RetroArch/rewind.c

546 lines
14 KiB
C

#include "minir.h"
#include <stdlib.h>
//Format per frame:
//size nextstart;
//repeat {
// uint16 numchanged; // everything is counted in units of uint16
// if (numchanged) {
// uint16 numunchanged; // skip these before handling numchanged
// uint16[numchanged] changeddata;
// }
// else
// {
// uint32 numunchanged;
// if (!numunchanged) break;
// }
//}
//size thisstart;
//
//The start offsets point to 'nextstart' of any given compressed frame.
//Each uint16 is stored native endian; anything that claims any other endianness refers to the endianness of this specific item.
//The uint32 is stored little endian.
//Each size value is stored native endian if alignment is not enforced; if it is, they're little endian.
//The start of the buffer contains a size pointing to the end of the buffer; the end points to its start.
//Wrapping is handled by returning to the start of the buffer if the compressed data could potentially hit the edge;
//if the compressed data could potentially overwrite the tail pointer, the tail retreats until it can no longer collide.
//This means that on average, ~2*maxcompsize is unused at any given moment.
#if SIZE_MAX == 0xFFFFFFFF
extern char double_check_sizeof_size_t[(sizeof(size_t)==4)?1:-1];
#elif SIZE_MAX == 0xFFFFFFFFFFFFFFFF
extern char double_check_sizeof_size_t[(sizeof(size_t)==8)?1:-1];
#define USE_64BIT
#else
#error This item is only tested on 32bit and 64bit.
#endif
#ifdef NO_UNALIGNED_MEM
//These functions assume 16bit alignment.
//They do not make any attempt at matching system native endian; values written by these can only be read by the matching partner.
#ifdef USE_64BIT
static inline void write_size_t(uint16_t* ptr, size_t val)
{
ptr[0]=val>>0;
ptr[1]=val>>16;
ptr[2]=val>>32;
ptr[3]=val>>48;
}
static inline size_t read_size_t(uint16_t* ptr)
{
return ((size_t)ptr[0]<<0 |
(size_t)ptr[1]<<16 |
(size_t)ptr[2]<<32 |
(size_t)ptr[3]<<48);
}
#else
static inline void write_size_t(uint16_t* ptr, size_t val)
{
ptr[0]=val;
ptr[1]=val>>16;
}
static inline size_t read_size_t(uint16_t* ptr)
{
return (ptr[0] | (size_t)ptr[1]<<16);
}
#endif
#else
#define read_size_t(ptr) (*(size_t*)(ptr))
#define write_size_t(ptr, val) (*(size_t*)(ptr) = (val))
#endif
struct rewindstack_impl {
struct rewindstack i;
char * data;
size_t capacity;
char * head;//Reading and writing is done here.
char * tail;//If head comes close to this, discard a frame.
char * thisblock;
char * nextblock;
bool thisblock_valid;
size_t blocksize;//This one is runded up from reset::blocksize.
size_t maxcompsize;//size_t+(blocksize+131071)/131072*(blocksize+u16+u16)+u16+u32+size_t (yes, the math is a bit ugly)
unsigned int entries;
};
static void reset(struct rewindstack * this_, size_t blocksize, size_t capacity)
{
struct rewindstack_impl * this=(struct rewindstack_impl*)this_;
int newblocksize=((blocksize-1)|(sizeof(uint16_t)-1))+1;
if (this->blocksize!=newblocksize)
{
this->blocksize=newblocksize;
const int maxcblkcover=UINT16_MAX*sizeof(uint16_t);
const int maxcblks=(this->blocksize+maxcblkcover-1)/maxcblkcover;
this->maxcompsize=this->blocksize + maxcblks*sizeof(uint16_t)*2 + sizeof(uint16_t)+sizeof(uint32_t) + sizeof(size_t)*2;
free(this->thisblock);
free(this->nextblock);
this->thisblock=calloc(this->blocksize+sizeof(uint16_t)*4+16, 1);
this->nextblock=calloc(this->blocksize+sizeof(uint16_t)*4+16, 1);
//Force in a different byte at the end, so we don't need to check bounds in the innermost loop (it's expensive).
