mirror of
https://github.com/libretro/RetroArch.git
synced 2024-11-28 18:50:29 +00:00
523 lines
15 KiB
C
523 lines
15 KiB
C
/* RetroArch - A frontend for libretro.
|
|
* Copyright (C) 2010-2014 - Hans-Kristian Arntzen
|
|
*
|
|
* RetroArch is free software: you can redistribute it and/or modify it under the terms
|
|
* of the GNU General Public License as published by the Free Software Found-
|
|
* ation, either version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
|
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
* PURPOSE. See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with RetroArch.
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// Bog-standard windowed SINC implementation.
|
|
|
|
#include "resampler.h"
|
|
#include "../libretro.h"
|
|
#include "../performance.h"
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include "../msvc/msvc_compat.h"
|
|
|
|
#ifndef RESAMPLER_TEST
|
|
#include "../general.h"
|
|
#else
|
|
#define RARCH_LOG(...) fprintf(stderr, __VA_ARGS__)
|
|
#endif
|
|
|
|
#ifdef __SSE__
|
|
#include <xmmintrin.h>
|
|
#endif
|
|
|
|
// Rough SNR values for upsampling:
|
|
// LOWEST: 40 dB
|
|
// LOWER: 55 dB
|
|
// NORMAL: 70 dB
|
|
// HIGHER: 110 dB
|
|
// HIGHEST: 140 dB
|
|
|
|
// TODO, make all this more configurable.
|
|
#if defined(SINC_LOWEST_QUALITY)
|
|
#define SINC_WINDOW_LANCZOS
|
|
#define CUTOFF 0.98
|
|
#define PHASE_BITS 12
|
|
#define SINC_COEFF_LERP 0
|
|
#define SUBPHASE_BITS 10
|
|
#define SIDELOBES 2
|
|
#define ENABLE_AVX 0
|
|
#elif defined(SINC_LOWER_QUALITY)
|
|
#define SINC_WINDOW_LANCZOS
|
|
#define CUTOFF 0.98
|
|
#define PHASE_BITS 12
|
|
#define SUBPHASE_BITS 10
|
|
#define SINC_COEFF_LERP 0
|
|
#define SIDELOBES 4
|
|
#define ENABLE_AVX 0
|
|
#elif defined(SINC_HIGHER_QUALITY)
|
|
#define SINC_WINDOW_KAISER
|
|
#define SINC_WINDOW_KAISER_BETA 10.5
|
|
#define CUTOFF 0.90
|
|
#define PHASE_BITS 10
|
|
#define SUBPHASE_BITS 14
|
|
#define SINC_COEFF_LERP 1
|
|
#define SIDELOBES 32
|
|
#define ENABLE_AVX 1
|
|
#elif defined(SINC_HIGHEST_QUALITY)
|
|
#define SINC_WINDOW_KAISER
|
|
#define SINC_WINDOW_KAISER_BETA 14.5
|
|
#define CUTOFF 0.962
|
|
#define PHASE_BITS 10
|
|
#define SUBPHASE_BITS 14
|
|
#define SINC_COEFF_LERP 1
|
|
#define SIDELOBES 128
|
|
#define ENABLE_AVX 1
|
|
#else
|
|
#define SINC_WINDOW_KAISER
|
|
#define SINC_WINDOW_KAISER_BETA 5.5
|
|
#define CUTOFF 0.825
|
|
#define PHASE_BITS 8
|
|
#define SUBPHASE_BITS 16
|
|
#define SINC_COEFF_LERP 1
|
|
#define SIDELOBES 8
|
|
#define ENABLE_AVX 0
|
|
#endif
|
|
|
|
// For the little amount of taps we're using,
|
|
// SSE1 is faster than AVX for some reason.
|
|
// AVX code is kept here though as by increasing number
|
|
// of sinc taps, the AVX code is clearly faster than SSE1.
