ( key + ( key & ( FP_ONE >> 1 ) ) ) >> FP_SHIFT;
pattern_data[ pat_data_idx ] = key;
}
ins = ( data_u8( data, module_data_idx + 2 ) & 0xF0 ) >> 4;
ins = ins | ( data_u8( data, module_data_idx ) & 0x10 );
pattern_data[ pat_data_idx + 1 ] = ins;
effect = data_u8( data, module_data_idx + 2 ) & 0x0F;
param = data_u8( data, module_data_idx + 3 );
if( param == 0 && ( effect < 3 || effect == 0xA ) ) {
effect = 0;
}
if( param == 0 && ( effect == 5 || effect == 6 ) ) {
effect -= 2;
}
if( effect == 8 ) {
if( module->num_channels == 4 ) {
effect = param = 0;
} else if( param > 128 ) {
param = 128;
} else {
param = ( param * 255 ) >> 7;
}
}
pattern_data[ pat_data_idx + 3 ] = effect;
pattern_data[ pat_data_idx + 4 ] = param;
module_data_idx += 4;
}
}
module->num_instruments = 31;
module->instruments = (struct instrument*)calloc( module->num_instruments + 1, sizeof( struct instrument ) );
if( !module->instruments ) {
dispose_module( module );
return NULL;
}
instrument = &module->instruments[ 0 ];
instrument->num_samples = 1;
instrument->samples = (struct sample*)calloc( 1, sizeof( struct sample ) );
if( !instrument->samples ) {
dispose_module( module );
return NULL;
}
for( ins = 1; ins <= module->num_instruments; ins++ ) {
instrument = &module->instruments[ ins ];
instrument->num_samples = 1;
instrument->samples = (struct sample*)calloc( 1, sizeof( struct sample ) );
if( !instrument->samples ) {
dispose_module( module );
return NULL;
}
sample = &instrument->samples[ 0 ];
data_ascii( data, ins * 30 - 10, 22, instrument->name );
sample_length = data_u16be( data, ins * 30 + 12 ) * 2;
fine_tune = ( data_u8( data, ins * 30 + 14 ) & 0xF ) << 4;
sample->fine_tune = ( fine_tune & 0x7F ) - ( fine_tune & 0x80 );
sample->volume = data_u8( data, ins * 30 + 15 ) & 0x7F;
if( sample->volume > 64 ) {
sample->volume = 64;
}
loop_start = data_u16be( data, ins * 30 + 16 ) * 2;
loop_length = data_u16be( data, ins * 30 + 18 ) * 2;
if( loop_start + loop_length > sample_length ) {
loop_length = sample_length - loop_start;
}
if( loop_length < 4 ) {
loop_start = sample_length;
loop_length = 0;
}
sample->loop_start = loop_start;
sample->loop_length = loop_length;
sample->data = (short*)calloc( sample_length + 1, sizeof( short ) );
if( sample->data ) {
data_sam_s8( data, module_data_idx, sample_length, sample->data );
sample->data[ loop_start + loop_length ] = sample->data[ loop_start ];
} else {
dispose_module( module );
return NULL;
}
module_data_idx += sample_length;
}
}
return module;
}
/* Allocate and initialize a module from the specified data, returns NULL on error.
Message must point to a 64-character buffer to receive error messages. */
struct module* module_load( struct data *data, char *message ) {
char ascii[ 16 ];
struct module* module;
if( !memcmp( data_ascii( data, 0, 16, ascii ), "Extended Module:", 16 ) ) {
module = module_load_xm( data, message );
} else if( !memcmp( data_ascii( data, 44, 4, ascii ), "SCRM", 4 ) ) {
module = module_load_s3m( data, message );
} else {
module = module_load_mod( data, message );
}
return module;
}
static void pattern_get_note( struct pattern *pattern, int row, int chan, struct note *dest ) {
int offset = ( row * pattern->num_channels + chan ) * 5;
if( offset >= 0 && row < pattern->num_rows && chan < pattern->num_channels ) {
dest->key = pattern->data[ offset ];
dest->instrument = pattern->data[ offset + 1 ];
dest->volume = pattern->data[ offset + 2 ];
dest->effect = pattern->data[ offset + 3 ];
dest->param = pattern->data[ offset + 4 ];
} else {
memset( dest, 0, sizeof( struct note ) );
}
}
static void channel_init( struct channel *channel, struct replay *replay, int idx ) {
memset( channel, 0, sizeof( struct channel ) );
channel->replay = replay;
channel->id = idx;
channel->panning = replay->module->default_panning[ idx ];
channel->instrument = &replay->module->instruments[ 0 ];
channel->sample = &channel->instrument->samples[ 0 ];
channel->random_seed = ( idx + 1 ) * 0xABCDEF;
}
static void channel_volume_slide( struct channel *channel ) {
int up = channel->vol_slide_param >> 4;
int down = channel->vol_slide_param & 0xF;
if( down == 0xF && up > 0 ) {
/* Fine slide up.*/
if( channel->fx_count == 0 ) {
channel->volume += up;
}
} else if( up == 0xF && down > 0 ) {
/* Fine slide down.*/
if( channel->fx_count == 0 ) {
channel->volume -= down;
}
