RetroArch/audio/audio_driver.c

1352 lines
37 KiB
C

/* RetroArch - A frontend for libretro.
* Copyright (C) 2010-2014 - Hans-Kristian Arntzen
* Copyright (C) 2011-2017 - Daniel De Matteis
*
* RetroArch is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with RetroArch.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <retro_assert.h>
#include <lists/string_list.h>
#include <audio/conversion/float_to_s16.h>
#include <audio/conversion/s16_to_float.h>
#include <audio/audio_resampler.h>
#include <audio/dsp_filter.h>
#include <file/file_path.h>
#include <lists/dir_list.h>
#include <string/stdstring.h>
#ifdef HAVE_CONFIG_H
#include "../config.h"
#endif
#include "audio_driver.h"
#include "audio_thread_wrapper.h"
#include "../gfx/video_driver.h"
#include "../record/record_driver.h"
#include "../frontend/frontend_driver.h"
#include "../command.h"
#include "../driver.h"
#include "../configuration.h"
#include "../retroarch.h"
#include "../verbosity.h"
#include "../list_special.h"
#define AUDIO_BUFFER_FREE_SAMPLES_COUNT (8 * 1024)
#define AUDIO_MIXER_MAX_STREAMS 8
static const audio_driver_t *audio_drivers[] = {
#ifdef HAVE_ALSA
&audio_alsa,
#if !defined(__QNX__) && defined(HAVE_THREADS)
&audio_alsathread,
#endif
#endif
#ifdef HAVE_TINYALSA
&audio_tinyalsa,
#endif
#if defined(HAVE_OSS) || defined(HAVE_OSS_BSD)
&audio_oss,
#endif
#ifdef HAVE_RSOUND
&audio_rsound,
#endif
#ifdef HAVE_COREAUDIO
&audio_coreaudio,
#endif
#ifdef HAVE_AL
&audio_openal,
#endif
#ifdef HAVE_SL
&audio_opensl,
#endif
#ifdef HAVE_ROAR
&audio_roar,
#endif
#ifdef HAVE_JACK
&audio_jack,
#endif
#if defined(HAVE_SDL) || defined(HAVE_SDL2)
&audio_sdl,
#endif
#ifdef HAVE_XAUDIO
&audio_xa,
#endif
#ifdef HAVE_DSOUND
&audio_dsound,
#endif
#ifdef HAVE_WASAPI
&audio_wasapi,
#endif
#ifdef HAVE_PULSE
&audio_pulse,
#endif
#ifdef __CELLOS_LV2__
&audio_ps3,
#endif
#ifdef XENON
&audio_xenon360,
#endif
#ifdef GEKKO
&audio_gx,
#endif
#ifdef WIIU
&audio_ax,
#endif
#ifdef EMSCRIPTEN
&audio_rwebaudio,
#endif
#if defined(PSP) || defined(VITA)
&audio_psp,
#endif
#ifdef _3DS
&audio_ctr_csnd,
&audio_ctr_dsp,
#endif
&audio_null,
NULL,
};
struct audio_mixer_stream
{
audio_mixer_sound_t *handle;
audio_mixer_voice_t *voice;
audio_mixer_stop_cb_t stop_cb;
enum audio_mixer_state state;
float volume;
void *buf;
size_t bufsize;
};
static unsigned audio_mixer_current_max_idx = 0;
static struct audio_mixer_stream audio_mixer_streams[AUDIO_MIXER_MAX_STREAMS] = {{0}};
static size_t audio_driver_chunk_size = 0;
static size_t audio_driver_chunk_nonblock_size = 0;
static size_t audio_driver_chunk_block_size = 0;
static size_t audio_driver_rewind_ptr = 0;
static size_t audio_driver_rewind_size = 0;
static int16_t *audio_driver_rewind_buf = NULL;
static int16_t *audio_driver_output_samples_conv_buf = NULL;
static unsigned audio_driver_free_samples_buf[AUDIO_BUFFER_FREE_SAMPLES_COUNT];
static uint64_t audio_driver_free_samples_count = 0;
static size_t audio_driver_buffer_size = 0;
static size_t audio_driver_data_ptr = 0;
static bool audio_driver_control = false;
static bool audio_driver_mixer_mute_enable = false;
static bool audio_driver_mute_enable = false;
static bool audio_driver_use_float = false;
static bool audio_driver_active = false;
static bool audio_driver_data_own = false;
static bool audio_mixer_active = false;
static float audio_driver_rate_control_delta = 0.0f;
static float audio_driver_input = 0.0f;
static float audio_driver_volume_gain = 0.0f;
static float audio_driver_mixer_volume_gain = 0.0f;
static float *audio_driver_input_data = NULL;
static float *audio_driver_output_samples_buf = NULL;
static double audio_source_ratio_original = 0.0f;
static double audio_source_ratio_current = 0.0f;
static struct retro_audio_callback audio_callback = {0};
static retro_dsp_filter_t *audio_driver_dsp = NULL;
static struct string_list *audio_driver_devices_list = NULL;
static const retro_resampler_t *audio_driver_resampler = NULL;
static void *audio_driver_resampler_data = NULL;
static const audio_driver_t *current_audio = NULL;
static void *audio_driver_context_audio_data = NULL;
/**
* compute_audio_buffer_statistics:
*
* Computes audio buffer statistics.
