RetroArch/deps/xxHash/cli/xsum_bench.c
Francisco Javier Trujillo Mata ba47d09c4b [ORBIS] Update xxHash dependecy
2022-05-21 17:10:36 +02:00

437 lines
16 KiB
C

/*
* xsum_bench - Benchmark functions for xxhsum
* Copyright (C) 2013-2021 Yann Collet
*
* GPL v2 License
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* You can contact the author at:
* - xxHash homepage: https://www.xxhash.com
* - xxHash source repository: https://github.com/Cyan4973/xxHash
*/
#include "xsum_output.h" /* XSUM_logLevel */
#include "xsum_bench.h"
#include "xsum_sanity_check.h" /* XSUM_fillTestBuffer */
#include "xsum_os_specific.h" /* XSUM_getFileSize */
#ifndef XXH_STATIC_LINKING_ONLY
# define XXH_STATIC_LINKING_ONLY
#endif
#include "../xxhash.h"
#ifdef XXHSUM_DISPATCH
# include "../xxh_x86dispatch.h" /* activate _dispatch() redirectors */
#endif
#include <stdlib.h> /* malloc, free */
#include <assert.h>
#include <string.h> /* strlen, memcpy */
#include <time.h> /* clock_t, clock, CLOCKS_PER_SEC */
#include <errno.h> /* errno */
#define TIMELOOP_S 1
#define TIMELOOP (TIMELOOP_S * CLOCKS_PER_SEC) /* target timing per iteration */
#define TIMELOOP_MIN (TIMELOOP / 2) /* minimum timing to validate a result */
#define MAX_MEM (2 GB - 64 MB)
static clock_t XSUM_clockSpan( clock_t start )
{
return clock() - start; /* works even if overflow; Typical max span ~ 30 mn */
}
static size_t XSUM_findMaxMem(XSUM_U64 requiredMem)
{
size_t const step = 64 MB;
void* testmem = NULL;
requiredMem = (((requiredMem >> 26) + 1) << 26);
requiredMem += 2*step;
if (requiredMem > MAX_MEM) requiredMem = MAX_MEM;
while (!testmem) {
if (requiredMem > step) requiredMem -= step;
else requiredMem >>= 1;
testmem = malloc ((size_t)requiredMem);
}
free (testmem);
/* keep some space available */
if (requiredMem > step) requiredMem -= step;
else requiredMem >>= 1;
return (size_t)requiredMem;
}
/*
* A secret buffer used for benchmarking XXH3's withSecret variants.
*
* In order for the bench to be realistic, the secret buffer would need to be
* pre-generated.
*
* Adding a pointer to the parameter list would be messy.
*/
static XSUM_U8 g_benchSecretBuf[XXH3_SECRET_SIZE_MIN];
/*
* Wrappers for the benchmark.
*
* If you would like to add other hashes to the bench, create a wrapper and add
* it to the g_hashesToBench table. It will automatically be added.
*/
typedef XSUM_U32 (*hashFunction)(const void* buffer, size_t bufferSize, XSUM_U32 seed);
static XSUM_U32 localXXH32(const void* buffer, size_t bufferSize, XSUM_U32 seed)
{
return XXH32(buffer, bufferSize, seed);
}
static XSUM_U32 localXXH32_stream(const void* buffer, size_t bufferSize, XSUM_U32 seed)
{
XXH32_state_t state;
(void)seed;
XXH32_reset(&state, seed);
XXH32_update(&state, buffer, bufferSize);
return (XSUM_U32)XXH32_digest(&state);
}
static XSUM_U32 localXXH64(const void* buffer, size_t bufferSize, XSUM_U32 seed)
{
return (XSUM_U32)XXH64(buffer, bufferSize, seed);
}
static XSUM_U32 localXXH64_stream(const void* buffer, size_t bufferSize, XSUM_U32 seed)
{
XXH64_state_t state;
(void)seed;
XXH64_reset(&state, seed);
XXH64_update(&state, buffer, bufferSize);
return (XSUM_U32)XXH64_digest(&state);
}
static XSUM_U32 localXXH3_64b(const void* buffer, size_t bufferSize, XSUM_U32 seed)