} else if( channel->fx_count > 0 || channel->replay->module->fast_vol_slides ) {
/* Normal.*/
channel->volume += up - down;
}
if( channel->volume > 64 ) {
channel->volume = 64;
}
if( channel->volume < 0 ) {
channel->volume = 0;
}
}
static void channel_porta_up( struct channel *channel, int param ) {
switch( param & 0xF0 ) {
case 0xE0: /* Extra-fine porta.*/
if( channel->fx_count == 0 ) {
channel->period -= param & 0xF;
}
break;
case 0xF0: /* Fine porta.*/
if( channel->fx_count == 0 ) {
channel->period -= ( param & 0xF ) << 2;
}
break;
default:/* Normal porta.*/
if( channel->fx_count > 0 ) {
channel->period -= param << 2;
}
break;
}
if( channel->period < 0 ) {
channel->period = 0;
}
}
static void channel_porta_down( struct channel *channel, int param ) {
if( channel->period > 0 ) {
switch( param & 0xF0 ) {
case 0xE0: /* Extra-fine porta.*/
if( channel->fx_count == 0 ) {
channel->period += param & 0xF;
}
break;
case 0xF0: /* Fine porta.*/
if( channel->fx_count == 0 ) {
channel->period += ( param & 0xF ) << 2;
}
break;
default:/* Normal porta.*/
if( channel->fx_count > 0 ) {
channel->period += param << 2;
}
break;
}
if( channel->period > 65535 ) {
channel->period = 65535;
}
}
}
static void channel_tone_porta( struct channel *channel ) {
if( channel->period > 0 ) {
if( channel->period < channel->porta_period ) {
channel->period += channel->tone_porta_param << 2;
if( channel->period > channel->porta_period ) {
channel->period = channel->porta_period;
}
} else {
channel->period -= channel->tone_porta_param << 2;
if( channel->period < channel->porta_period ) {
channel->period = channel->porta_period;
}
}
}
}
static int channel_waveform( struct channel *channel, int phase, int type ) {
int amplitude = 0;
switch( type ) {
default: /* Sine. */
amplitude = sine_table[ phase & 0x1F ];
if( ( phase & 0x20 ) > 0 ) {
amplitude = -amplitude;
}
break;
case 6: /* Saw Up.*/
amplitude = ( ( ( phase + 0x20 ) & 0x3F ) << 3 ) - 255;
break;
case 1: case 7: /* Saw Down. */
amplitude = 255 - ( ( ( phase + 0x20 ) & 0x3F ) << 3 );
break;
case 2: case 5: /* Square. */
amplitude = ( phase & 0x20 ) > 0 ? 255 : -255;
break;
case 3: case 8: /* Random. */
amplitude = ( channel->random_seed >> 20 ) - 255;
channel->random_seed = ( channel->random_seed * 65 + 17 ) & 0x1FFFFFFF;
break;
}
return amplitude;
}
static void channel_vibrato( struct channel *channel, int fine ) {
int wave = channel_waveform( channel, channel->vibrato_phase, channel->vibrato_type & 0x3 );
channel->vibrato_add = wave * channel->vibrato_depth >> ( fine ? 7 : 5 );
}
static void channel_tremolo( struct channel *channel ) {
int wave = channel_waveform( channel, channel->tremolo_phase, channel->tremolo_type & 0x3 );
channel->tremolo_add = wave * channel->tremolo_depth >> 6;
}
static void channel_tremor( struct channel *channel ) {
if( channel->retrig_count >= channel->tremor_on_ticks ) {
channel->tremolo_add = -64;
}
if( channel->retrig_count >= ( channel->tremor_on_ticks + channel->tremor_off_ticks ) ) {
channel->tremolo_add = channel->retrig_count = 0;
}
}
static void channel_retrig_vol_slide( struct channel *channel ) {
if( channel->retrig_count >= channel->retrig_ticks ) {
channel->retrig_count = channel->sample_idx = channel->sample_fra = 0;
switch( channel->retrig_volume ) {
case 0x1: channel->volume = channel->volume - 1; break;
case 0x2: channel->volume = channel->volume - 2; break;
case 0x3: channel->volume = channel->volume - 4; break;
case 0x4: channel->volume = channel->volume - 8; break;
case 0x5: channel->volume = channel->volume - 16; break;
case 0x6: channel->volume = channel->volume * 2 / 3; break;
case 0x7: channel->volume = channel->volume >> 1; break;
case 0x8: /* ? */ break;
case 0x9: channel->volume = channel->volume + 1; break;
case 0xA: channel->volume = channel->volume + 2; break;
case 0xB: channel->volume = channel->volume + 4; break;
case 0xC: channel->volume = channel->volume + 8; break;
case 0xD: channel->volume = channel->volume + 16; break;
case 0xE: channel->volume = channel->volume * 3 / 2; break;
case 0xF: channel->volume = channel->volume << 1; break;
}
if( channel->volume < 0 ) {
channel->volume = 0;
}
if( channel->volume > 64 ) {
channel->volume = 64;
}
}
}
static void channel_trigger( struct channel *channel ) {
int key, sam, porta, period, fine_tune, ins = channel->note.instrument;
struct sample *sample;