*
**/
static void compute_audio_buffer_statistics(void)
{
unsigned i, low_water_size, high_water_size, avg, stddev;
float avg_filled = 0.0f;
float deviation = 0.0f;
uint64_t accum = 0;
uint64_t accum_var = 0;
unsigned low_water_count = 0;
unsigned high_water_count = 0;
unsigned samples = MIN(
(unsigned)audio_driver_free_samples_count,
AUDIO_BUFFER_FREE_SAMPLES_COUNT);
if (samples < 3)
return;
for (i = 1; i < samples; i++)
accum += audio_driver_free_samples_buf[i];
avg = (unsigned)accum / (samples - 1);
for (i = 1; i < samples; i++)
{
int diff = avg - audio_driver_free_samples_buf[i];
accum_var += diff * diff;
}
#ifdef REPLACE_THIS_WITH_SOME_DEFINE_THAT_DETECTS_WARPOS
/* uint64 to double not implemented, fair chance signed int64 to double doesn't exist either */
(void)stddev; (void)avg_filled; (void)deviation;
#elif defined(_MSC_VER) && _MSC_VER <= 1200
/* FIXME: error C2520: conversion from unsigned __int64 to double not implemented, use signed __int64 */
(void)stddev; (void)avg_filled; (void)deviation;
#else
stddev = (unsigned)sqrt((double)accum_var / (samples - 2));
avg_filled = 1.0f - (float)avg / audio_driver_buffer_size;
deviation = (float)stddev / audio_driver_buffer_size;
RARCH_LOG("[Audio]: Average audio buffer saturation: %.2f %%, standard deviation (percentage points): %.2f %%.\n",
avg_filled * 100.0, deviation * 100.0);
#endif
low_water_size = (unsigned)(audio_driver_buffer_size * 3 / 4);
high_water_size = (unsigned)(audio_driver_buffer_size / 4);
for (i = 1; i < samples; i++)
{
if (audio_driver_free_samples_buf[i] >= low_water_size)
low_water_count++;
else if (audio_driver_free_samples_buf[i] <= high_water_size)
high_water_count++;
}
RARCH_LOG("[Audio]: Amount of time spent close to underrun: %.2f %%. Close to blocking: %.2f %%.\n",
(100.0 * low_water_count) / (samples - 1),
(100.0 * high_water_count) / (samples - 1));
}
/**
* audio_driver_find_handle:
* @idx : index of driver to get handle to.
*
* Returns: handle to audio driver at index. Can be NULL
* if nothing found.
**/
const void *audio_driver_find_handle(int idx)
{
const void *drv = audio_drivers[idx];
if (!drv)
return NULL;
return drv;
}
/**
* audio_driver_find_ident:
* @idx : index of driver to get handle to.
*
* Returns: Human-readable identifier of audio driver at index. Can be NULL
* if nothing found.
**/
const char *audio_driver_find_ident(int idx)
{
const audio_driver_t *drv = audio_drivers[idx];
if (!drv)
return NULL;
return drv->ident;
}
/**
* config_get_audio_driver_options:
*
* Get an enumerated list of all audio driver names, separated by '|'.
*
* Returns: string listing of all audio driver names, separated by '|'.