|
|
|
|
#if defined(__AVX__) && ENABLE_AVX
|
|
#include <immintrin.h>
|
|
#endif
|
|
|
|
#define PHASES (1 << (PHASE_BITS + SUBPHASE_BITS))
|
|
|
|
#define TAPS (SIDELOBES * 2)
|
|
#define SUBPHASE_MASK ((1 << SUBPHASE_BITS) - 1)
|
|
#define SUBPHASE_MOD (1.0f / (1 << SUBPHASE_BITS))
|
|
|
|
typedef struct rarch_sinc_resampler
|
|
{
|
|
float *phase_table;
|
|
float *buffer_l;
|
|
float *buffer_r;
|
|
|
|
unsigned taps;
|
|
|
|
unsigned ptr;
|
|
uint32_t time;
|
|
|
|
// A buffer for phase_table, buffer_l and buffer_r are created in a single calloc().
|
|
// Ensure that we get as good cache locality as we can hope for.
|
|
float *main_buffer;
|
|
} rarch_sinc_resampler_t;
|
|
|
|
static inline double sinc(double val)
|
|
{
|
|
if (fabs(val) < 0.00001)
|
|
return 1.0;
|
|
return sin(val) / val;
|
|
}
|
|
|
|
#if defined(SINC_WINDOW_LANCZOS)
|
|
static inline double window_function(double index)
|
|
{
|
|
return sinc(M_PI * index);
|
|
}
|
|
#elif defined(SINC_WINDOW_KAISER)
|
|
// Modified Bessel function of first order.
|
|
// Check Wiki for mathematical definition ...
|
|
static inline double besseli0(double x)
|
|
{
|
|
unsigned i;
|
|
double sum = 0.0;
|
|
|
|
double factorial = 1.0;
|
|
double factorial_mult = 0.0;
|
|
double x_pow = 1.0;
|
|
double two_div_pow = 1.0;
|
|
double x_sqr = x * x;
|
|
|
|
// Approximate. This is an infinite sum.
|
|
// Luckily, it converges rather fast.
|
|
for (i = 0; i < 18; i++)
|
|
{
|
|
sum += x_pow * two_div_pow / (factorial * factorial);
|
|
|
|
factorial_mult += 1.0;
|
|
x_pow *= x_sqr;
|
|
two_div_pow *= 0.25;
|
|
factorial *= factorial_mult;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
static inline double window_function(double index)
|
|
{
|
|
return besseli0(SINC_WINDOW_KAISER_BETA * sqrt(1 - index * index));
|
|
}
|
|
#else
|
|
#error "No SINC window function defined."
|
|
#endif
|
|
|
|
static void init_sinc_table(rarch_sinc_resampler_t *resamp, double cutoff,
|
|
float *phase_table, int phases, int taps, bool calculate_delta)
|
|
{
|
|
int i, j, p;
|
|
double window_mod = window_function(0.0); // Need to normalize w(0) to 1.0.
|
|
int stride = calculate_delta ? 2 : 1;
|
|
|
|
double sidelobes = taps / 2.0;
|
|
for (i = 0; i < phases; i++)
|
|
{
|
|
for (j = 0; j < taps; j++)
|
|
{
|
|
int n = j * phases + i;
|
|
double window_phase = (double)n / (phases * taps); // [0, 1).
|
|
window_phase = 2.0 * window_phase - 1.0; // [-1, 1)
|
|
double sinc_phase = sidelobes * window_phase;
|
|
|
|
float val = cutoff * sinc(M_PI * sinc_phase * cutoff) * window_function(window_phase) / window_mod;
|
|
phase_table[i * stride * taps + j] = val;
|
|
}
|
|
}
|
|
|
|
if (calculate_delta)
|
|
{
|
|
for (p = 0; p < phases - 1; p++)
|
|
{
|
|
for (j = 0; j < taps; j++)
|
|
{
|
|
float delta = phase_table[(p + 1) * stride * taps + j] - phase_table[p * stride * taps + j];
|
|
phase_table[(p * stride + 1) * taps + j] = delta;
|
|
}
|
|
}
|
|
|
|
int phase = phases - 1;
|
|
for (j = 0; j < taps; j++)
|
|
{
|
|
int n = j * phases + (phase + 1);
|
|
double window_phase = (double)n / (phases * taps); // (0, 1].