//There is also a large amount of data that's the same, to stop the other scan
//There is also some padding at the end. This is so we don't read outside the buffer end if we're reading in large blocks;
// it doesn't make any difference to us, but sacrificing 16 bytes to get Valgrind happy is worth it.
*(uint16_t*)(this->thisblock+this->blocksize+sizeof(uint16_t)*3)=0xFFFF;
*(uint16_t*)(this->nextblock+this->blocksize+sizeof(uint16_t)*3)=0x0000;
}
if (capacity!=this->capacity)
{
free(this->data);
this->data=malloc(capacity);
this->capacity=capacity;
}
this->head=this->data+sizeof(size_t);
this->tail=this->data+sizeof(size_t);
this->thisblock_valid=false;
this->entries=0;
}
static void * push_begin(struct rewindstack * this_)
{
struct rewindstack_impl * this=(struct rewindstack_impl*)this_;
//We need to ensure we have an uncompressed copy of the last pushed state, or we could
// end up applying a 'patch' to wrong savestate, and that'd blow up rather quickly.
if (!this->thisblock_valid)
{
if (this_->pull(this_))
{
this->thisblock_valid=true;
this->entries++;
}
}
return this->nextblock;
}
#if __SSE2__
#if defined(__GNUC__)
static inline int compat_ctz(unsigned int x)
{
return __builtin_ctz(x);
}
#else
// Only checks at nibble granularity, because that's what we need.
static inline int compat_ctz(unsigned int x)
{
if (x&0x000f) return 0;
if (x&0x00f0) return 4;
if (x&0x0f00) return 8;
if (x&0xf000) return 12;
return 16;
}
#endif
#include <emmintrin.h>
// There's no equivalent in libc, you'd think so ... std::mismatch exists, but it's not optimized at all. :(
static inline size_t find_change(const uint16_t * a, const uint16_t * b)
{
const __m128i * a128=(const __m128i*)a;
const __m128i * b128=(const __m128i*)b;
while (true)
{
__m128i v0 = _mm_loadu_si128(a128);
__m128i v1 = _mm_loadu_si128(b128);
__m128i c = _mm_cmpeq_epi32(v0, v1);
uint32_t mask = _mm_movemask_epi8(c);
if (mask != 0xffff) // Something has changed, figure out where.
{
size_t ret=(((char*)a128-(char*)a) | (compat_ctz(~mask))) >> 1;
return (ret | (a[ret]==b[ret]));
}
a128++;
b128++;
}
}
#else
static inline size_t find_change(const uint16_t * a, const uint16_t * b)
{
const uint16_t * a_org=a;
#ifdef NO_UNALIGNED_MEM
while ((uintptr_t)a & (sizeof(size_t)-1) && *a==*b)
{
a++;
b++;
}
if (*a==*b)
#endif
{
const size_t* a_big=(const size_t*)a;
const size_t* b_big=(const size_t*)b;
while (*a_big==*b_big)
{
a_big++;
b_big++;
}
a=(const uint16_t*)a_big;
b=(const uint16_t*)b_big;
while (*a==*b)
{
a++;
b++;
}
}
return a-a_org;
}
#endif
#if __SSE2__x
//This one can give different answers than the C version in some cases. However, the compression ratio remains unaffected.
//It also appears to be slower. Probably due to the low average duration of this loop.
static inline size_t find_same(const uint16_t * a, const uint16_t * b)
{gfgf
if (a[0]==b[0] && a[1]==b[1]) return 0;
if (a[1]==b[1] && a[2]==b[2]) return 1;
if (a[2]==b[2] && a[3]==b[3]) return 2;
if (a[3]==b[3] && a[4]==b[4]) return 3;
const __m128i * a128=((const __m128i*)a);
const __m128i * b128=((const __m128i*)b);
while (true)
{
__m128i v0 = _mm_loadu_si128(a128);
__m128i v1 = _mm_loadu_si128(b128);
__m128i c = _mm_cmpeq_epi32(v0, v1);
uint32_t mask = _mm_movemask_epi8(c);
if (mask != 0x0000) // Something remains unchanged, figure out where.