**/
const char *config_get_audio_driver_options(void)
{
return char_list_new_special(STRING_LIST_AUDIO_DRIVERS, NULL);
}
static bool audio_driver_deinit_internal(void)
{
settings_t *settings = config_get_ptr();
if (current_audio && current_audio->free)
{
if (audio_driver_context_audio_data)
current_audio->free(audio_driver_context_audio_data);
audio_driver_context_audio_data = NULL;
}
if (audio_driver_output_samples_conv_buf)
free(audio_driver_output_samples_conv_buf);
audio_driver_output_samples_conv_buf = NULL;
audio_driver_data_ptr = 0;
if (audio_driver_rewind_buf)
free(audio_driver_rewind_buf);
audio_driver_rewind_buf = NULL;
audio_driver_rewind_size = 0;
if (settings && !settings->bools.audio_enable)
{
audio_driver_active = false;
return false;
}
audio_driver_deinit_resampler();
if (audio_driver_input_data)
free(audio_driver_input_data);
audio_driver_input_data = NULL;
if (audio_driver_output_samples_buf)
free(audio_driver_output_samples_buf);
audio_driver_output_samples_buf = NULL;
command_event(CMD_EVENT_DSP_FILTER_DEINIT, NULL);
compute_audio_buffer_statistics();
return true;
}
static bool audio_driver_init_internal(bool audio_cb_inited)
{
unsigned new_rate = 0;
float *aud_inp_data = NULL;
float *samples_buf = NULL;
int16_t *conv_buf = NULL;
int16_t *rewind_buf = NULL;
size_t max_bufsamples = AUDIO_CHUNK_SIZE_NONBLOCKING * 2;
settings_t *settings = config_get_ptr();
/* Accomodate rewind since at some point we might have two full buffers. */
size_t outsamples_max = AUDIO_CHUNK_SIZE_NONBLOCKING * 2 * AUDIO_MAX_RATIO *
settings->floats.slowmotion_ratio;
convert_s16_to_float_init_simd();
convert_float_to_s16_init_simd();
conv_buf = (int16_t*)malloc(outsamples_max
* sizeof(int16_t));
/* Used for recording even if audio isn't enabled. */
retro_assert(conv_buf != NULL);
if (!conv_buf)
goto error;
audio_driver_output_samples_conv_buf = conv_buf;
audio_driver_chunk_block_size = AUDIO_CHUNK_SIZE_BLOCKING;
audio_driver_chunk_nonblock_size = AUDIO_CHUNK_SIZE_NONBLOCKING;
audio_driver_chunk_size = audio_driver_chunk_block_size;
/* Needs to be able to hold full content of a full max_bufsamples
* in addition to its own. */
rewind_buf = (int16_t*)malloc(max_bufsamples * sizeof(int16_t));
retro_assert(rewind_buf != NULL);
if (!rewind_buf)
goto error;
audio_driver_rewind_buf = rewind_buf;
audio_driver_rewind_size = max_bufsamples;
if (!settings->bools.audio_enable)
{
audio_driver_active = false;
return false;
}
audio_driver_find_driver();
#ifdef HAVE_THREADS
if (audio_cb_inited)
{
RARCH_LOG("[Audio]: Starting threaded audio driver ...\n");
if (!audio_init_thread(
&current_audio,
&audio_driver_context_audio_data,
*settings->arrays.audio_device
? settings->arrays.audio_device : NULL,
settings->uints.audio_out_rate, &new_rate,
settings->uints.audio_latency,
settings->uints.audio_block_frames,
current_audio))
{
RARCH_ERR("Cannot open threaded audio driver ... Exiting ...\n");
retroarch_fail(1, "audio_driver_init_internal()");
}
}
else
#endif
{
audio_driver_context_audio_data =
current_audio->init(*settings->arrays.audio_device ?
settings->arrays.audio_device : NULL,
settings->uints.audio_out_rate,
settings->uints.audio_latency,
settings->uints.audio_block_frames,
&new_rate);
}
if (new_rate != 0)
{
configuration_set_int(settings, settings->uints.audio_out_rate, new_rate);
}
if (!audio_driver_context_audio_data)
{
RARCH_ERR("Failed to initialize audio driver. Will continue without audio.\n");
audio_driver_active = false;
}
audio_driver_use_float = false;
if ( audio_driver_active
&& current_audio->use_float(audio_driver_context_audio_data))
audio_driver_use_float = true;
if (!settings->bools.audio_sync && audio_driver_active)
{
command_event(CMD_EVENT_AUDIO_SET_NONBLOCKING_STATE, NULL);
audio_driver_chunk_size = audio_driver_chunk_nonblock_size;
}
if (audio_driver_input <= 0.0f)
{
/* Should never happen. */
RARCH_WARN("Input rate is invalid (%.3f Hz). Using output rate (%u Hz).\n",
audio_driver_input, settings->uints.audio_out_rate);
audio_driver_input = settings->uints.audio_out_rate;
}
audio_source_ratio_original = audio_source_ratio_current =
(double)settings->uints.audio_out_rate / audio_driver_input;
if (!retro_resampler_realloc(
&audio_driver_resampler_data,
&audio_driver_resampler,
settings->arrays.audio_resampler,
audio_source_ratio_original))
{
RARCH_ERR("Failed to initialize resampler \"%s\".\n",
settings->arrays.audio_resampler);
audio_driver_active = false;
}
aud_inp_data = (float*)malloc(max_bufsamples * sizeof(float));
retro_assert(aud_inp_data != NULL);
if (!aud_inp_data)
goto error;
audio_driver_input_data = aud_inp_data;
audio_driver_data_ptr = 0;
retro_assert(settings->uints.audio_out_rate <
audio_driver_input * AUDIO_MAX_RATIO);
samples_buf = (float*)malloc(outsamples_max * sizeof(float));
retro_assert(samples_buf != NULL);
if (!samples_buf)
goto error;
audio_driver_output_samples_buf = samples_buf;
audio_driver_control = false;
if (
!audio_cb_inited
&& audio_driver_active
&& settings->bools.audio_rate_control
)
{
/* Audio rate control requires write_avail
* and buffer_size to be implemented. */
if (current_audio->buffer_size)
{
audio_driver_buffer_size =
current_audio->buffer_size(audio_driver_context_audio_data);
audio_driver_control = true;
}
else
RARCH_WARN("Audio rate control was desired, but driver does not support needed features.\n");
}
command_event(CMD_EVENT_DSP_FILTER_INIT, NULL);
audio_driver_free_samples_count = 0;
audio_mixer_init(settings->uints.audio_out_rate);
/* Threaded driver is initially stopped. */
if (
audio_driver_active
&& audio_cb_inited
)
audio_driver_start(false);
return true;
error:
return audio_driver_deinit();
}
void audio_driver_set_nonblocking_state(bool enable)
{
settings_t *settings = config_get_ptr();
if (
audio_driver_active
&& audio_driver_context_audio_data
)
current_audio->set_nonblock_state(
audio_driver_context_audio_data,
settings->bools.audio_sync ? enable : true);
audio_driver_chunk_size = enable ?