|
|
window_phase = 2.0 * window_phase - 1.0; // (-1, 1]
|
|
double sinc_phase = sidelobes * window_phase;
|
|
|
|
float val = cutoff * sinc(M_PI * sinc_phase * cutoff) * window_function(window_phase) / window_mod;
|
|
float delta = (val - phase_table[phase * stride * taps + j]);
|
|
phase_table[(phase * stride + 1) * taps + j] = delta;
|
|
}
|
|
}
|
|
}
|
|
|
|
// No memalign() for us on Win32 ...
|
|
static void *aligned_alloc__(size_t boundary, size_t size)
|
|
{
|
|
void *ptr = malloc(boundary + size + sizeof(uintptr_t));
|
|
if (!ptr)
|
|
return NULL;
|
|
|
|
uintptr_t addr = ((uintptr_t)ptr + sizeof(uintptr_t) + boundary) & ~(boundary - 1);
|
|
void **place = (void**)addr;
|
|
place[-1] = ptr;
|
|
|
|
return (void*)addr;
|
|
}
|
|
|
|
static void aligned_free__(void *ptr)
|
|
{
|
|
void **p = (void**)ptr;
|
|
free(p[-1]);
|
|
}
|
|
|
|
#if !(defined(__AVX__) && ENABLE_AVX) && !defined(__SSE__)
|
|
static inline void process_sinc_C(rarch_sinc_resampler_t *resamp, float *out_buffer)
|
|
{
|
|
unsigned i;
|
|
float sum_l = 0.0f;
|
|
float sum_r = 0.0f;
|
|
const float *buffer_l = resamp->buffer_l + resamp->ptr;
|
|
const float *buffer_r = resamp->buffer_r + resamp->ptr;
|
|
|
|
unsigned taps = resamp->taps;
|
|
unsigned phase = resamp->time >> SUBPHASE_BITS;
|
|
#if SINC_COEFF_LERP
|
|
const float *phase_table = resamp->phase_table + phase * taps * 2;
|
|
const float *delta_table = phase_table + taps;
|
|
float delta = (float)(resamp->time & SUBPHASE_MASK) * SUBPHASE_MOD;
|
|
#else
|
|
const float *phase_table = resamp->phase_table + phase * taps;
|
|
#endif
|
|
|
|
for (i = 0; i < taps; i++)
|
|
{
|
|
#if SINC_COEFF_LERP
|
|
float sinc_val = phase_table[i] + delta_table[i] * delta;
|
|
#else
|
|
float sinc_val = phase_table[i];
|
|
#endif
|
|
sum_l += buffer_l[i] * sinc_val;
|
|
sum_r += buffer_r[i] * sinc_val;
|
|
}
|
|
|
|
out_buffer[0] = sum_l;
|
|
out_buffer[1] = sum_r;
|
|
}
|
|
#endif
|
|
|
|
#if defined(__AVX__) && ENABLE_AVX
|
|
#define process_sinc_func process_sinc
|
|
static void process_sinc(rarch_sinc_resampler_t *resamp, float *out_buffer)
|
|
{
|
|
unsigned i;
|
|
__m256 sum_l = _mm256_setzero_ps();
|
|
__m256 sum_r = _mm256_setzero_ps();
|
|
|
|
const float *buffer_l = resamp->buffer_l + resamp->ptr;
|
|
const float *buffer_r = resamp->buffer_r + resamp->ptr;
|
|
|
|
unsigned taps = resamp->taps;
|
|
unsigned phase = resamp->time >> SUBPHASE_BITS;
|
|
#if SINC_COEFF_LERP
|
|