{
(void)seed;
return (XSUM_U32)XXH3_64bits(buffer, bufferSize);
}
static XSUM_U32 localXXH3_64b_seeded(const void* buffer, size_t bufferSize, XSUM_U32 seed)
{
return (XSUM_U32)XXH3_64bits_withSeed(buffer, bufferSize, seed);
}
static XSUM_U32 localXXH3_64b_secret(const void* buffer, size_t bufferSize, XSUM_U32 seed)
{
(void)seed;
return (XSUM_U32)XXH3_64bits_withSecret(buffer, bufferSize, g_benchSecretBuf, sizeof(g_benchSecretBuf));
}
static XSUM_U32 localXXH3_128b(const void* buffer, size_t bufferSize, XSUM_U32 seed)
{
(void)seed;
return (XSUM_U32)(XXH3_128bits(buffer, bufferSize).low64);
}
static XSUM_U32 localXXH3_128b_seeded(const void* buffer, size_t bufferSize, XSUM_U32 seed)
{
return (XSUM_U32)(XXH3_128bits_withSeed(buffer, bufferSize, seed).low64);
}
static XSUM_U32 localXXH3_128b_secret(const void* buffer, size_t bufferSize, XSUM_U32 seed)
{
(void)seed;
return (XSUM_U32)(XXH3_128bits_withSecret(buffer, bufferSize, g_benchSecretBuf, sizeof(g_benchSecretBuf)).low64);
}
static XSUM_U32 localXXH3_stream(const void* buffer, size_t bufferSize, XSUM_U32 seed)
{
XXH3_state_t state;
(void)seed;
XXH3_64bits_reset(&state);
XXH3_64bits_update(&state, buffer, bufferSize);
return (XSUM_U32)XXH3_64bits_digest(&state);
}
static XSUM_U32 localXXH3_stream_seeded(const void* buffer, size_t bufferSize, XSUM_U32 seed)
{
XXH3_state_t state;
XXH3_INITSTATE(&state);
XXH3_64bits_reset_withSeed(&state, (XXH64_hash_t)seed);
XXH3_64bits_update(&state, buffer, bufferSize);
return (XSUM_U32)XXH3_64bits_digest(&state);
}
static XSUM_U32 localXXH128_stream(const void* buffer, size_t bufferSize, XSUM_U32 seed)
{
XXH3_state_t state;
(void)seed;
XXH3_128bits_reset(&state);
XXH3_128bits_update(&state, buffer, bufferSize);
return (XSUM_U32)(XXH3_128bits_digest(&state).low64);
}
static XSUM_U32 localXXH128_stream_seeded(const void* buffer, size_t bufferSize, XSUM_U32 seed)
{
XXH3_state_t state;
XXH3_INITSTATE(&state);
XXH3_128bits_reset_withSeed(&state, (XXH64_hash_t)seed);
XXH3_128bits_update(&state, buffer, bufferSize);
return (XSUM_U32)(XXH3_128bits_digest(&state).low64);
}
typedef struct {
const char* name;
hashFunction func;
} hashInfo;
static const hashInfo g_hashesToBench[] = {
{ "XXH32", &localXXH32 },
{ "XXH64", &localXXH64 },
{ "XXH3_64b", &localXXH3_64b },
{ "XXH3_64b w/seed", &localXXH3_64b_seeded },
{ "XXH3_64b w/secret", &localXXH3_64b_secret },
{ "XXH128", &localXXH3_128b },
{ "XXH128 w/seed", &localXXH3_128b_seeded },
{ "XXH128 w/secret", &localXXH3_128b_secret },
{ "XXH32_stream", &localXXH32_stream },
{ "XXH64_stream", &localXXH64_stream },
{ "XXH3_stream", &localXXH3_stream },
{ "XXH3_stream w/seed",&localXXH3_stream_seeded },
{ "XXH128_stream", &localXXH128_stream },
{ "XXH128_stream w/seed",&localXXH128_stream_seeded },
};
#define NB_HASHFUNC (sizeof(g_hashesToBench) / sizeof(*g_hashesToBench))
#define NB_TESTFUNC (1 + 2 * NB_HASHFUNC)
int const g_nbTestFunctions = NB_TESTFUNC;
char g_testIDs[NB_TESTFUNC] = { 0 };
const char k_testIDs_default[NB_TESTFUNC] = { 0,
1 /*XXH32*/, 0,
1 /*XXH64*/, 0,
1 /*XXH3*/, 0, 0, 0, 0, 0,
1 /*XXH128*/ };
int g_nbIterations = NBLOOPS_DEFAULT;
#define HASHNAME_MAX 29