audio_driver_chunk_nonblock_size :
audio_driver_chunk_block_size;
}
/**
* audio_driver_flush:
* @data : pointer to audio buffer.
* @right : amount of samples to write.
*
* Writes audio samples to audio driver. Will first
* perform DSP processing (if enabled) and resampling.
*
* Returns: true (1) if audio samples were written to the audio
* driver, false (0) in case of an error.
**/
static bool audio_driver_flush(const int16_t *data, size_t samples)
{
struct resampler_data src_data;
bool is_perfcnt_enable = false;
bool is_paused = false;
bool is_idle = false;
bool is_slowmotion = false;
const void *output_data = NULL;
unsigned output_frames = 0;
float audio_volume_gain = !audio_driver_mute_enable ?
audio_driver_volume_gain : 0.0f;
src_data.data_in = NULL;
src_data.data_out = NULL;
src_data.input_frames = 0;
src_data.output_frames = 0;
src_data.ratio = 0.0f;
if (recording_data)
recording_push_audio(data, samples);
runloop_get_status(&is_paused, &is_idle, &is_slowmotion,
&is_perfcnt_enable);
if (is_paused)
return true;
if (!audio_driver_active || !audio_driver_input_data)
return false;
convert_s16_to_float(audio_driver_input_data, data, samples,
audio_volume_gain);
src_data.data_in = audio_driver_input_data;
src_data.input_frames = samples >> 1;
if (audio_driver_dsp)
{
struct retro_dsp_data dsp_data;
dsp_data.input = NULL;
dsp_data.input_frames = 0;
dsp_data.output = NULL;
dsp_data.output_frames = 0;
dsp_data.input = audio_driver_input_data;
dsp_data.input_frames = (unsigned)(samples >> 1);
retro_dsp_filter_process(audio_driver_dsp, &dsp_data);
if (dsp_data.output)
{
src_data.data_in = dsp_data.output;
src_data.input_frames = dsp_data.output_frames;
}
}
src_data.data_out = audio_driver_output_samples_buf;
if (audio_driver_control)
{
/* Readjust the audio input rate. */
unsigned write_idx = audio_driver_free_samples_count++ &
(AUDIO_BUFFER_FREE_SAMPLES_COUNT - 1);
int half_size = (int)(audio_driver_buffer_size / 2);
int avail =
(int)current_audio->write_avail(audio_driver_context_audio_data);
int delta_mid = avail - half_size;
double direction = (double)delta_mid / half_size;
double adjust = 1.0 + audio_driver_rate_control_delta * direction;
#if 0
RARCH_LOG_OUTPUT("[Audio]: Audio buffer is %u%% full\n",
(unsigned)(100 - (avail * 100) / audio_driver_buffer_size));
#endif
audio_driver_free_samples_buf
[write_idx] = avail;
audio_source_ratio_current =
audio_source_ratio_original * adjust;
#if 0
RARCH_LOG_OUTPUT("[Audio]: New rate: %lf, Orig rate: %lf\n",
audio_source_ratio_current,
audio_source_ratio_original);
#endif
}
src_data.ratio = audio_source_ratio_current;
if (is_slowmotion)
{
settings_t *settings = config_get_ptr();
src_data.ratio *= settings->floats.slowmotion_ratio;
}
audio_driver_resampler->process(audio_driver_resampler_data, &src_data);
if (audio_mixer_active)
{
bool override = audio_driver_mixer_mute_enable ? true :
(audio_driver_mixer_volume_gain != 0.0f) ? true : false;
float mixer_gain = !audio_driver_mixer_mute_enable ?