const float *phase_table = resamp->phase_table + phase * taps * 2;
|
|
const float *delta_table = phase_table + taps;
|
|
__m256 delta = _mm256_set1_ps((float)(resamp->time & SUBPHASE_MASK) * SUBPHASE_MOD);
|
|
#else
|
|
const float *phase_table = resamp->phase_table + phase * taps;
|
|
#endif
|
|
|
|
for (i = 0; i < taps; i += 8)
|
|
{
|
|
__m256 buf_l = _mm256_loadu_ps(buffer_l + i);
|
|
__m256 buf_r = _mm256_loadu_ps(buffer_r + i);
|
|
|
|
#if SINC_COEFF_LERP
|
|
__m256 deltas = _mm256_load_ps(delta_table + i);
|
|
__m256 sinc = _mm256_add_ps(_mm256_load_ps(phase_table + i), _mm256_mul_ps(deltas, delta));
|
|
#else
|
|
__m256 sinc = _mm256_load_ps(phase_table + i);
|
|
#endif
|
|
sum_l = _mm256_add_ps(sum_l, _mm256_mul_ps(buf_l, sinc));
|
|
sum_r = _mm256_add_ps(sum_r, _mm256_mul_ps(buf_r, sinc));
|
|
}
|
|
|
|
// hadd on AVX is weird, and acts on low-lanes and high-lanes separately.
|
|
__m256 res_l = _mm256_hadd_ps(sum_l, sum_l);
|
|
__m256 res_r = _mm256_hadd_ps(sum_r, sum_r);
|
|
res_l = _mm256_hadd_ps(res_l, res_l);
|
|
res_r = _mm256_hadd_ps(res_r, res_r);
|
|
res_l = _mm256_add_ps(_mm256_permute2f128_ps(res_l, res_l, 1), res_l);
|
|
res_r = _mm256_add_ps(_mm256_permute2f128_ps(res_r, res_r, 1), res_r);
|
|
|
|
// This is optimized to mov %xmmN, [mem].
|
|
// There doesn't seem to be any _mm256_store_ss intrinsic.
|
|
_mm_store_ss(out_buffer + 0, _mm256_extractf128_ps(res_l, 0));
|
|
_mm_store_ss(out_buffer + 1, _mm256_extractf128_ps(res_r, 0));
|
|
}
|
|
#elif defined(__SSE__)
|
|
#define process_sinc_func process_sinc
|
|
static void process_sinc(rarch_sinc_resampler_t *resamp, float *out_buffer)
|
|
{
|
|
unsigned i;
|
|
__m128 sum_l = _mm_setzero_ps();
|
|
__m128 sum_r = _mm_setzero_ps();
|
|
|
|
const float *buffer_l = resamp->buffer_l + resamp->ptr;
|
|
const float *buffer_r = resamp->buffer_r + resamp->ptr;
|
|
|
|
unsigned taps = resamp->taps;
|
|
unsigned phase = resamp->time >> SUBPHASE_BITS;
|
|
#if SINC_COEFF_LERP
|
|
const float *phase_table = resamp->phase_table + phase * taps * 2;
|
|
const float *delta_table = phase_table + taps;
|
|
__m128 delta = _mm_set1_ps((float)(resamp->time & SUBPHASE_MASK) * SUBPHASE_MOD);
|
|
#else
|
|
const float *phase_table = resamp->phase_table + phase * taps;
|
|
#endif
|
|
|
|
for (i = 0; i < taps; i += 4)
|
|
{
|
|
__m128 buf_l = _mm_loadu_ps(buffer_l + i);
|
|
__m128 buf_r = _mm_loadu_ps(buffer_r + i);
|
|
|
|
#if SINC_COEFF_LERP
|
|
__m128 deltas = _mm_load_ps(delta_table + i);
|
|