if( ins > 0 && ins <= channel->replay->module->num_instruments ) {
channel->instrument = &channel->replay->module->instruments[ ins ];
key = channel->note.key < 97 ? channel->note.key : 0;
sam = channel->instrument->key_to_sample[ key ];
sample = &channel->instrument->samples[ sam ];
channel->volume = sample->volume >= 64 ? 64 : sample->volume & 0x3F;
if( sample->panning > 0 ) {
channel->panning = ( sample->panning - 1 ) & 0xFF;
}
if( channel->period > 0 && sample->loop_length > 1 ) {
/* Amiga trigger.*/
channel->sample = sample;
}
channel->sample_off = 0;
channel->vol_env_tick = channel->pan_env_tick = 0;
channel->fadeout_vol = 32768;
channel->key_on = 1;
}
if( channel->note.effect == 0x09 || channel->note.effect == 0x8F ) {
/* Set Sample Offset. */
if( channel->note.param > 0 ) {
channel->offset_param = channel->note.param;
}
channel->sample_off = channel->offset_param << 8;
}
if( channel->note.volume >= 0x10 && channel->note.volume < 0x60 ) {
channel->volume = channel->note.volume < 0x50 ? channel->note.volume - 0x10 : 64;
}
switch( channel->note.volume & 0xF0 ) {
case 0x80: /* Fine Vol Down.*/
channel->volume -= channel->note.volume & 0xF;
if( channel->volume < 0 ) {
channel->volume = 0;
}
break;
case 0x90: /* Fine Vol Up.*/
channel->volume += channel->note.volume & 0xF;
if( channel->volume > 64 ) {
channel->volume = 64;
}
break;
case 0xA0: /* Set Vibrato Speed.*/
if( ( channel->note.volume & 0xF ) > 0 ) {
channel->vibrato_speed = channel->note.volume & 0xF;
}
break;
case 0xB0: /* Vibrato.*/
if( ( channel->note.volume & 0xF ) > 0 ) {
channel->vibrato_depth = channel->note.volume & 0xF;
}
channel_vibrato( channel, 0 );
break;
case 0xC0: /* Set Panning.*/
channel->panning = ( channel->note.volume & 0xF ) * 17;
break;
case 0xF0: /* Tone Porta.*/
if( ( channel->note.volume & 0xF ) > 0 ) {
channel->tone_porta_param = channel->note.volume & 0xF;
}
break;
}
if( channel->note.key > 0 ) {
if( channel->note.key > 96 ) {
channel->key_on = 0;
} else {
porta = ( channel->note.volume & 0xF0 ) == 0xF0 ||
channel->note.effect == 0x03 || channel->note.effect == 0x05 ||
channel->note.effect == 0x87 || channel->note.effect == 0x8C;
if( !porta ) {
ins = channel->instrument->key_to_sample[ channel->note.key ];
channel->sample = &channel->instrument->samples[ ins ];
}
fine_tune = channel->sample->fine_tune;
if( channel->note.effect == 0x75 || channel->note.effect == 0xF2 ) {
/* Set Fine Tune. */
fine_tune = ( ( channel->note.param & 0xF ) << 4 ) - 128;
}
key = channel->note.key + channel->sample->rel_note;
if( key < 1 ) {
key = 1;
}
if( key > 120 ) {
key = 120;
}
period = ( key << 6 ) + ( fine_tune >> 1 );
if( channel->replay->module->linear_periods ) {
channel->porta_period = 7744 - period;
} else {
channel->porta_period = 29021 * exp_2( ( period << FP_SHIFT ) / -768 ) >> FP_SHIFT;
}
if( !porta ) {
channel->period = channel->porta_period;
channel->sample_idx = channel->sample_off;
channel->sample_fra = 0;
if( channel->vibrato_type < 4 ) {
channel->vibrato_phase = 0;
}
if( channel->tremolo_type < 4 ) {
channel->tremolo_phase = 0;
}
channel->retrig_count = channel->av_count = 0;
}
}
}
}
static void channel_update_envelopes( struct channel *channel ) {
if( channel->instrument->vol_env.enabled ) {
if( !channel->key_on ) {
channel->fadeout_vol -= channel->instrument->vol_fadeout;
if( channel->fadeout_vol < 0 ) {
channel->fadeout_vol = 0;
}
}
channel->vol_env_tick = envelope_next_tick( &channel->instrument->vol_env,
channel->vol_env_tick, channel->key_on );
}
if( channel->instrument->pan_env.enabled ) {
channel->pan_env_tick = envelope_next_tick( &channel->instrument->pan_env,
channel->pan_env_tick, channel->key_on );
}
}
static void channel_auto_vibrato( struct channel *channel ) {
int sweep, rate, type, wave;
int depth = channel->instrument->vib_depth & 0x7F;
if( depth > 0 ) {
sweep = channel->instrument->vib_sweep & 0x7F;
rate = channel->instrument->vib_rate & 0x7F;
type = channel->instrument->vib_type;
if( channel->av_count < sweep ) {
depth = depth * channel->av_count / sweep;
}
wave = channel_waveform( channel, channel->av_count * rate >> 2, type + 4 );
channel->vibrato_add += wave * depth >> 8;
channel->av_count++;
}
}
static void channel_calculate_freq( struct channel *channel ) {
int per = channel->period + channel->vibrato_add;
if( channel->replay->module->linear_periods ) {
per = per - ( channel->arpeggio_add << 6 );