audio_driver_mixer_volume_gain : 0.0f;
audio_mixer_mix(audio_driver_output_samples_buf,
src_data.output_frames, mixer_gain, override);
}
output_data = audio_driver_output_samples_buf;
output_frames = (unsigned)src_data.output_frames;
if (audio_driver_use_float)
output_frames *= sizeof(float);
else
{
convert_float_to_s16(audio_driver_output_samples_conv_buf,
(const float*)output_data, output_frames * 2);
output_data = audio_driver_output_samples_conv_buf;
output_frames *= sizeof(int16_t);
}
if (current_audio->write(audio_driver_context_audio_data,
output_data, output_frames * 2) < 0)
{
audio_driver_active = false;
return false;
}
return true;
}
/**
* audio_driver_sample:
* @left : value of the left audio channel.
* @right : value of the right audio channel.
*
* Audio sample render callback function.
**/
void audio_driver_sample(int16_t left, int16_t right)
{
audio_driver_output_samples_conv_buf[audio_driver_data_ptr++] = left;
audio_driver_output_samples_conv_buf[audio_driver_data_ptr++] = right;
if (audio_driver_data_ptr < audio_driver_chunk_size)
return;
audio_driver_flush(audio_driver_output_samples_conv_buf,
audio_driver_data_ptr);
audio_driver_data_ptr = 0;
}
/**
* audio_driver_sample_batch:
* @data : pointer to audio buffer.
* @frames : amount of audio frames to push.
*
* Batched audio sample render callback function.
*
* Returns: amount of frames sampled. Will be equal to @frames
* unless @frames exceeds (AUDIO_CHUNK_SIZE_NONBLOCKING / 2).
**/
size_t audio_driver_sample_batch(const int16_t *data, size_t frames)
{
if (frames > (AUDIO_CHUNK_SIZE_NONBLOCKING >> 1))
frames = AUDIO_CHUNK_SIZE_NONBLOCKING >> 1;
audio_driver_flush(data, frames << 1);
return frames;
}
/**
* audio_driver_sample_rewind:
* @left : value of the left audio channel.
* @right : value of the right audio channel.
*
* Audio sample render callback function (rewind version).
* This callback function will be used instead of
* audio_driver_sample when rewinding is activated.
**/
void audio_driver_sample_rewind(int16_t left, int16_t right)
{
audio_driver_rewind_buf[--audio_driver_rewind_ptr] = right;
audio_driver_rewind_buf[--audio_driver_rewind_ptr] = left;
}
/**
* audio_driver_sample_batch_rewind:
* @data : pointer to audio buffer.
* @frames : amount of audio frames to push.
*
* Batched audio sample render callback function (rewind version).
*
* This callback function will be used instead of
* audio_driver_sample_batch when rewinding is activated.
*
* Returns: amount of frames sampled. Will be equal to @frames
* unless @frames exceeds (AUDIO_CHUNK_SIZE_NONBLOCKING / 2).
**/
size_t audio_driver_sample_batch_rewind(const int16_t *data, size_t frames)
{
size_t i;
size_t samples = frames << 1;
for (i = 0; i < samples; i++)
audio_driver_rewind_buf[--audio_driver_rewind_ptr] = data[i];
return frames;
}
void audio_driver_dsp_filter_free(void)
{
if (audio_driver_dsp)
retro_dsp_filter_free(audio_driver_dsp);
audio_driver_dsp = NULL;
}
void audio_driver_dsp_filter_init(const char *device)
{
struct string_list *plugs = NULL;
#if defined(HAVE_DYLIB) && !defined(HAVE_FILTERS_BUILTIN)
char *basedir = (char*)calloc(PATH_MAX_LENGTH, sizeof(*basedir));
char *ext_name = (char*)calloc(PATH_MAX_LENGTH, sizeof(*ext_name));
size_t str_size = PATH_MAX_LENGTH * sizeof(char);
fill_pathname_basedir(basedir, device, str_size);
if (!frontend_driver_get_core_extension(ext_name, str_size))
goto error;
plugs = dir_list_new(basedir, ext_name, false, true, false, false);
if (!plugs)
goto error;
#endif
audio_driver_dsp = retro_dsp_filter_new(
device, plugs, audio_driver_input);
if (!audio_driver_dsp)
goto error;
#if defined(HAVE_DYLIB) && !defined(HAVE_FILTERS_BUILTIN)
free(basedir);
free(ext_name);
#endif
return;
error:
#if defined(HAVE_DYLIB) && !defined(HAVE_FILTERS_BUILTIN)
free(basedir);
free(ext_name);
#endif
if (!audio_driver_dsp)
RARCH_ERR("[DSP]: Failed to initialize DSP filter \"%s\".\n", device);
}
void audio_driver_set_buffer_size(size_t bufsize)
{
audio_driver_buffer_size = bufsize;
}
void audio_driver_monitor_adjust_system_rates(void)
{
float timing_skew;
settings_t *settings = config_get_ptr();
struct retro_system_av_info *av_info = video_viewport_get_system_av_info();
float video_refresh_rate = settings->floats.video_refresh_rate;
float max_timing_skew = settings->floats.audio_max_timing_skew;
const struct retro_system_timing *info = av_info ?