__m128 sinc = _mm_add_ps(_mm_load_ps(phase_table + i), _mm_mul_ps(deltas, delta));
|
|
#else
|
|
__m128 sinc = _mm_load_ps(phase_table + i);
|
|
#endif
|
|
sum_l = _mm_add_ps(sum_l, _mm_mul_ps(buf_l, sinc));
|
|
sum_r = _mm_add_ps(sum_r, _mm_mul_ps(buf_r, sinc));
|
|
}
|
|
|
|
// Them annoying shuffles :V
|
|
// sum_l = { l3, l2, l1, l0 }
|
|
// sum_r = { r3, r2, r1, r0 }
|
|
|
|
__m128 sum = _mm_add_ps(_mm_shuffle_ps(sum_l, sum_r, _MM_SHUFFLE(1, 0, 1, 0)),
|
|
_mm_shuffle_ps(sum_l, sum_r, _MM_SHUFFLE(3, 2, 3, 2)));
|
|
|
|
// sum = { r1, r0, l1, l0 } + { r3, r2, l3, l2 }
|
|
// sum = { R1, R0, L1, L0 }
|
|
|
|
sum = _mm_add_ps(_mm_shuffle_ps(sum, sum, _MM_SHUFFLE(3, 3, 1, 1)), sum);
|
|
|
|
// sum = {R1, R1, L1, L1 } + { R1, R0, L1, L0 }
|
|
// sum = { X, R, X, L }
|
|
|
|
// Store L
|
|
_mm_store_ss(out_buffer + 0, sum);
|
|
|
|
// movehl { X, R, X, L } == { X, R, X, R }
|
|
_mm_store_ss(out_buffer + 1, _mm_movehl_ps(sum, sum));
|
|
}
|
|
#elif defined(__ARM_NEON__)
|
|
|
|
#if SINC_COEFF_LERP
|
|
#error "NEON asm does not support SINC lerp."
|
|
#endif
|
|
|
|
// Need to make this function pointer as Android doesn't have built-in targets
|
|
// for NEON and plain ARMv7a.
|
|
static void (*process_sinc_func)(rarch_sinc_resampler_t *resamp, float *out_buffer);
|
|
|
|
// Assumes that taps >= 8, and that taps is a multiple of 8.
|
|
void process_sinc_neon_asm(float *out, const float *left, const float *right, const float *coeff, unsigned taps);
|
|
|
|
static void process_sinc_neon(rarch_sinc_resampler_t *resamp, float *out_buffer)
|
|
{
|
|
const float *buffer_l = resamp->buffer_l + resamp->ptr;
|
|
const float *buffer_r = resamp->buffer_r + resamp->ptr;
|
|
|
|
unsigned phase = resamp->time >> SUBPHASE_BITS;
|
|
unsigned taps = resamp->taps;
|
|
const float *phase_table = resamp->phase_table + phase * taps;
|
|
|
|
process_sinc_neon_asm(out_buffer, buffer_l, buffer_r, phase_table, taps);
|
|
}
|
|
#else // Plain ol' C99
|
|
#define process_sinc_func process_sinc_C
|
|
#endif
|
|
|
|
static void resampler_sinc_process(void *re_, struct resampler_data *data)
|
|
{
|
|
rarch_sinc_resampler_t *re = (rarch_sinc_resampler_t*)re_;
|
|
|
|
uint32_t ratio = PHASES / data->ratio;
|
|
|
|
const float *input = data->data_in;
|
|
float *output = data->data_out;
|
|
size_t frames = data->input_frames;
|
|
size_t out_frames = 0;
|
|
|
|
while (frames)
|
|
{
|
|
while (frames && re->time >= PHASES)
|
|
{
|
|
// Push in reverse to make filter more obvious.