if( per < 28 || per > 7680 ) {
per = 7680;
}
channel->freq = ( ( channel->replay->module->c2_rate >> 4 )
* exp_2( ( ( 4608 - per ) << FP_SHIFT ) / 768 ) ) >> ( FP_SHIFT - 4 );
} else {
if( per > 29021 ) {
per = 29021;
}
per = ( per << FP_SHIFT ) / exp_2( ( channel->arpeggio_add << FP_SHIFT ) / 12 );
if( per < 28 ) {
per = 29021;
}
channel->freq = channel->replay->module->c2_rate * 1712 / per;
}
}
static void channel_calculate_ampl( struct channel *channel ) {
int vol, range, env_pan = 32, env_vol = channel->key_on ? 64 : 0;
if( channel->instrument->vol_env.enabled ) {
env_vol = envelope_calculate_ampl( &channel->instrument->vol_env, channel->vol_env_tick );
}
vol = channel->volume + channel->tremolo_add;
if( vol > 64 ) {
vol = 64;
}
if( vol < 0 ) {
vol = 0;
}
vol = ( vol * channel->replay->module->gain * FP_ONE ) >> 13;
vol = ( vol * channel->fadeout_vol ) >> 15;
channel->ampl = ( vol * channel->replay->global_vol * env_vol ) >> 12;
if( channel->instrument->pan_env.enabled ) {
env_pan = envelope_calculate_ampl( &channel->instrument->pan_env, channel->pan_env_tick );
}
range = ( channel->panning < 128 ) ? channel->panning : ( 255 - channel->panning );
channel->pann = channel->panning + ( range * ( env_pan - 32 ) >> 5 );
}
static void channel_tick( struct channel *channel ) {
channel->vibrato_add = 0;
channel->fx_count++;
channel->retrig_count++;
if( !( channel->note.effect == 0x7D && channel->fx_count <= channel->note.param ) ) {
switch( channel->note.volume & 0xF0 ) {
case 0x60: /* Vol Slide Down.*/
channel->volume -= channel->note.volume & 0xF;
if( channel->volume < 0 ) {
channel->volume = 0;
}
break;
case 0x70: /* Vol Slide Up.*/
channel->volume += channel->note.volume & 0xF;
if( channel->volume > 64 ) {
channel->volume = 64;
}
break;
case 0xB0: /* Vibrato.*/
channel->vibrato_phase += channel->vibrato_speed;
channel_vibrato( channel, 0 );
break;
case 0xD0: /* Pan Slide Left.*/
channel->panning -= channel->note.volume & 0xF;
if( channel->panning < 0 ) {
channel->panning = 0;
}
break;
case 0xE0: /* Pan Slide Right.*/
channel->panning += channel->note.volume & 0xF;
if( channel->panning > 255 ) {
channel->panning = 255;
}
break;
case 0xF0: /* Tone Porta.*/
channel_tone_porta( channel );
break;
}
}
switch( channel->note.effect ) {
case 0x01: case 0x86: /* Porta Up. */
channel_porta_up( channel, channel->porta_up_param );
break;
case 0x02: case 0x85: /* Porta Down. */
channel_porta_down( channel, channel->porta_down_param );
break;
case 0x03: case 0x87: /* Tone Porta. */
channel_tone_porta( channel );
break;
case 0x04: case 0x88: /* Vibrato. */
channel->vibrato_phase += channel->vibrato_speed;
channel_vibrato( channel, 0 );
break;
case 0x05: case 0x8C: /* Tone Porta + Vol Slide. */
channel_tone_porta( channel );
channel_volume_slide( channel );
break;
case 0x06: case 0x8B: /* Vibrato + Vol Slide. */
channel->vibrato_phase += channel->vibrato_speed;
channel_vibrato( channel, 0 );
channel_volume_slide( channel );
break;
case 0x07: case 0x92: /* Tremolo. */
channel->tremolo_phase += channel->tremolo_speed;
channel_tremolo( channel );
break;
case 0x0A: case 0x84: /* Vol Slide. */
channel_volume_slide( channel );
break;
case 0x11: /* Global Volume Slide. */
channel->replay->global_vol = channel->replay->global_vol
+ ( channel->gvol_slide_param >> 4 )
- ( channel->gvol_slide_param & 0xF );
if( channel->replay->global_vol < 0 ) {
channel->replay->global_vol = 0;
}
if( channel->replay->global_vol > 64 ) {
channel->replay->global_vol = 64;
}
break;
case 0x19: /* Panning Slide. */
channel->panning = channel->panning
+ ( channel->pan_slide_param >> 4 )
- ( channel->pan_slide_param & 0xF );
if( channel->panning < 0 ) {
channel->panning = 0;
}
if( channel->panning > 255 ) {
channel->panning = 255;
}
break;
case 0x1B: case 0x91: /* Retrig + Vol Slide. */
channel_retrig_vol_slide( channel );
break;
case 0x1D: case 0x89: /* Tremor. */
channel_tremor( channel );
break;
case 0x79: /* Retrig. */
if( channel->fx_count >= channel->note.param ) {
channel->fx_count = 0;
channel->sample_idx = channel->sample_fra = 0;
}
break;
case 0x7C: case 0xFC: /* Note Cut. */
if( channel->note.param == channel->fx_count ) {
channel->volume = 0;
}
break;
case 0x7D: case 0xFD: /* Note Delay. */
if( channel->note.param == channel->fx_count ) {
channel_trigger( channel );
}
break;
case 0x8A: /* Arpeggio. */