(const struct retro_system_timing*)&av_info->timing : NULL;
if (!info || info->sample_rate <= 0.0)
return;
timing_skew = fabs(1.0f - info->fps / video_refresh_rate);
audio_driver_input = info->sample_rate;
if (timing_skew <= max_timing_skew)
audio_driver_input *= (video_refresh_rate / info->fps);
RARCH_LOG("[Audio]: Set audio input rate to: %.2f Hz.\n",
audio_driver_input);
}
void audio_driver_setup_rewind(void)
{
unsigned i;
/* Push audio ready to be played. */
audio_driver_rewind_ptr = audio_driver_rewind_size;
for (i = 0; i < audio_driver_data_ptr; i += 2)
{
audio_driver_rewind_buf[--audio_driver_rewind_ptr] =
audio_driver_output_samples_conv_buf[i + 1];
audio_driver_rewind_buf[--audio_driver_rewind_ptr] =
audio_driver_output_samples_conv_buf[i + 0];
}
audio_driver_data_ptr = 0;
}
bool audio_driver_find_driver(void)
{
int i;
driver_ctx_info_t drv;
settings_t *settings = config_get_ptr();
drv.label = "audio_driver";
drv.s = settings->arrays.audio_driver;
driver_ctl(RARCH_DRIVER_CTL_FIND_INDEX, &drv);
i = (int)drv.len;
if (i >= 0)
current_audio = (const audio_driver_t*)audio_driver_find_handle(i);
else
{
unsigned d;
RARCH_ERR("Couldn't find any audio driver named \"%s\"\n",
settings->arrays.audio_driver);
RARCH_LOG_OUTPUT("Available audio drivers are:\n");
for (d = 0; audio_driver_find_handle(d); d++)
RARCH_LOG_OUTPUT("\t%s\n", audio_driver_find_ident(d));
RARCH_WARN("Going to default to first audio driver...\n");
current_audio = (const audio_driver_t*)audio_driver_find_handle(0);
if (!current_audio)
retroarch_fail(1, "audio_driver_find()");
}
return true;
}
void audio_driver_deinit_resampler(void)
{
if (audio_driver_resampler && audio_driver_resampler_data)
audio_driver_resampler->free(audio_driver_resampler_data);
audio_driver_resampler = NULL;
audio_driver_resampler_data = NULL;
}
bool audio_driver_free_devices_list(void)
{
if (!current_audio || !current_audio->device_list_free
|| !audio_driver_context_audio_data)
return false;
current_audio->device_list_free(audio_driver_context_audio_data,
audio_driver_devices_list);
audio_driver_devices_list = NULL;
return true;
}
bool audio_driver_new_devices_list(void)
{
if (!current_audio || !current_audio->device_list_new
|| !audio_driver_context_audio_data)
return false;
audio_driver_devices_list = (struct string_list*)
current_audio->device_list_new(audio_driver_context_audio_data);
if (!audio_driver_devices_list)
return false;
return true;
}
bool audio_driver_init(void)
{
return audio_driver_init_internal(audio_callback.callback != NULL);
}
bool audio_driver_get_devices_list(void **data)
{
struct string_list**ptr = (struct string_list**)data;
if (!ptr)
return false;
*ptr = audio_driver_devices_list;
return true;
}
bool audio_driver_mixer_extension_supported(const char *ext)
{
union string_list_elem_attr attr;
unsigned i;
bool ret = false;
struct string_list *str_list = string_list_new();
attr.i = 0;
#ifdef HAVE_STB_VORBIS
string_list_append(str_list, "ogg", attr);
#endif
#ifdef HAVE_IBXM
string_list_append(str_list, "mod", attr);
string_list_append(str_list, "s3m", attr);
string_list_append(str_list, "xm", attr);
#endif
string_list_append(str_list, "wav", attr);
for (i = 0; i < str_list->size; i++)
{
const char *str_ext = str_list->elems[i].data;
if (string_is_equal_noncase(str_ext, ext))
{
ret = true;
break;
}
}
string_list_free(str_list);
return ret;
}
static int audio_mixer_find_index(audio_mixer_sound_t *sound)
{
unsigned i;
for (i = 0; i < AUDIO_MIXER_MAX_STREAMS; i++)
{
audio_mixer_sound_t *handle = audio_mixer_streams[i].handle;
if (handle == sound)
return i;
}
return -1;
}
static void audio_mixer_play_stop_cb(
audio_mixer_sound_t *sound, unsigned reason)
{
int idx = audio_mixer_find_index(sound);
switch (reason)
{