{
size_t ret=(((char*)a128-(char*)a) | (__builtin_ctz(mask))) >> 1;
return (ret - (a[ret-1]==b[ret-1]));
}
a128++;
b128++;
}
}
#else
//desired comp ratio: 4.074198%
//*
static inline size_t find_same(const uint16_t * a, const uint16_t * b)
{
const uint16_t * a_org=a;
#ifdef NO_UNALIGNED_MEM
if ((uintptr_t)a & (sizeof(uint32_t)-1) && *a!=*b)
{
a++;
b++;
}
if (*a!=*b)
#endif
{
//With this, it's random whether two consecutive identical words are caught.
//Luckily, compression rate is the same for both cases, and three is always caught.
//(We prefer to miss two-word blocks, anyways; fewer iterations of the outer loop, as well as in the decompressor.)
const uint32_t* a_big=(const uint32_t*)a;
const uint32_t* b_big=(const uint32_t*)b;
while (*a_big!=*b_big)
{
a_big++;
b_big++;
}
a=(const uint16_t*)a_big;
b=(const uint16_t*)b_big;
if (a!=a_org && a[-1]==b[-1])
{
a--;
b--;
}
}
return a-a_org;
}
/*/
static inline size_t find_same(const uint16_t * a, const uint16_t * b)
{
const uint16_t * a_org=a;
//Comparing two or three words makes no real difference.
//With two, the smaller blocks are less likely to be chopped up elsewhere due to 64KB;
// with three, we get larger blocks which should be a minuscle bit faster to decompress,
// but probably a little slower to compress. Since compression is more bottleneck than decompression is, we favor that.
while (a[0]!=b[0] || a[1]!=b[1])
{
a++;
b++;
//Optimize this by only checking one at the time for as long as possible.
while (*a!=*b)
{
a++;
b++;
}
}
return a-a_org;
}
//*/
#endif
#include<stdio.h>
static void push_end(struct rewindstack * this_)
{
struct rewindstack_impl * this=(struct rewindstack_impl*)this_;
if (this->thisblock_valid)
{
/*
if(1)
{
static FILE * out=NULL;
bool q=0;
if(!out)out=fopen("diff.bin", "wb"),q=1;
int p=0;
while (p<this->blocksize)
{
int pp=p;
while(this->thisblock[p]==this->nextblock[p]) p++;
unsigned int o2=p-pp;
while(o2>0xFFFF)
{
unsigned short l=0;
unsigned short h=0xFFFF;
fwrite(&h, 2,1, out);
fwrite(&l, 2,1, out);
o2-=0xFFFF;
}
unsigned short o=o2;
fwrite(&o, 2,1, out);
pp=p;
while(this->thisblock[p]!=this->nextblock[p]) p++;
o2=p-pp;
while(o2>0xFFFF)
{
unsigned short l=0;
unsigned short h=0xFFFF;
fwrite(&l, 2,1, out);
fwrite(&h, 2,1, out);
o2-=0xFFFF;
}
o=o2;
fwrite(&o, 2,1, out);
}
fflush(out);
if(q)printf("[%i %zu]\n",p,this->blocksize);
}
// */
if (this->capacity<sizeof(size_t)+this->maxcompsize) return;
recheckcapacity:;
size_t headpos=(this->head-this->data);
size_t tailpos=(this->tail-this->data);
size_t remaining=(tailpos+this->capacity-sizeof(size_t)-headpos-1)%this->capacity + 1;
if (remaining<=this->maxcompsize)
{
this->tail=this->data + read_size_t((uint16_t*)this->tail);
this->entries--;
goto recheckcapacity;
}
const char* old=this->thisblock;
const char* new=this->nextblock;
char* compressed=this->head+sizeof(size_t);
//Begin compression code; 'compressed' will point to the end of the compressed data (excluding the prev pointer).
const uint16_t * old16=(const uint16_t*)old;
const uint16_t * new16=(const uint16_t*)new;
uint16_t * compressed16=(uint16_t*)compressed;
size_t num16s=this->blocksize/sizeof(uint16_t);
while (num16s)
{
size_t skip=find_change(old16, new16);
//size_t skip=find_change_b(old16, new16);
//if (skip!=skip2) abort();
if (skip>=num16s) break;
old16+=skip;
new16+=skip;
num16s-=skip;
if (skip>UINT16_MAX)
{
if (skip>UINT32_MAX)
{
//This will make it scan the entire thing again, but it only hits on 8GB unchanged
//data anyways, and if you're doing that, you've got bigger problems.