if( channel->fx_count == 1 ) {
channel->arpeggio_add = channel->arpeggio_param >> 4;
} else if( channel->fx_count == 2 ) {
channel->arpeggio_add = channel->arpeggio_param & 0xF;
} else {
channel->arpeggio_add = channel->fx_count = 0;
}
break;
case 0x95: /* Fine Vibrato. */
channel->vibrato_phase += channel->vibrato_speed;
channel_vibrato( channel, 1 );
break;
}
channel_auto_vibrato( channel );
channel_calculate_freq( channel );
channel_calculate_ampl( channel );
channel_update_envelopes( channel );
}
static void channel_row( struct channel *channel, struct note *note ) {
channel->note = *note;
channel->retrig_count++;
channel->vibrato_add = channel->tremolo_add = channel->arpeggio_add = channel->fx_count = 0;
if( !( ( note->effect == 0x7D || note->effect == 0xFD ) && note->param > 0 ) ) {
/* Not note delay.*/
channel_trigger( channel );
}
switch( channel->note.effect ) {
case 0x01: case 0x86: /* Porta Up. */
if( channel->note.param > 0 ) {
channel->porta_up_param = channel->note.param;
}
channel_porta_up( channel, channel->porta_up_param );
break;
case 0x02: case 0x85: /* Porta Down. */
if( channel->note.param > 0 ) {
channel->porta_down_param = channel->note.param;
}
channel_porta_down( channel, channel->porta_down_param );
break;
case 0x03: case 0x87: /* Tone Porta. */
if( channel->note.param > 0 ) {
channel->tone_porta_param = channel->note.param;
}
break;
case 0x04: case 0x88: /* Vibrato. */
if( ( channel->note.param >> 4 ) > 0 ) {
channel->vibrato_speed = channel->note.param >> 4;
}
if( ( channel->note.param & 0xF ) > 0 ) {
channel->vibrato_depth = channel->note.param & 0xF;
}
channel_vibrato( channel, 0 );
break;
case 0x05: case 0x8C: /* Tone Porta + Vol Slide. */
if( channel->note.param > 0 ) {
channel->vol_slide_param = channel->note.param;
}
channel_volume_slide( channel );
break;
case 0x06: case 0x8B: /* Vibrato + Vol Slide. */
if( channel->note.param > 0 ) {
channel->vol_slide_param = channel->note.param;
}
channel_vibrato( channel, 0 );
channel_volume_slide( channel );
break;
case 0x07: case 0x92: /* Tremolo. */
if( ( channel->note.param >> 4 ) > 0 ) {
channel->tremolo_speed = channel->note.param >> 4;
}
if( ( channel->note.param & 0xF ) > 0 ) {
channel->tremolo_depth = channel->note.param & 0xF;
}
channel_tremolo( channel );
break;
case 0x08: /* Set Panning.*/
channel->panning = channel->note.param & 0xFF;
break;
case 0x0A: case 0x84: /* Vol Slide. */
if( channel->note.param > 0 ) {
channel->vol_slide_param = channel->note.param;
}
channel_volume_slide( channel );
break;
case 0x0C: /* Set Volume. */
channel->volume = channel->note.param >= 64 ? 64 : channel->note.param & 0x3F;
break;
case 0x10: case 0x96: /* Set Global Volume. */
channel->replay->global_vol = channel->note.param >= 64 ? 64 : channel->note.param & 0x3F;
break;
case 0x11: /* Global Volume Slide. */
if( channel->note.param > 0 ) {
channel->gvol_slide_param = channel->note.param;
}
break;
case 0x14: /* Key Off. */
channel->key_on = 0;
break;
case 0x15: /* Set Envelope Tick. */
channel->vol_env_tick = channel->pan_env_tick = channel->note.param & 0xFF;
break;
case 0x19: /* Panning Slide. */
if( channel->note.param > 0 ) {
channel->pan_slide_param = channel->note.param;
}
break;
case 0x1B: case 0x91: /* Retrig + Vol Slide. */
if( ( channel->note.param >> 4 ) > 0 ) {
channel->retrig_volume = channel->note.param >> 4;
}
if( ( channel->note.param & 0xF ) > 0 ) {
channel->retrig_ticks = channel->note.param & 0xF;
}
channel_retrig_vol_slide( channel );
break;
case 0x1D: case 0x89: /* Tremor. */
if( ( channel->note.param >> 4 ) > 0 ) {
channel->tremor_on_ticks = channel->note.param >> 4;
}
if( ( channel->note.param & 0xF ) > 0 ) {
channel->tremor_off_ticks = channel->note.param & 0xF;
}
channel_tremor( channel );
break;
case 0x21: /* Extra Fine Porta. */
if( channel->note.param > 0 ) {
channel->xfine_porta_param = channel->note.param;
}
switch( channel->xfine_porta_param & 0xF0 ) {
case 0x10:
channel_porta_up( channel, 0xE0 | ( channel->xfine_porta_param & 0xF ) );
break;
case 0x20:
channel_porta_down( channel, 0xE0 | ( channel->xfine_porta_param & 0xF ) );
break;
}
break;
case 0x71: /* Fine Porta Up. */
if( channel->note.param > 0 ) {
channel->fine_porta_up_param = channel->note.param;
}
channel_porta_up( channel, 0xF0 | ( channel->fine_porta_up_param & 0xF ) );
break;
case 0x72: /* Fine Porta Down. */
if( channel->note.param > 0 ) {