case AUDIO_MIXER_SOUND_FINISHED:
audio_mixer_destroy(sound);
if (idx >= 0)
{
unsigned i = (unsigned)idx;
#if 0
if (audio_mixer_streams[i].buf != NULL)
free(audio_mixer_streams[i].buf);
#endif
audio_mixer_streams[i].state = AUDIO_STREAM_STATE_NONE;
audio_mixer_streams[i].volume = 0.0f;
audio_mixer_streams[i].buf = NULL;
audio_mixer_streams[i].stop_cb = NULL;
audio_mixer_streams[i].handle = NULL;
audio_mixer_streams[i].voice = NULL;
audio_mixer_current_max_idx--;
}
break;
case AUDIO_MIXER_SOUND_STOPPED:
break;
case AUDIO_MIXER_SOUND_REPEATED:
break;
}
}
bool audio_driver_mixer_add_stream(audio_mixer_stream_params_t *params)
{
audio_mixer_voice_t *voice = NULL;
audio_mixer_sound_t *handle = NULL;
audio_mixer_stop_cb_t stop_cb = audio_mixer_play_stop_cb;
bool looped = false;
void *buf = NULL;
if (audio_mixer_current_max_idx >= AUDIO_MIXER_MAX_STREAMS)
return false;
if (params->state == AUDIO_STREAM_STATE_NONE)
return false;
buf = malloc(params->bufsize);
if (!buf)
return false;
memcpy(buf, params->buf, params->bufsize);
switch (params->type)
{
case AUDIO_MIXER_TYPE_WAV:
handle = audio_mixer_load_wav(buf, (int32_t)params->bufsize);
break;
case AUDIO_MIXER_TYPE_OGG:
handle = audio_mixer_load_ogg(buf, (int32_t)params->bufsize);
break;
case AUDIO_MIXER_TYPE_MOD:
handle = audio_mixer_load_mod(buf, (int32_t)params->bufsize);
break;
case AUDIO_MIXER_TYPE_NONE:
free(buf);
return false;
}
if (!handle)
{
free(buf);
return false;
}
if (params->state == AUDIO_STREAM_STATE_PLAYING)
{
voice = audio_mixer_play(handle, looped, params->volume, stop_cb);
audio_set_bool(AUDIO_ACTION_MIXER, true);
}
else if (params->state == AUDIO_STREAM_STATE_PLAYING_LOOPED)
{
looped = true;
voice = audio_mixer_play(handle, looped, params->volume, stop_cb);
audio_set_bool(AUDIO_ACTION_MIXER, true);
}
audio_mixer_streams[audio_mixer_current_max_idx].buf = buf;
audio_mixer_streams[audio_mixer_current_max_idx].handle = handle;
audio_mixer_streams[audio_mixer_current_max_idx].voice = voice;
audio_mixer_streams[audio_mixer_current_max_idx].state = params->state;
audio_mixer_streams[audio_mixer_current_max_idx].volume = params->volume;
audio_mixer_streams[audio_mixer_current_max_idx].stop_cb = stop_cb;
audio_mixer_current_max_idx++;
return true;
}
static void audio_driver_mixer_remove_stream(unsigned i)
{
audio_mixer_sound_t *handle = audio_mixer_streams[i].handle;
audio_mixer_voice_t *voice = audio_mixer_streams[i].voice;
switch (audio_mixer_streams[i].state)
{
case AUDIO_STREAM_STATE_PLAYING:
if (voice)
audio_mixer_stop(voice);
if (handle)
audio_mixer_destroy(handle);
break;
case AUDIO_STREAM_STATE_PLAYING_LOOPED:
if (voice)
audio_mixer_stop(voice);
if (handle)
audio_mixer_destroy(handle);
break;
case AUDIO_STREAM_STATE_STOPPED:
if (handle)
audio_mixer_destroy(handle);
break;
case AUDIO_STREAM_STATE_NONE:
break;
}
audio_mixer_streams[i].state = AUDIO_STREAM_STATE_NONE;
audio_mixer_streams[i].volume = 0.0f;
audio_mixer_streams[i].stop_cb = NULL;
audio_mixer_streams[i].handle = NULL;
audio_mixer_streams[i].voice = NULL;
}
static void audio_driver_mixer_deinit(void)
{
unsigned i;
audio_set_bool(AUDIO_ACTION_MIXER, false);
for (i = 0; i < AUDIO_MIXER_MAX_STREAMS; i++)
audio_driver_mixer_remove_stream(i);
audio_mixer_current_max_idx = 0;
audio_mixer_done();
}
bool audio_driver_deinit(void)
{
audio_driver_mixer_deinit();
audio_driver_free_devices_list();
if (!audio_driver_deinit_internal())
return false;
return true;
}
bool audio_driver_set_callback(const void *data)
{
const struct retro_audio_callback *cb = (const struct retro_audio_callback*)data;
if (cb)
audio_callback = *cb;
return true;
}
bool audio_driver_enable_callback(void)
{
if (!audio_callback.callback)
return false;
if (audio_callback.set_state)
audio_callback.set_state(true);
return true;