|
|
if (!re->ptr)
|
|
re->ptr = re->taps;
|
|
re->ptr--;
|
|
|
|
re->buffer_l[re->ptr + re->taps] = re->buffer_l[re->ptr] = *input++;
|
|
re->buffer_r[re->ptr + re->taps] = re->buffer_r[re->ptr] = *input++;
|
|
|
|
re->time -= PHASES;
|
|
frames--;
|
|
}
|
|
|
|
while (re->time < PHASES)
|
|
{
|
|
process_sinc_func(re, output);
|
|
output += 2;
|
|
out_frames++;
|
|
re->time += ratio;
|
|
}
|
|
}
|
|
|
|
data->output_frames = out_frames;
|
|
}
|
|
|
|
static void resampler_sinc_free(void *re)
|
|
{
|
|
rarch_sinc_resampler_t *resampler = (rarch_sinc_resampler_t*)re;
|
|
if (resampler)
|
|
aligned_free__(resampler->main_buffer);
|
|
free(resampler);
|
|
}
|
|
|
|
static void *resampler_sinc_new(double bandwidth_mod)
|
|
{
|
|
rarch_sinc_resampler_t *re = (rarch_sinc_resampler_t*)calloc(1, sizeof(*re));
|
|
if (!re)
|
|
return NULL;
|
|
|
|
memset(re, 0, sizeof(*re));
|
|
|
|
re->taps = TAPS;
|
|
double cutoff = CUTOFF;
|
|
|
|
// Downsampling, must lower cutoff, and extend number of taps accordingly to keep same stopband attenuation.
|
|
if (bandwidth_mod < 1.0)
|
|
{
|
|
cutoff *= bandwidth_mod;
|
|
re->taps = (unsigned)ceil(re->taps / bandwidth_mod);
|
|
}
|
|
|
|
// Be SIMD-friendly.
|
|
#if (defined(__AVX__) && ENABLE_AVX) || defined(__ARM_NEON__)
|
|
re->taps = (re->taps + 7) & ~7;
|
|
#else
|
|
re->taps = (re->taps + 3) & ~3;
|
|
#endif
|
|
|
|
size_t phase_elems = (1 << PHASE_BITS) * re->taps;
|
|
#if SINC_COEFF_LERP
|
|
phase_elems *= 2;
|
|
#endif
|
|
size_t elems = phase_elems + 4 * re->taps;
|
|
|
|
re->main_buffer = (float*)aligned_alloc__(128, sizeof(float) * elems);
|
|
if (!re->main_buffer)
|
|
goto error;
|
|
|
|
re->phase_table = re->main_buffer;
|
|
re->buffer_l = re->main_buffer + phase_elems;
|
|
re->buffer_r = re->buffer_l + 2 * re->taps;
|
|
|
|
init_sinc_table(re, cutoff, re->phase_table, 1 << PHASE_BITS, re->taps, SINC_COEFF_LERP);
|
|
|
|
#if defined(__AVX__) && ENABLE_AVX
|
|
RARCH_LOG("Sinc resampler [AVX]\n");
|
|
#elif defined(__SSE__)
|
|
RARCH_LOG("Sinc resampler [SSE]\n");
|
|
#elif defined(__ARM_NEON__)
|
|
unsigned cpu = rarch_get_cpu_features();
|
|
process_sinc_func = cpu & RETRO_SIMD_NEON ? process_sinc_neon : process_sinc_C;
|
|
RARCH_LOG("Sinc resampler [%s]\n", cpu & RETRO_SIMD_NEON ? "NEON" : "C");
|
|
#else
|
|
RARCH_LOG("Sinc resampler [C]\n");
|
|
#endif
|
|
|
|
RARCH_LOG("SINC params (%u phase bits, %u taps).\n", PHASE_BITS, re->taps);
|
|
return re;
|
|
|
|
error:
|
|
resampler_sinc_free(re);
|
|
return NULL;
|
|
}
|
|
|
|
const rarch_resampler_t sinc_resampler = {
|
|
resampler_sinc_new,
|
|
resampler_sinc_process,
|
|
resampler_sinc_free,
|
|
"sinc",
|
|
};
|
|
|