channel->fine_porta_down_param = channel->note.param;
}
channel_porta_down( channel, 0xF0 | ( channel->fine_porta_down_param & 0xF ) );
break;
case 0x74: case 0xF3: /* Set Vibrato Waveform. */
if( channel->note.param < 8 ) {
channel->vibrato_type = channel->note.param;
}
break;
case 0x77: case 0xF4: /* Set Tremolo Waveform. */
if( channel->note.param < 8 ) {
channel->tremolo_type = channel->note.param;
}
break;
case 0x7A: /* Fine Vol Slide Up. */
if( channel->note.param > 0 ) {
channel->fine_vslide_up_param = channel->note.param;
}
channel->volume += channel->fine_vslide_up_param;
if( channel->volume > 64 ) {
channel->volume = 64;
}
break;
case 0x7B: /* Fine Vol Slide Down. */
if( channel->note.param > 0 ) {
channel->fine_vslide_down_param = channel->note.param;
}
channel->volume -= channel->fine_vslide_down_param;
if( channel->volume < 0 ) {
channel->volume = 0;
}
break;
case 0x7C: case 0xFC: /* Note Cut. */
if( channel->note.param <= 0 ) {
channel->volume = 0;
}
break;
case 0x8A: /* Arpeggio. */
if( channel->note.param > 0 ) {
channel->arpeggio_param = channel->note.param;
}
break;
case 0x95: /* Fine Vibrato.*/
if( ( channel->note.param >> 4 ) > 0 ) {
channel->vibrato_speed = channel->note.param >> 4;
}
if( ( channel->note.param & 0xF ) > 0 ) {
channel->vibrato_depth = channel->note.param & 0xF;
}
channel_vibrato( channel, 1 );
break;
case 0xF8: /* Set Panning. */
channel->panning = channel->note.param * 17;
break;
}
channel_auto_vibrato( channel );
channel_calculate_freq( channel );
channel_calculate_ampl( channel );
channel_update_envelopes( channel );
}
static void channel_resample( struct channel *channel, int *mix_buf,
int offset, int count, int sample_rate, int interpolate ) {
struct sample *sample = channel->sample;
int l_gain, r_gain, sam_idx, sam_fra, step;
int loop_len, loop_end, out_idx, out_end, y, m, c;
short *sample_data = channel->sample->data;
if( channel->ampl > 0 ) {
l_gain = channel->ampl * ( 255 - channel->pann ) >> 8;
r_gain = channel->ampl * channel->pann >> 8;
sam_idx = channel->sample_idx;
sam_fra = channel->sample_fra;
step = ( channel->freq << ( FP_SHIFT - 3 ) ) / ( sample_rate >> 3 );
loop_len = sample->loop_length;
loop_end = sample->loop_start + loop_len;
out_idx = offset * 2;
out_end = ( offset + count ) * 2;
if( interpolate ) {
while( out_idx < out_end ) {
if( sam_idx >= loop_end ) {
if( loop_len > 1 ) {
while( sam_idx >= loop_end ) {
sam_idx -= loop_len;
}
} else {
break;
}
}
c = sample_data[ sam_idx ];
m = sample_data[ sam_idx + 1 ] - c;
y = ( ( m * sam_fra ) >> FP_SHIFT ) + c;
mix_buf[ out_idx++ ] += ( y * l_gain ) >> FP_SHIFT;
mix_buf[ out_idx++ ] += ( y * r_gain ) >> FP_SHIFT;
sam_fra += step;
sam_idx += sam_fra >> FP_SHIFT;
sam_fra &= FP_MASK;
}
} else {
while( out_idx < out_end ) {
if( sam_idx >= loop_end ) {
if( loop_len > 1 ) {
while( sam_idx >= loop_end ) {
sam_idx -= loop_len;
}
} else {
break;
}
}
y = sample_data[ sam_idx ];
mix_buf[ out_idx++ ] += ( y * l_gain ) >> FP_SHIFT;
mix_buf[ out_idx++ ] += ( y * r_gain ) >> FP_SHIFT;
sam_fra += step;
sam_idx += sam_fra >> FP_SHIFT;
sam_fra &= FP_MASK;
}
}
}
}
static void channel_update_sample_idx( struct channel *channel, int count, int sample_rate ) {
struct sample *sample = channel->sample;
int step = ( channel->freq << ( FP_SHIFT - 3 ) ) / ( sample_rate >> 3 );
channel->sample_fra += step * count;
channel->sample_idx += channel->sample_fra >> FP_SHIFT;
if( channel->sample_idx > sample->loop_start ) {
if( sample->loop_length > 1 ) {
channel->sample_idx = sample->loop_start
+ ( channel->sample_idx - sample->loop_start ) % sample->loop_length;
} else {
channel->sample_idx = sample->loop_start;
}
}
channel->sample_fra &= FP_MASK;
}
static void replay_row( struct replay *replay ) {
int idx, count;
struct note note;
struct pattern *pattern;
struct channel *channel;
struct module *module = replay->module;
if( replay->next_row < 0 ) {
replay->break_pos = replay->seq_pos + 1;
replay->next_row = 0;
}
if( replay->break_pos >= 0 ) {
if( replay->break_pos >= module->sequence_len ) {
replay->break_pos = replay->next_row = 0;
}
while( module->sequence[ replay->break_pos ] >= module->num_patterns ) {
replay->break_pos++;
if( replay->break_pos >= module->sequence_len ) {
replay->break_pos = replay->next_row = 0;
}
}
replay->seq_pos = replay->break_pos;
for( idx = 0; idx < module->num_channels; idx++ ) {