static void XSUM_benchHash(hashFunction h, const char* hName, int testID,
const void* buffer, size_t bufferSize)
{
XSUM_U32 nbh_perIteration = (XSUM_U32)((300 MB) / (bufferSize+1)) + 1; /* first iteration conservatively aims for 300 MB/s */
int iterationNb, nbIterations = g_nbIterations + !g_nbIterations /* min 1 */;
double fastestH = 100000000.;
assert(HASHNAME_MAX > 2);
XSUM_logVerbose(2, "\r%80s\r", ""); /* Clean display line */
for (iterationNb = 1; iterationNb <= nbIterations; iterationNb++) {
XSUM_U32 r=0;
clock_t cStart;
XSUM_logVerbose(2, "%2i-%-*.*s : %10u ->\r",
iterationNb,
HASHNAME_MAX, HASHNAME_MAX, hName,
(unsigned)bufferSize);
cStart = clock();
while (clock() == cStart); /* starts clock() at its exact beginning */
cStart = clock();
{ XSUM_U32 u;
for (u=0; u<nbh_perIteration; u++)
r += h(buffer, bufferSize, u);
}
if (r==0) XSUM_logVerbose(3,".\r"); /* do something with r to defeat compiler "optimizing" hash away */
{ clock_t const nbTicks = XSUM_clockSpan(cStart);
double const ticksPerHash = ((double)nbTicks / TIMELOOP) / nbh_perIteration;
/*
* clock() is the only decent portable timer, but it isn't very
* precise.
*
* Sometimes, this lack of precision is enough that the benchmark
* finishes before there are enough ticks to get a meaningful result.
*
* For example, on a Core 2 Duo (without any sort of Turbo Boost),
* the imprecise timer caused peculiar results like so:
*
* XXH3_64b 4800.0 MB/s // conveniently even
* XXH3_64b unaligned 4800.0 MB/s
* XXH3_64b seeded 9600.0 MB/s // magical 2x speedup?!
* XXH3_64b seeded unaligned 4800.0 MB/s
*
* If we sense a suspiciously low number of ticks, we increase the
* iterations until we can get something meaningful.
*/
if (nbTicks < TIMELOOP_MIN) {
/* Not enough time spent in benchmarking, risk of rounding bias */
if (nbTicks == 0) { /* faster than resolution timer */
nbh_perIteration *= 100;
} else {
/*
* update nbh_perIteration so that the next round lasts
* approximately 1 second.
*/
double nbh_perSecond = (1 / ticksPerHash) + 1;
if (nbh_perSecond > (double)(4000U<<20)) nbh_perSecond = (double)(4000U<<20); /* avoid overflow */
nbh_perIteration = (XSUM_U32)nbh_perSecond;
}
/* g_nbIterations==0 => quick evaluation, no claim of accuracy */
if (g_nbIterations>0) {
iterationNb--; /* new round for a more accurate speed evaluation */
continue;
}
}
if (ticksPerHash < fastestH) fastestH = ticksPerHash;
if (fastestH>0.) { /* avoid div by zero */
XSUM_logVerbose(2, "%2i-%-*.*s : %10u -> %8.0f it/s (%7.1f MB/s) \r",
iterationNb,
HASHNAME_MAX, HASHNAME_MAX, hName,
(unsigned)bufferSize,
(double)1 / fastestH,
((double)bufferSize / (1 MB)) / fastestH);
} }
{ double nbh_perSecond = (1 / fastestH) + 1;
if (nbh_perSecond > (double)(4000U<<20)) nbh_perSecond = (double)(4000U<<20); /* avoid overflow */
nbh_perIteration = (XSUM_U32)nbh_perSecond;
}
}
XSUM_logVerbose(1, "%2i#%-*.*s : %10u -> %8.0f it/s (%7.1f MB/s) \n",
testID,
HASHNAME_MAX, HASHNAME_MAX, hName,
(unsigned)bufferSize,
(double)1 / fastestH,
((double)bufferSize / (1 MB)) / fastestH);
if (XSUM_logLevel<1)
XSUM_logVerbose(0, "%u, ", (unsigned)((double)1 / fastestH));
}
/*
* Allocates a string containing s1 and s2 concatenated. Acts like strdup.
* The result must be freed.