}
bool audio_driver_disable_callback(void)
{
if (!audio_callback.callback)
return false;
if (audio_callback.set_state)
audio_callback.set_state(false);
return true;
}
/* Sets audio monitor rate to new value. */
void audio_driver_monitor_set_rate(void)
{
settings_t *settings = config_get_ptr();
double new_src_ratio = (double)settings->uints.audio_out_rate /
audio_driver_input;
audio_source_ratio_original = new_src_ratio;
audio_source_ratio_current = new_src_ratio;
}
bool audio_driver_callback(void)
{
if (!audio_callback.callback)
return false;
if (audio_callback.callback)
audio_callback.callback();
return true;
}
bool audio_driver_has_callback(void)
{
if (audio_callback.callback)
return true;
return false;
}
bool audio_driver_toggle_mute(void)
{
audio_driver_mute_enable = !audio_driver_mute_enable;
return true;
}
bool audio_driver_mixer_toggle_mute(void)
{
audio_driver_mixer_mute_enable = !audio_driver_mixer_mute_enable;
return true;
}
static INLINE bool audio_driver_alive(void)
{
if ( current_audio
&& current_audio->alive
&& audio_driver_context_audio_data)
return current_audio->alive(audio_driver_context_audio_data);
return false;
}
bool audio_driver_start(bool is_shutdown)
{
if (!current_audio || !current_audio->start
|| !audio_driver_context_audio_data)
goto error;
if (!current_audio->start(audio_driver_context_audio_data, is_shutdown))
goto error;
return true;
error:
RARCH_ERR("%s\n",
msg_hash_to_str(MSG_FAILED_TO_START_AUDIO_DRIVER));
audio_driver_active = false;
return false;
}
bool audio_driver_stop(void)
{
if (!current_audio || !current_audio->stop
|| !audio_driver_context_audio_data)
return false;
if (!audio_driver_alive())
return false;
return current_audio->stop(audio_driver_context_audio_data);
}
void audio_driver_unset_callback(void)
{
audio_callback.callback = NULL;
audio_callback.set_state = NULL;
}
void audio_driver_frame_is_reverse(void)
{
/* We just rewound. Flush rewind audio buffer. */
audio_driver_flush(
audio_driver_rewind_buf + audio_driver_rewind_ptr,
audio_driver_rewind_size - audio_driver_rewind_ptr);
}
void audio_driver_destroy_data(void)
{
audio_driver_context_audio_data = NULL;
}
void audio_driver_set_own_driver(void)
{
audio_driver_data_own = true;
}
void audio_driver_unset_own_driver(void)
{
audio_driver_data_own = false;
}
bool audio_driver_owns_driver(void)
{
return audio_driver_data_own;
}
void audio_driver_set_active(void)
{
audio_driver_active = true;
}
void audio_driver_destroy(void)
{
audio_driver_active = false;
audio_driver_data_own = false;
current_audio = NULL;
}
void audio_set_bool(enum audio_action action, bool val)
{
switch (action)
{
case AUDIO_ACTION_MIXER:
audio_mixer_active = val;
break;
case AUDIO_ACTION_NONE:
default:
break;
}
}
/**
* db_to_gain:
* @db : Decibels.
*
* Converts decibels to voltage gain.
*
* Returns: voltage gain value.
**/
#define db_to_gain(db) (powf(10.0f, (db) / 20.0f))
void audio_set_float(enum audio_action action, float val)
{
switch (action)
{
case AUDIO_ACTION_VOLUME_GAIN:
audio_driver_volume_gain = db_to_gain(val);
break;
case AUDIO_ACTION_MIXER_VOLUME_GAIN:
audio_driver_mixer_volume_gain = db_to_gain(val);
break;
case AUDIO_ACTION_RATE_CONTROL_DELTA:
audio_driver_rate_control_delta = val;
break;
case AUDIO_ACTION_NONE:
default:
break;
}
}
float *audio_get_float_ptr(enum audio_action action)
{
switch (action)
{
case AUDIO_ACTION_RATE_CONTROL_DELTA:
return &audio_driver_rate_control_delta;
case AUDIO_ACTION_NONE:
default:
break;
}
return NULL;
}
bool *audio_get_bool_ptr(enum audio_action action)
{
switch (action)
{
case AUDIO_ACTION_MIXER_MUTE_ENABLE:
return &audio_driver_mixer_mute_enable;
case AUDIO_ACTION_MUTE_ENABLE:
return &audio_driver_mute_enable;
case AUDIO_ACTION_NONE:
default:
break;
}
return NULL;
}