replay->channels[ idx ].pl_row = 0;
}
replay->break_pos = -1;
}
pattern = &module->patterns[ module->sequence[ replay->seq_pos ] ];
replay->row = replay->next_row;
if( replay->row >= pattern->num_rows ) {
replay->row = 0;
}
if( replay->play_count && replay->play_count[ 0 ] ) {
count = replay->play_count[ replay->seq_pos ][ replay->row ];
if( replay->pl_count < 0 && count < 127 ) {
replay->play_count[ replay->seq_pos ][ replay->row ] = count + 1;
}
}
replay->next_row = replay->row + 1;
if( replay->next_row >= pattern->num_rows ) {
replay->next_row = -1;
}
for( idx = 0; idx < module->num_channels; idx++ ) {
channel = &replay->channels[ idx ];
pattern_get_note( pattern, replay->row, idx, &note );
if( note.effect == 0xE ) {
note.effect = 0x70 | ( note.param >> 4 );
note.param &= 0xF;
}
if( note.effect == 0x93 ) {
note.effect = 0xF0 | ( note.param >> 4 );
note.param &= 0xF;
}
if( note.effect == 0 && note.param > 0 ) {
note.effect = 0x8A;
}
channel_row( channel, &note );
switch( note.effect ) {
case 0x81: /* Set Speed. */
if( note.param > 0 ) {
replay->tick = replay->speed = note.param;
}
break;
case 0xB: case 0x82: /* Pattern Jump.*/
if( replay->pl_count < 0 ) {
replay->break_pos = note.param;
replay->next_row = 0;
}
break;
case 0xD: case 0x83: /* Pattern Break.*/
if( replay->pl_count < 0 ) {
if( replay->break_pos < 0 ) {
replay->break_pos = replay->seq_pos + 1;
}
replay->next_row = ( note.param >> 4 ) * 10 + ( note.param & 0xF );
}
break;
case 0xF: /* Set Speed/Tempo.*/
if( note.param > 0 ) {
if( note.param < 32 ) {
replay->tick = replay->speed = note.param;
} else {
replay->tempo = note.param;
}
}
break;
case 0x94: /* Set Tempo.*/
if( note.param > 32 ) {
replay->tempo = note.param;
}
break;
case 0x76: case 0xFB : /* Pattern Loop.*/
if( note.param == 0 ) {
/* Set loop marker on this channel. */
channel->pl_row = replay->row;
}
if( channel->pl_row < replay->row && replay->break_pos < 0 ) {
/* Marker valid. */
if( replay->pl_count < 0 ) {
/* Not already looping, begin. */
replay->pl_count = note.param;
replay->pl_chan = idx;
}
if( replay->pl_chan == idx ) {
/* Next Loop.*/
if( replay->pl_count == 0 ) {
/* Loop finished. Invalidate current marker. */
channel->pl_row = replay->row + 1;
} else {
/* Loop. */
replay->next_row = channel->pl_row;
}
replay->pl_count--;
}
}
break;
case 0x7E: case 0xFE: /* Pattern Delay.*/
replay->tick = replay->speed + replay->speed * note.param;
break;
}
}
}
static int replay_tick( struct replay *replay ) {
int idx, num_channels, count = 1;
if( --replay->tick <= 0 ) {
replay->tick = replay->speed;
replay_row( replay );
} else {
num_channels = replay->module->num_channels;
for( idx = 0; idx < num_channels; idx++ ) {
channel_tick( &replay->channels[ idx ] );
}
}
if( replay->play_count && replay->play_count[ 0 ] ) {
count = replay->play_count[ replay->seq_pos ][ replay->row ] - 1;
}
return count;
}
static int module_init_play_count( struct module *module, char **play_count ) {
int idx, pat, rows, len = 0;
for( idx = 0; idx < module->sequence_len; idx++ ) {
pat = module->sequence[ idx ];
rows = ( pat < module->num_patterns ) ? module->patterns[ pat ].num_rows : 0;
if( play_count ) {
play_count[ idx ] = play_count[ 0 ] ? &play_count[ 0 ][ len ] : NULL;
}
len += rows;
}
return len;
}
/* Set the pattern in the sequence to play. The tempo is reset to the default. */
void replay_set_sequence_pos( struct replay *replay, int pos ) {
int idx;
struct module *module = replay->module;
if( pos >= module->sequence_len ) {
pos = 0;
}
replay->break_pos = pos;
replay->next_row = 0;
replay->tick = 1;
replay->global_vol = module->default_gvol;
replay->speed = module->default_speed > 0 ? module->default_speed : 6;
replay->tempo = module->default_tempo > 0 ? module->default_tempo : 125;
replay->pl_count = replay->pl_chan = -1;
if( replay->play_count ) {
free( replay->play_count[ 0 ] );
free( replay->play_count );
}
replay->play_count = (char**)calloc( module->sequence_len, sizeof( char * ) );
if( replay->play_count ) {
replay->play_count[ 0 ] = (char*)calloc( module_init_play_count( module, NULL ), sizeof( char ) );
module_init_play_count( module, replay->play_count );
}
for( idx = 0; idx < module->num_channels; idx++ ) {
channel_init( &replay->channels[ idx ], replay, idx );
}
memset( replay->ramp_buf, 0, 128 * sizeof( int ) );
replay_tick( replay );
}