*/
static char* XSUM_strcatDup(const char* s1, const char* s2)
{
assert(s1 != NULL);
assert(s2 != NULL);
{ size_t len1 = strlen(s1);
size_t len2 = strlen(s2);
char* buf = (char*)malloc(len1 + len2 + 1);
if (buf != NULL) {
/* strcpy(buf, s1) */
memcpy(buf, s1, len1);
/* strcat(buf, s2) */
memcpy(buf + len1, s2, len2 + 1);
}
return buf;
}
}
/*!
* XSUM_benchMem():
* buffer: Must be 16-byte aligned.
* The real allocated size of buffer is supposed to be >= (bufferSize+3).
* returns: 0 on success, 1 if error (invalid mode selected)
*/
static void XSUM_benchMem(const void* buffer, size_t bufferSize)
{
assert((((size_t)buffer) & 15) == 0); /* ensure alignment */
XSUM_fillTestBuffer(g_benchSecretBuf, sizeof(g_benchSecretBuf));
{ int i;
for (i = 1; i < (int)NB_TESTFUNC; i++) {
int const hashFuncID = (i-1) / 2;
assert(g_hashesToBench[hashFuncID].name != NULL);
if (g_testIDs[i] == 0) continue;
/* aligned */
if ((i % 2) == 1) {
XSUM_benchHash(g_hashesToBench[hashFuncID].func, g_hashesToBench[hashFuncID].name, i, buffer, bufferSize);
}
/* unaligned */
if ((i % 2) == 0) {
/* Append "unaligned". */
char* const hashNameBuf = XSUM_strcatDup(g_hashesToBench[hashFuncID].name, " unaligned");
assert(hashNameBuf != NULL);
XSUM_benchHash(g_hashesToBench[hashFuncID].func, hashNameBuf, i, ((const char*)buffer)+3, bufferSize);
free(hashNameBuf);
}
} }
}
static size_t XSUM_selectBenchedSize(const char* fileName)
{
XSUM_U64 const inFileSize = XSUM_getFileSize(fileName);
size_t benchedSize = (size_t) XSUM_findMaxMem(inFileSize);
if ((XSUM_U64)benchedSize > inFileSize) benchedSize = (size_t)inFileSize;
if (benchedSize < inFileSize) {
XSUM_log("Not enough memory for '%s' full size; testing %i MB only...\n", fileName, (int)(benchedSize>>20));
}
return benchedSize;
}
int XSUM_benchFiles(const char* fileNamesTable[], int nbFiles)
{
int fileIdx;
for (fileIdx=0; fileIdx<nbFiles; fileIdx++) {
const char* const inFileName = fileNamesTable[fileIdx];
assert(inFileName != NULL);
{ FILE* const inFile = XSUM_fopen( inFileName, "rb" );
size_t const benchedSize = XSUM_selectBenchedSize(inFileName);
char* const buffer = (char*)calloc(benchedSize+16+3, 1);
void* const alignedBuffer = (buffer+15) - (((size_t)(buffer+15)) & 0xF); /* align on next 16 bytes */
/* Checks */
if (inFile==NULL){
XSUM_log("Error: Could not open '%s': %s.\n", inFileName, strerror(errno));
free(buffer);
exit(11);
}
if(!buffer) {
XSUM_log("\nError: Out of memory.\n");
fclose(inFile);
exit(12);
}
/* Fill input buffer */
{ size_t const readSize = fread(alignedBuffer, 1, benchedSize, inFile);
fclose(inFile);
if(readSize != benchedSize) {
XSUM_log("\nError: Could not read '%s': %s.\n", inFileName, strerror(errno));
free(buffer);
exit(13);
} }
/* bench */
XSUM_benchMem(alignedBuffer, benchedSize);
free(buffer);
} }
return 0;
}
int XSUM_benchInternal(size_t keySize)
{
void* const buffer = calloc(keySize+16+3, 1);
if (buffer == NULL) {
XSUM_log("\nError: Out of memory.\n");
exit(12);
}
{ const void* const alignedBuffer = ((char*)buffer+15) - (((size_t)((char*)buffer+15)) & 0xF); /* align on next 16 bytes */
/* bench */
XSUM_logVerbose(1, "Sample of ");
if (keySize > 10 KB) {
XSUM_logVerbose(1, "%u KB", (unsigned)(keySize >> 10));
} else {
XSUM_logVerbose(1, "%u bytes", (unsigned)keySize);
}
XSUM_logVerbose(1, "... \n");
XSUM_benchMem(alignedBuffer, keySize);
free(buffer);
}
return 0;
}