skip=UINT32_MAX;
}
*(compressed16++)=0;
*(compressed16++)=skip;
*(compressed16++)=skip>>16;
skip=0;
continue;
}
size_t changed=find_same(old16, new16);
if (changed>UINT16_MAX) changed=UINT16_MAX;
*(compressed16++)=changed;
*(compressed16++)=skip;
for (int i=0;i<changed;i++) compressed16[i]=old16[i];
old16+=changed;
new16+=changed;
compressed16+=changed;
num16s-=changed;
}
compressed16[0]=0;
compressed16[1]=0;
compressed16[2]=0;
compressed=(char*)(compressed16+3);
//End compression code.
if (compressed-this->data+this->maxcompsize > this->capacity)
{
compressed=this->data;
if (this->tail==this->data+sizeof(size_t)) this->tail=this->data + *(size_t*)this->tail;
}
write_size_t((uint16_t*)compressed, this->head-this->data);
compressed+=sizeof(size_t);
write_size_t((uint16_t*)this->head, compressed-this->data);
this->head=compressed;
}
else
{
this->thisblock_valid=true;
}
char * swap=this->thisblock;
this->thisblock=this->nextblock;
this->nextblock=swap;
this->entries++;
}
static void push_cancel(struct rewindstack * this_)
{
//struct rewindstack_impl * this=(struct rewindstack_impl*)this_;
//We ignore this. push_begin just returns a pointer anyways.
}
static const void * pull(struct rewindstack * this_)
{
struct rewindstack_impl * this=(struct rewindstack_impl*)this_;
if (this->thisblock_valid)
{
this->thisblock_valid=false;
this->entries--;
return this->thisblock;
}
if (this->head==this->tail) return NULL;
size_t start=read_size_t((uint16_t*)(this->head - sizeof(size_t)));
this->head=this->data+start;
const char * compressed=this->data+start+sizeof(size_t);
char * out=this->thisblock;
//Begin decompression code
//out is the last pushed (or returned) state
const uint16_t * compressed16=(const uint16_t*)compressed;
uint16_t * out16=(uint16_t*)out;
while (true)
{
uint16_t numchanged=*(compressed16++);
if (numchanged)
{
out16+=*(compressed16++);
//We could do memcpy, but it seems that memcpy has a constant-per-call overhead that actually shows up.
//Our average size in here seems to be 8 or something.
//Therefore, we do something with lower overhead.
for (int i=0;i<numchanged;i++) out16[i]=compressed16[i];
compressed16+=numchanged;
out16+=numchanged;
}
else
{
uint32_t numunchanged=compressed16[0] | compressed16[1]<<16;
if (!numunchanged) break;
compressed16+=2;
out16+=numunchanged;
}
}
//End decompression code
this->entries--;
return this->thisblock;
}
static void capacity_f(struct rewindstack * this_, unsigned int * entries, size_t * bytes, bool * full)
{
struct rewindstack_impl * this=(struct rewindstack_impl*)this_;
size_t headpos=(this->head-this->data);
size_t tailpos=(this->tail-this->data);
size_t remaining=(tailpos+this->capacity-sizeof(size_t)-headpos-1)%this->capacity + 1;
if (entries) *entries=this->entries;
if (bytes) *bytes=(this->capacity-remaining);
if (full) *full=(remaining<=this->maxcompsize*2);
}
static void free_(struct rewindstack * this_)
{
struct rewindstack_impl * this=(struct rewindstack_impl*)this_;
free(this->data);
free(this->thisblock);
free(this->nextblock);
free(this);
}
struct rewindstack * rewindstack_create(size_t blocksize, size_t capacity)
{
struct rewindstack_impl * this=malloc(sizeof(struct rewindstack_impl));
this->i.reset=reset;
this->i.push_begin=push_begin;
this->i.push_end=push_end;
this->i.push_cancel=push_cancel;
this->i.pull=pull;
this->i.capacity=capacity_f;
this->i.free=free_;
this->data=NULL;
this->thisblock=NULL;
this->nextblock=NULL;
this->capacity=0;
this->blocksize=0;
reset((struct rewindstack*)this, blocksize, capacity);
return (struct rewindstack*)this;
}