/* Deallocate the specified replay. */
void dispose_replay( struct replay *replay ) {
if( replay->play_count ) {
free( replay->play_count[ 0 ] );
free( replay->play_count );
}
free( replay->ramp_buf );
free( replay->channels );
free( replay );
}
/* Allocate and initialize a replay with the specified sampling rate and interpolation. */
struct replay* new_replay( struct module *module, int sample_rate, int interpolation ) {
struct replay *replay = (struct replay*)calloc( 1, sizeof( struct replay ) );
if( replay ) {
replay->module = module;
replay->sample_rate = sample_rate;
replay->interpolation = interpolation;
replay->ramp_buf = (int*)calloc( 128, sizeof( int ) );
replay->channels = (struct channel*)calloc( module->num_channels, sizeof( struct channel ) );
if( replay->ramp_buf && replay->channels ) {
replay_set_sequence_pos( replay, 0 );
} else {
dispose_replay( replay );
replay = NULL;
}
}
return replay;
}
static int calculate_tick_len( int tempo, int sample_rate ) {
return ( sample_rate * 5 ) / ( tempo * 2 );
}
/* Returns the length of the output buffer required by replay_get_audio(). */
int calculate_mix_buf_len( int sample_rate ) {
return ( calculate_tick_len( 32, sample_rate ) + 65 ) * 4;
}
/* Returns the song duration in samples at the current sampling rate. */
int replay_calculate_duration( struct replay *replay ) {
int count = 0, duration = 0;
replay_set_sequence_pos( replay, 0 );
while( count < 1 ) {
duration += calculate_tick_len( replay->tempo, replay->sample_rate );
count = replay_tick( replay );
}
replay_set_sequence_pos( replay, 0 );
return duration;
}
/* Seek to approximately the specified sample position.
The actual sample position reached is returned. */
int replay_seek( struct replay *replay, int sample_pos ) {
int idx, tick_len, current_pos = 0;
replay_set_sequence_pos( replay, 0 );
tick_len = calculate_tick_len( replay->tempo, replay->sample_rate );
while( ( sample_pos - current_pos ) >= tick_len ) {
for( idx = 0; idx < replay->module->num_channels; idx++ ) {
channel_update_sample_idx( &replay->channels[ idx ],
tick_len * 2, replay->sample_rate * 2 );
}
current_pos += tick_len;
replay_tick( replay );
tick_len = calculate_tick_len( replay->tempo, replay->sample_rate );
}
return current_pos;
}
static void replay_volume_ramp( struct replay *replay, int *mix_buf, int tick_len ) {
int idx, a1, a2, ramp_rate = 256 * 2048 / replay->sample_rate;
for( idx = 0, a1 = 0; a1 < 256; idx += 2, a1 += ramp_rate ) {
a2 = 256 - a1;
mix_buf[ idx ] = ( mix_buf[ idx ] * a1 + replay->ramp_buf[ idx ] * a2 ) >> 8;
mix_buf[ idx + 1 ] = ( mix_buf[ idx + 1 ] * a1 + replay->ramp_buf[ idx + 1 ] * a2 ) >> 8;
}
memcpy( replay->ramp_buf, &mix_buf[ tick_len * 2 ], 128 * sizeof( int ) );
}
/* 2:1 downsampling with simple but effective anti-aliasing. Buf must contain count * 2 + 1 stereo samples. */
static void downsample( int *buf, int count ) {
int idx, out_idx, out_len = count * 2;
for( idx = 0, out_idx = 0; out_idx < out_len; idx += 4, out_idx += 2 ) {
buf[ out_idx ] = ( buf[ idx ] >> 2 ) + ( buf[ idx + 2 ] >> 1 ) + ( buf[ idx + 4 ] >> 2 );
buf[ out_idx + 1 ] = ( buf[ idx + 1 ] >> 2 ) + ( buf[ idx + 3 ] >> 1 ) + ( buf[ idx + 5 ] >> 2 );
}
}
/* Generates audio and returns the number of stereo samples written into mix_buf.
Individual channels may be excluded using the mute bitmask. */
int replay_get_audio( struct replay *replay, int *mix_buf, int mute ) {
struct channel *channel;
int idx, num_channels, tick_len = calculate_tick_len( replay->tempo, replay->sample_rate );
/* Clear output buffer. */
memset( mix_buf, 0, ( tick_len + 65 ) * 4 * sizeof( int ) );
/* Resample. */
num_channels = replay->module->num_channels;
for( idx = 0; idx < num_channels; idx++ ) {
channel = &replay->channels[ idx ];
if( !( mute & 1 ) ) {
channel_resample( channel, mix_buf, 0, ( tick_len + 65 ) * 2,
replay->sample_rate * 2, replay->interpolation );
}
channel_update_sample_idx( channel, tick_len * 2, replay->sample_rate * 2 );
mute >>= 1;
}
downsample( mix_buf, tick_len + 64 );
replay_volume_ramp( replay, mix_buf, tick_len );
replay_tick( replay );
return tick_len;
}
/* Returns the currently playing pattern in the sequence.*/
int replay_get_sequence_pos( struct replay *replay ) {
return replay->seq_pos;
}
/* Returns the currently playing row in the pattern. */
int replay_get_row( struct replay *replay ) {
return replay->row;
}